National Academies Press: OpenBook
« Previous: Executive Summary
Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.

Page 7



The world in 2025 will be much more crowded, and resources, especially those that require arable land, will be at a premium. Biotechnology will provide a means of feeding growing populations. Therapeutics for treating chronic diseases using biotechnology-derived methods and products will be common, and diagnostics and treatments for cancer, heart disease, and some types of genetic disorders will be more effective and less invasive—at least for nations that can afford them. Vaccines will be available against most infectious diseases. With a better understanding of the basis of life, many of the painful conditions that afflict mankind in 2000 will be preventable.

Many foods will be engineered to provide optimal nutrition and minimize spoilage. Controlling illnesses caused by food-borne pathogens and keeping water supplies safe will be well within mankind’s capability. Cost-effective, renewable resources will also have been developed that will compete with nonrenewable petrochemical products. Biotechnology will make all of these things possible.

Box 1-1 describes a visionary combat scenario that highlights possible biotechnology applications for the Army in a not-so-distant future. The scenario described is by no means far-fetched. Potential bioapplications for the Army of 2025 are already on the horizon. Although soldiers in 2025 will look outwardly identical to soldiers today, they will be stronger, have longer endurance, and will be more resistant to disease and aging. The capabilities of future soldiers may very well be augmented in ways that change the nature of individual and unit combat.

Much like the sensors used to detect electronic signatures on the battlefield today, soldiers in the future will wear or carry sensors that can detect signature molecules in the environment, alerting them to changes that may be caused by enemy activity or influence. Sensors small enough to be attached to persons or vehicles, or dispersed by air or munition to distant points on the battlefield, may provide early warning of an enemy intention to pollute the battlefield with chemical or biological agents. Sensors may also enable soldiers to “see” the enemy by detecting trace molecules, similar to the way animals can smell their prey.

Artificial skin could insulate soldiers from environmental extremes, as well as provide frontline treatment for wounds. Uniforms and coatings could contain materials that mimic vegetation to deceive known enemy sensors. Edible vaccines could provide temporary protection against pathogens in exotic locales. Sensor implants could monitor a soldier’s health and dispense antidotes to chemical or biological threats, both natural and unnatural.

Small unit operations could also be transformed. Futuristic, “superhuman” capabilities of individual soldiers could enable small units to operate for extended periods of time, carry the fight to remote locales, and endure harsh extremes of climate. Logistical limitations on food, water, and energy in combat could be mitigated by spin-off technologies of the same biological developments that enable burgeoning populations to enjoy high standards of living. Reductions in the soldier’s combat load made possible by lighter weight materials and more efficient systems could extend the range and scope of operations so that fewer soldiers will be needed to accomplish a given objective.

Future combat systems of all types will be affected by biotechnology. Regardless of form, fit, or function, these battlefield systems could be constructed of lighter, stronger, biologically inspired materials and structures making them more mobile and capable of surviving the rigors of combat. Combat functions themselves may be modeled on natural, efficient biological processes. It is difficult to imagine any system or function that could not be improved in some way by biotechnological innovations in the next 25 years.

The Army’s pursuit of biotechnologies to meet its needs will benefit not only troops and forces, but also society at large. Just as information technologies, which were supported mostly by the military in the 1970s and 1980s, were soon overtaken by commercial development for society at large, new biotechnologies developed for the Army could lead to significant changes for everyone. Lighter and safer

Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.

Page 8

BOX 1-1

Scenario of Possible Army Applications

Picture yourself driving an Army vehicle similar to an SUV with few amenities. As you move over rough terrain in a Third World country, the vehicle computer, programmed with map data, assists you by smoothing the ride so that you can focus on avoiding shell craters and other obstacles that may not have been anticipated. Your attention is concentrated on keeping the vehicle moving steadily forward to a prominent hill ahead.

Now expand the vision to include explosions on either side of the vehicle and soldiers in the back seat firing weapons. Smoke and haze obscure your vision, but inside the vehicle a heads-up display provides a rapidly changing picture of the battlefield, a continuous stream of information on the location of friendly and enemy troops, vehicles, terrain, weather, and other essential information. In spite of your bioenhanced tolerance to heat, you feel sweat on your face as you try to react to the information displayed while maintaining control of the vehicle.

In your ear the insistent voice of your unit commander reminds you where you are going and what your objective is. It becomes even more difficult to concentrate as you feel your body heat under the airtight garment you wear under your uniform for protection against chemical or biological agents dispersed by the enemy.

Suddenly the display flashes! External sensors carried by adjacent vehicles have detected the presence of a toxic chemical agent. Quickly, a visor in your helmet automatically drops and seals to your face. At the same time, internal medical sensors detect changes in your body, and drugs specifically designed to your needs are automatically administered to calm you and stimulate your reactions. You drive on, secure in the knowledge that your faculties are intact and that your objective lies directly ahead.

But your luck runs out. A guided rocket hits the rear of the vehicle, stopping it dead in its tracks. A gaping hole has appeared on your arm, and your passengers lie frighteningly still. So far you are alive, but as your senses dull, your medical sensors once again detect the emergency. Tourniquets within your uniform tighten around the bleeding limb, and drugs to forestall shock and infection are immediately injected.

