National Academies Press: OpenBook

2001 Assessment of the Office of Naval Research's Aircraft Technology Program (2001)

Chapter: Appendix A: Biographies of Committee Members and Staff

« Previous: 8. Special Aviation Projects
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×

Appendixes

Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
This page in the original is blank.
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×

A
Biographies of Committee Members and Staff

Joseph B.Reagan, Chair, an independent consultant, is retired vice president and general manager of research and development at Lockheed Martin Missile and Space and was a corporate officer of the Lockheed Martin Corporation. Dr. Reagan, a member of the NAE, has a strong background in defense technology development, particularly in optics, electro-optics, information software, guidance and control, electronics, cryogenics, and materials. As general manager of the R&D Division, he led over 750 scientists and engineers in the development of advanced technologies in these fields. Dr. Reagan is also a fellow of the American Institute of Aeronautics and Astronautics. Today, he is chairman of the board of Southwall Technologies, Inc., a high-technology company specializing in the manufacturing of thin-film coatings for high-performance residential, industrial, and automotive windows. He is also a director on the board of the Tech Museum of Innovation, where he is the chairman of the Exhibits Committee. He is involved in numerous activities that foster the improvement of science and mathematics education. Dr. Reagan is currently vice chair of the NSB.

John M.Borky is chief scientist at Tamarac Technologies, a consulting firm that provides technical services in electronic technology, system architecture, and strategic planning to both government agencies and industry. Dr. Borky’s career spans a broad range of government and commercial service in areas relating to integrated avionics, electronics, and weapon system architecture for advanced military aircraft and sensors. During a 25-year U.S. Air Force career, he played a key role in the development and application of the advanced electronic technologies that enable next-generation systems such as the F-22 Raptor Advanced Tactical Fighter and RAH-66 Commanche helicopter. In addition, Dr. Borky served as commander of Rome Laboratory, the U.S. Air Force’s “superlab” for command, control, and communications. Today, Dr. Borky serves on many government and scientific advisory boards, including the U.S. Air Force Scientific Advisory Board.

Carl S.Carter is senior manager of signature integration at Lockheed Martin Aeronautics Company, where he is responsible for general management of radio frequency, infrared, and visual low observable technologies across the company. (In 2000, the Lockheed Martin Aeronautics Company was formed by the merger of the Lockheed Martin Advanced Development Company [known as the Skunk Works], the Lockheed Martin Aeronautical Systems Company [in Marietta, Georgia], and the Lockheed

Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×

Martin Aircraft Tactical Systems Company [in Fort Worth, Texas].) Before joining Lockheed in 1979, Mr. Carter worked at Vitro Laboratories, where he helped design shipboard weapon systems for detecting, tracking, and engaging small targets in clutter (i.e., counter low observables). During his tenure at Lockheed, he has worked on numerous cutting-edge aircraft programs, including the A-12, AX, F-22, and F-117 (used in the Gulf War). Mr. Carter has served on numerous government and scientific advisory boards, including the B-2 Blue Ribbon Committee sponsored by the U.S. Air Force and Low Observable/Counter Low Observable Technology Working Group.

Robert W.Day is director of business development operations at the Raytheon Company. Mr. Day’s background is in combat C4I systems. He joined Raytheon through its merger with the Hughes Aircraft Company, where he was deputy manager of defense systems. Prior to joining Raytheon, Mr. Day served in the U.S. Navy for 26 years, during which time he flew A-6 aircraft combat missions in both Vietnam and Libya. In Washington, Mr. Day served on the OPNAV staff as a requirements officer for air warfare and a division manager for technology requirements. His last duty assignment was director of stealth and counterstealth technology, where he was responsible for all technology developments, testing, technology transfer, security, export policy, and inter-Service contacts in the area of stealth and counterstealth.

Alan H.Epstein is R.C.Maclaurin Professor at the Massachusetts Institute of Technology and is a member of the NAE. His research interests include engine propulsion, particularly for smart engines and microengines. Much of Dr. Epstein’s research effort has focused on the testing and modeling of turbomachinery fluid mechanics and heat transfer; however, his recent efforts include MEMS for turbine and rocket engines, manufactured with semiconductor industry fabrication technology from ceramic materials. Dr. Epstein is a member of the NRC Air Force Science and Technology Board and recently served on the Committee for Materials, Structures, and Aeronautics for Advanced Uninhabited Air Vehicles.

Robert H.Gormley, RADM, USN (Ret.), is president of the Oceanus Company, a technology advisory and business development firm serving clients in aerospace, defense, and electronics. He is also senior vice president of Projects International, Inc., a Washington-based company that assists U.S. and foreign clients in developing trade and investment opportunities. Earlier, as a career officer and naval aviator, he commanded the aircraft carrier John F.Kennedy, a combat stores ship, an air wing, and a fighter squadron during the Vietnam War. Admiral Gormley has an extensive background in the aviation technologies, with emphasis on unmanned aerial vehicle systems, aircraft survivability, and vertical/short takeoff and landing aircraft. He participates in national security studies undertaken by the National Research Council and has been a member of study panels of the Defense Science Board and the Naval Research Advisory Committee.

Charles E.Heber is vice president and general manager of the Washington Group at SRS Technologies, a private company providing information technology services to government and commercial entities. Prior to joining SRS in 1998, Mr. Heber served as director of the High Altitude Endurance Unmanned Air Vehicle Joint Program Office at the Defense Advanced Research Projects Agency (DARPA), where he led the development of two fully automated unmanned aircraft, a suite of integrated imagery sensors, and a common ground control station for high-altitude, unmanned airborne reconnaissance operations. Before that, he served as deputy director of DARPA’s Tactical Technology Office and as deputy director of technology for ONR’s Low Observables Technology Office.

