National Academies Press: OpenBook
« Previous: Appendix C: Committee Meetings and Site Visits
Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×

Appendix D
Biographical Sketches of Committee Members

Robert A.Beaudet, Chair, received his Ph.D. in physical chemistry from Harvard University in 1962. From 1961 to 1962, he was a U.S. Army officer and served at the Jet Propulsion Laboratory as a research scientist. He joined the faculty of the University of Southern California in 1962 as an assistant professor and was chair of the Chemistry Department from 1976 to 1979. He has also served on Department of Defense committees addressing chemical warfare agents in both offensive and defensive scenarios. He was chair of an Army Science Board committee that addressed chemical detection and trace-gas analysis and chair of an Air Force technical conference on chemical warfare decontamination and protection. He has served on two National Research Council (NRC) studies on chemical and biological sensor technologies and energetic materials and technologies. Most of his career has been devoted to research in molecular structure and molecular spectroscopy. Dr. Beaudet previously served as a member of the Board of Army Science and Technology (BAST) and as a BAST liaison to the Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program (Stockpile Committee), a standing NRC committee. He is currently a member of the NRC Committee on Review of the Non-Stockpile Chemical Materiel Disposal Program. Dr. Beaudet is the author or coauthor of more than 100 technical reports and papers.

Richard J.Ayen received his Ph.D. in chemical engineering from the University of Illinois. Dr. Ayen is a former vice president of technology for Waste Management, Inc., and is now an independent consultant. He has extensive experience in the evaluation and development of new technologies for the treatment of hazardous waste. Dr. Ayen managed all aspects of the Waste Management Clemson Technical Center, including treatability studies and technology demonstrations for hazardous and radioactive waste. He has published extensively in his fields of interest and is a member of the NRC Committee on Review of the Non-Stockpile Chemical Materiel Disposal Program.

Joan B.Berkowitz, who graduated from the University of Illinois with a Ph.D. in physical chemistry, is currently managing director of Farkas Berkowitz and Company. Her areas of expertise include environmental and hazardous waste management, available technologies for the cleanup of contaminated soils and groundwater, and physical and electro-chemistry. She has contributed to several studies by the Environmental Protection Agency, been a consultant on remediation techniques, and assessed various destruction technologies. Dr. Berkowitz has written numerous publications on hazardous waste treatment and environmental subjects. She is currently a member of the NRC Committee on Review of the Non-Stockpile Chemical Materiel Disposal Program.

Ruth M.Doherty received a Ph.D. in physical chemistry from the University of Maryland. She is currently technical advisor for the Energetic Materials Research and Technology Department, Naval Surface Warfare Center, Indian Head, Maryland. Since 1983, she has coauthored about 60 publications on physical chemistry. In the past 6 years, Dr. Doherty has given 20 presentations on various aspects of the science and technology of explosives. In 1998 and 1999, she delivered a series of lectures on explosives technology for members of the Office of Naval Intelligence. For more than 15 years, she has been involved in research and development of energetics materials and explosives at the Naval Surface Warfare Center.

Willard C.Gekler graduated from the Colorado School of Mines with a B.S. in petroleum refining engineering and pursued additional graduate study at the University of California in Los Angeles in nuclear engineering. Mr. Gekler is currently an independent consultant working for his previous employer, EQE International, Inc. His extensive experience includes membership on the NRC ACW I and II Committees and on the Expert Panel reviewing the quantitative risk assessments and safety analyses of hazardous materials

Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×

handling, storage, and waste treatment systems for the Anniston and Umatilla chemical disposal facilities. His expertise is in hazard evaluation, quantitative risk analyses, reliability assessment, and database development for risk and reliability. Mr. Gekler is a certified reliability engineer and a member of the Society for Risk Analysis (SRA) and the American Nuclear Society. He is author or coauthor of numerous publications.

Sheldon E.Isakoff, who received his Ph.D. in chemical engineering from Columbia University, is the retired director of the Engineering R&D Division of E.I. du Pont de Nemours and Company. His experience includes the management of technology, directing research and development, market assessment and development, process scale-up, commercial introduction, and leadership of personnel. His areas of expertise also include materials science and engineering and the development and application of new materials for industrial and consumer markets. Dr. Isakoff is a fellow and past president of the American Institute of Chemical Engineering and a former director of its materials engineering and sciences division. He was elected to the National Academy of Engineering in 1980 and has served on several NRC committees.

Hank C.Jenkins-Smith received his Ph.D. in political science from the University of Rochester and is currently a professor in the Department of Political Science at the University of New Mexico (UNM). He is also the director of the UNM Institute for Public Policy. His areas of expertise include statistical analysis, measurement of public opinion, politics of risk perception, environmental policy, and public policy. Dr. Jenkins-Smith is a member of the Society for Risk Analysis (SRA) and the American Political Science Association. In 1996, he received the SRA’s Risk Research Award. He is the author of more than 60 publications and reports.

David S.Kosson has a B.S. in chemical engineering, an M.S. in chemical and biochemical engineering, and a Ph.D. in chemical and biochemical engineering from Rutgers, the State University of New Jersey. He is chairman and professor of the Department of Civil and Environmental Engineering and professor of chemical engineering at Vanderbilt University and a former professor of chemical and biochemical engineering at Rutgers. Dr. Kosson has carried out research and published extensively on subsurface contaminant transport phenomena; leaching phenomena; physical, chemical, and microbial treatment processes for hazardous waste; and waste management policy. Dr. Kosson served on the NRC Committee on Review and Evaluation of the Army Stockpile Disposal Program for 7 years, the final 2 years as chair. As a member of the NRC Committee on Alternative Chemical Demilitarization Technologies and the Panel on Review and Evaluation of Alternative Chemical Disposal Technologies, he contributed to the Army’s decision to use alternative methods of destruction at both the Aberdeen and Newport facilities. Dr. Kosson is well known for his expertise in bioremediation.