Emergency information about the wound is relayed from your health monitor to your personal communications system and transmitted to the central medical unit. Within minutes, the severity of your condition has been assessed and a medical vehicle has been dispatched. You awaken in a hospital and are told you will survive. You can see that new skin tissue has already grown over your wound. You learn that other soldiers in your unit achieved the objective, but as you drift back into sleep you cannot remember actually seeing a single enemy soldier or vehicle.. . .

Thinking back on the operation, you remember that you had filled your vehicle before the battle with a fluid that smelled a lot like wood. The exterior was also sprayed with a coating that would provide camouflage by absorbing infrared and other forms of illuminating radiation. To refresh your memory, you check your personal “black box,” the memory module that was issued to you to preserve a record of everything that transpired before, during, and after the battle. It reminds you that you ate potatoes that had been engineered to provide extra nutrition and a distinctive biomarker to enable you to be identified and traced if you had become separated from your unit.

The fusion of so much data and intelligence coming from far-flung sensors required advanced computational algorithms modeled after human neurological processes. Similar models were used to design the efficient communications network that enabled data to be relayed from your internal monitor to the precise location where it could best be used.. . .

As you reflect on the skirmish, you are thankful that the Army had the foresight at the turn of the twenty-first century to recognize the potential of the biotechnologies that make all the difference in combat.

vehicles would consume environmentally friendly fuels. In developing nations, highly efficient foods could extend the food supply, and versatile vaccines could improve survival rates. The Army can use its influence to encourage the development of biotechnologies the private sector might never attempt on its own.


The Assistant Secretary of the Army (Acquisition, Logistics, and Technology) requested that the National Research Council (NRC) carry out a study of enabling biotechnologies for the Army. The study was motivated by a desire to educate the Army about potential developments in bioscience and bioengineering and to assist the Army in planning its science and technology program. In keeping with national policy and treaty obligations, the study specifically excluded considerations related to the development of offensive biological weapons.

The NRC was requested to accomplish the following tasks:

  • Examine developmental trends in the bioscience and engineering industries, including small business involvement and the impact of university and other institutional research activities in biology, biomimetics, and other related thrust areas. Determine what the Army is doing to take advantage of the growth in these technologies. Include, but do not emphasize, medical applications.

Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.

Page 9

  • Determine whether trends in research, technology transfer, and commercialization related to the exploitation of advances in the biotechnological industries can be used to predict advances likely to be useful for the Army through the 2025 time frame.

  • Identify which bioscience and engineering technologies offer the most potential for Army applications. Consider affordability as well as the likelihood of leveraging commercial research and development.

  • Identify critical barriers to the development of biotechnologies with strong potential for Army applications, especially barriers that could be surmounted by appropriate science and technology investments, and suggest ways they might be overcome.

  • Recommend research initiatives that could help the Army to exploit promising biotechnologies and engineering developments.

  • Although the NRC was not asked to focus on specific military or Army requirements, it was asked to suggest novel applications and to pay special attention to technologies that could improve the long-range detection of chemical and biological warfare agents. The study assumed that the Army of the future would continue to rely on soldiers fighting and surviving on highly lethal battlefields. It also assumed that, although specific combat systems and the numbers and configurations of military organizations may change, the Army’s fundamental mission to take and hold ground against a determined adversary will not change.

    The study intentionally avoided considerations related to the doctrine or organization of future forces and systems, which are subject to change. Instead, the committee focused on applications important to the Army today and applications highly likely to be important in the next 25 years, regardless of changes in doctrine. Future Army applications considered likely are listed in Table 1-1.

    The list of prospective applications in Table 1-1 is not all-inclusive: future biobased technologies will undoubtedly create applications that cannot be predicted now. At the same time, some of the applications in the table may represent a long reach for biotechnology, even in 2025. The study attempted to cover biotechnology opportunities ranging from the highly probable to the merely possible, limited only by the Statement of Task and the expertise of members of the study committee.

    TABLE 1-1 Future Army Applications for Biotechnology

    • Camouflage and concealment

    • Combat identification

    • Computing

    • Data fusion

    • Functional foods

    • Health monitoring

    • High-capacity data storage

    • High-resolution imaging

    • Lightweight armor

    • Novel materials

    • Performance enhancement

    • Radiation-resistant electronics

    • Reductions in size and weight

    • Sensing battlefield environments

    • Sensor networks

    • Soldier therapeutics

    • Soldier-portable power

    • Target recognition

    • Vaccines

    • Wound healing


    The starting point for the study was to determine the areas of bioscience and engineering most likely to be associated with the enabling biotechnologies and applications of importance to the Army. In approving the study, the NRC Governing Board Executive Committee directed that a planning group be formed in advance to help determine the disciplines and expertise that should be represented on the study committee.