Frederick J.Krambeck received his Ph.D. in chemical engineering from the City University of New York. He is a senior consultant for ExxonMobil Research and Engineering Company. His expertise includes research and development (R&D) in petroleum refining, including process and reactor design and development, chemical reaction engineering, on-line and off-line optimization, modeling, and R&D project management. He is also experienced in technology strategy considerations for greenhouse gas stabilization. Dr. Krambeck was elected to the National Academy of Engineering in 1999 and is a fellow and member of the Board of Directors of the American Institute of Chemical Engineers (AIChE). He has assisted in the development of patents for more than 25 processes. Dr. Krambeck is the author or coauthor of 40 publications, including Elements of Process Engineering, which was delivered as a plenary lecture for the AIChE 90th Anniversary History Session in 1998.

John A.Merson received a B.S. and M.S. in chemical engineering from the University of New Mexico and a Ph.D. in chemical engineering from Arizona State University. His areas of expertise include research, development, and application of energetic materials and components in the nuclear weapons stockpile. Dr. Merson is the department manager of the Explosive Subsystems and Materials Department at Sandia National Laboratories, which designs, develops, and characterizes explosive, propellant, and pyrotechnic components and subsystems to meet specific needs. Dr. Merson is a member of the American Institute of Chemical Engineers.

William R.Rhyne received a B.S. in nuclear engineering from the University of Tennessee and an M.S. and D.Sc. in nuclear engineering from the University of Virginia and is cofounder and director of H&R Technical Associates, Inc. Dr. Rhyne has extensive experience in risk and safety analysis associated with nuclear and chemical processes and with the transport of hazardous nuclear materials and chemicals. From 1984 to 1987, he was the project manager and principal investigator for a probabilistic accident analysis of transporting obsolete chemical munitions. Dr. Rhyne is the author or coauthor of more than 40 publications and reports on nuclear and chemical safety and risk analysis, including Hazardous Materials Transportation Risk Analysis: Quantitative Approaches for Truck and Train. He is a member of the NRC Transportation Research Board Hazardous Materials Committee, the Society for Risk Assessment, the American Nuclear Society, and the American Institute for Chemical Engineers.

Stanley I.Sandler, who received his Ph.D. in chemical engineering from the University of Minnesota, is currently the

Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×

Henry Belin du Pont Chair and director of the Center for Molecular and Engineering Thermodynamics at the University of Delaware. His extensive research interests include applied thermodynamics and phase equilibrium, environmental engineering, and separations and purification. Dr. Sandler is a recipient of the Warren K.Lewis Award from the American Institute of Chemical Engineers and the Inaugural E.A.Mason Memorial Lecturer Award from Brown University. He is a member of the National Academy of Engineering and has published more than 250 technical articles in recognized journals and conference proceedings.

William R.Seeker received his Ph.D. in engineering (nuclear and chemical) from Kansas State University. He is senior vice president and member of the Board of Directors of the Energy and Environmental Research Corporation, a wholly owned subsidiary of General Electric Company. He has extensive experience in the use of thermal treatment technologies, environmental control systems for managing hazardous waste, and air pollution control. He is a member of the Executive Committee of the EPA Science Advisory Board and the author of more than 150 technical papers on various aspects of technology and the environment.

Leo Weitzman received his Ph.D. in chemical engineering from Purdue University. He is a consultant with 28 years of experience in the development, design, permitting, and operation of equipment and facilities for the treatment of hazardous wastes and remediation debris. Dr. Weitzman has extensive experience in the disposal of hazardous waste and contaminated materials by thermal treatment, chemical reaction, solvent extraction, biological treatment, and stabilization. He has published more than 40 technical papers.

Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×
Page 93
Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×
Page 94
Suggested Citation:"Appendix D: Biographical Sketches of Committee Members." National Research Council. 2001. Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Washington, DC: The National Academies Press. doi: 10.17226/10182.
×
Page 95
Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot Get This Book
×
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Program Manager for Assembled Chemical Weapons Assessment (PMACWA) of the Department of Defense (DOD) requested the National Research Council (NRC) to assess the engineering design studies (EDSs) developed by Parsons/Honeywell and General Atomics for a chemical demilitarization facility to completely dispose of the assembled chemical weapons at the Pueblo Chemical Depot in Pueblo, Colorado. To accomplish the task, the NRC formed the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (ACW II Committee). This report presents the results of the committee's scientific and technical assessment, which will assist the Office of the Secretary of Defense in selecting the technology package for destroying the chemical munitions at Pueblo.

The committee evaluated the engineering design packages proposed by the technology providers and the associated experimental studies that were performed to validate unproven unit operations. A significant part of the testing program involved expanding the technology base for the hydrolysis of energetic materials associated with assembled weapons. This process was a concern expressed by the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW I Committee) in its original report in 1999 (NRC, 1999). The present study took place as the experimental studies were in progress. In some cases, tests for some of the supporting unit operations were not completed in time for the committee to incorporate results into its evaluation. In those cases, the committee identified and discussed potential problem areas in these operations. Based on its expertise and its aggressive data-gathering activities, the committee was able to conduct a comprehensive review of the test data that had been completed for the overall system design. This report summarizes the study.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!