    The planning group consisted of the appointed committee chair, members of the NRC staff and NRC Board on Army Science and Technology, and representatives of the Army. After careful consideration, the planning group determined that committee members should have expertise in biology, biochemistry, biochemical engineering, biocomputing, bioelectronics, microelectromechanical systems (MEMS), biomedical engineering, biomimetics, biomaterials, biosensors, and biotechnology development. The planning group then identified potential sources of information and prospective candidates for the study committee. The list of prospective candidates was used by the NRC as a basis for selecting committee members, with due consideration given to committee balance and conflict of interest.

    From the beginning, it was clear that no single committee or study would be able to address all of the areas of biology and engineering that might be important to the Army in the next 25 years. Therefore, the study was focused on areas of biotechnological research and development that the committee agreed could be reasonably translated into useful technologies for future Army applications.


    The report addresses possible impacts of biotechnology on the Army, as well as the impacts the Army may have on the identification and development of biotechnologies to meet unique Army needs. Because the field of biotechnology is broad and dynamic, the committee felt it important to develop a definition of biotechnology that reflects the rapidly changing nature of the field and that would be relevant to the content of the report, to the field of biology, from which the developments in biotechnology arise, as well as to the science and engineering contributors to the revolution in biotechnology. Biotechnology will have at least as great an impact in the twenty-first century as information technology had in the twentieth century. Just as we no longer define information technology as telephones and typewriters, the committee did not wish to limit the definition of biotechnology to current biotechnologies.

    Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.

    Page 10

    The committee defined a biotechnology as a technology with one or both of the following characteristics:

    • It uses organisms, or tissues, cells, or molecular components derived from living things, to act on living things.

    • It acts by intervening in the workings of cells or the molecular components of cells, including their genetic material.

    Although all of the topics in this report fit this definition of biotechnology, not all areas associated with biotechnology are covered in the report. The scope of the report reflects the committee’s judgment on topics and applications that will be important to the Army in the next 25 years. Although most advances in biotechnology have been spurred by biomedical research and most near-term developments apply primarily to medical therapeutics and emergency care, the Statement of Task specifically requested that the study not emphasize medical applications. The committee noted that many potentially useful Army applications, such as the implantation of devices in soldiers to augment capabilities or to monitor health, have a “medical” component. For example, insulin delivery systems are very likely to require biotechnology and to evolve into systems with a variety of medical and nonmedical purposes. As bioapplications become common, it will become increasingly difficult to distinguish between the medical and nonmedical domain. The line between drugs that can cure maladies and drugs that can enhance performance is already blurred.

    Most bioapplications will also benefit both civilian and military users. Just as separate versions of the Global Positioning System serve both civilian and military users, bioapplications related to the gathering and dissemination of intelligence or to the survivability and mobility of soldiers and systems will have analogues in the civilian sector.


    This report documents the committee’s analysis, findings, conclusions, and recommendations. It focuses on areas of research likely to lead to developments of interest to the Army and provides specific objectives for the Army to consider. In Chapter 2 (Biotechnology and the Army), important biological terms are defined, and background information is provided on the biotechnology industry. Chapter 3 (Sensing the Battlefield Environment) describes technologies for biological sensors and detection mechanisms, and Chapter 4 (Electronics and Computing) considers biotechnologies, such as molecular electronics, biocomputing, and biomolecular hybrid devices. Chapter 5 (In Search of New Materials) describes technologies for developing biological, biologically inspired, and hybrid materials. Chapter 6 (Reducing Logistics Requirements) discusses technologies for miniaturization, functional foods, biological energy sources, and renewable resources that could help reduce logistics support requirements. Chapter 7 (Soldier Health and Performance) describes important advances in genomics and therapeutics that could increase the combat effectiveness of future soldiers. Finally, Chapter 8 (Conclusions and Recommendations) provides conclusions and recommendations and summarizes the areas of research on which the Army should focus its attention and resources.

    Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.
    Page 7
    Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.
    Page 8
    Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.
    Page 9
    Suggested Citation:"1. Introduction." National Research Council. 2001. Opportunities in Biotechnology for Future Army Applications. Washington, DC: The National Academies Press. doi: 10.17226/10142.
    Page 10
    Next: 2. Biotechnology and the Army »
    Opportunities in Biotechnology for Future Army Applications Get This Book
    Buy Paperback | $56.00 Buy Ebook | $44.99
    MyNAP members save 10% online.
    Login or Register to save!
    Download Free PDF

    This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.

    1. ×

      Welcome to OpenBook!

      You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

      Do you want to take a quick tour of the OpenBook's features?

      No Thanks Take a Tour »
    2. ×

      Show this book's table of contents, where you can jump to any chapter by name.

      « Back Next »
    3. ×

      ...or use these buttons to go back to the previous chapter or skip to the next one.

      « Back Next »
    4. ×

      Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

      « Back Next »
    5. ×

      Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

      « Back Next »
    6. ×

      To search the entire text of this book, type in your search term here and press Enter.

      « Back Next »
    7. ×

      Share a link to this book page on your preferred social network or via email.

      « Back Next »
    8. ×

      View our suggested citation for this chapter.

      « Back Next »
    9. ×

      Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

      « Back Next »
    Stay Connected!