Frank A.Horrigan retired from the technical development staff for sensors and electronic systems at Raytheon Systems Company. A theoretical physicist, Dr. Horrigan has more than 35 years’ experience in advanced electronics, electro-optics, radar and sensor technologies, and advanced information systems. In addition, he has extensive experience in planning and managing IR&D investments and in

Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×

projecting future technology growth directions. Dr. Horrigan once served as a NATO fellow at the Saclay Nuclear Research Center in France. He has served on numerous scientific boards and advisory committees, including as chair of the NRC’s Panel on Sensors and Electronic Devices and the Review of ONR’s Technical Vision for Uninhabited Combat Air Vehicles Program. Dr. Horrigan is a member of the NSB.

James D.Lang, an independent consultant, is retired director of technology development at the Boeing Company Phantom Works. Dr. Lang is an expert in research and development of air vehicles. His eleven years of service with Boeing (and McDonnell Douglas) followed twenty-four and a half years of service with the U.S. Air Force. His career involved engineering and R&D management, university teaching and research, flight test engineering, and flying duties as a command pilot and engineering test pilot. Dr. Lang’s current activities include (1) membership on the DARPA/U.S. Air Force/Boeing National Technical Advisory Board for the UCAV program, (2) ad hoc membership on the U.S. Air Force Scientific Advisory Board, (3) membership on the NRC team for review of ONR’s UCAV program, and (4) membership in the U.S. Air Force workshop to plan the Air Force Research Laboratory’s air vehicle technology program. Dr. Lang has authored or coauthored 41 technical publications including the text Aircraft Performance, Stability, and Control. He is a fellow of the American Institute of Aeronautics and Astronautics and a fellow of the Royal Aeronautical Society.

Douglas P.Looze is associate professor of electrical and computer engineering at the University of Massachusetts (UMASS), where his research interests include flight control systems, multi-human decision making, restructurable control systems for advanced fighter aircraft, and the development of dynamic weapon allocation algorithms. Prior to joining UMASS, Dr. Looze served on the faculty at the University of Illinois. He is a member of the Institute of Electrical and Electronic Engineers (IEEE) Control Systems Society and the American Institute of Aeronautics and Astronautics and is currently chair of the Multivariable Linear Systems Working Group of the IEEE Control Systems Society.

F.Robert Naka is president and CEO of CERA, Inc. Dr. Naka, a member of the NAE, has a strong background in reconnaissance, surveillance, communication and control systems, sensor technologies (both active and passive), radar, visibility spectrum, and infrared optics. Throughout his professional career, Dr. Naka has held a number of senior industry and government positions, including vice president of engineering at GTE Government Systems and chief scientist for the U.S. Air Force. Dr. Naka is widely regarded as an expert in reconnaissance, surveillance communications, and command systems. He has served on numerous government advisory and scientific boards, including the NASA Space Program Advisory Council and the Air Force Scientific Advisory Board. He is a senior member of the Institute of Electrical and Electronics Engineers.

Philip D.Shutler, LtGen, USMC (Ret.), is a senior fellow at the Center for Naval Analyses and a lecturer on the history of joint military operations. While on active duty, General Shutler, a naval aviator, saw combat both on the ground and in the air. He also has an extensive background in aircraft development and served as director of operations (J-3), Joint Chiefs of Staff.

Marilyn J.Smith is assistant professor of aerospace engineering at the Georgia Institute of Technology (GIT). Dr. Smith has extensive experience with fixed-wing aeroelastic problems; her research interests include unsteady computational aerodynamics, computational aeroelasticity, and the integrated multidisciplinary areas of design of aeroelastic configurations and acoustic/fluid/structure interactions. She is a member of the American Helicopter Society and an associate fellow of the American Institute of Aeronautics and Astronautics. She served on the National Technical Committee on Fluid Dynamics/ Aerodynamics for both organizations.

Robert E.Whitehead, an independent consultant, retired from federal service in 1997. He began his career in 1971 with the Navy, as a research engineer in the Aviation Department of the David Taylor

Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×

Naval Ship R&D Center at Carderock, Maryland. Dr. Whitehead transferred to the Office of Naval Research in 1976 and held a number of positions before becoming director of the Mechanics Division from 1986 until 1989. He then transferred to NASA Headquarters, eventually becoming the associate administrator for aeronautics and space transportation technology. In this position, he led a research and technology enterprise of over 6,000 civil servants and a similar number of contractors at four research centers with an annual budget of approximately $1.5 billion. During his federal service career, he was awarded both the Presidential Rank Meritorious Executive and Distinguished Executive awards, and at NASA, he was awarded the agency’s Distinguished Service Medal. He is a fellow of the American Institute of Aeronautics and Astronautics.

Dianne S.Wiley recently joined the Boeing Company Phantom Works, where she is program manager for airframe risk reduction on the NASA Space Launch Initiative program. Previously, she was with Northrop Grumman, where she served as manager of airframe technology. In that position, Dr. Wiley was responsible for R&D and technology transition in structural design and analysis, materials and processes, and manufacturing technology. During her tenure at Northrop, she served as a senior technical specialist on the B-2 program, where she was responsible for developing and implementing innovative structural solutions to ensure the structural integrity of the B-2 aircraft. Dr. Wiley currently serves as a member of the NRC Aeronautics and Space Engineering Board and the NRC Committee on Breakthrough Technology for Commercial Supersonic Aircraft.

Staff

Charles F.Draper is a senior program officer at the National Research Council’s (NRC’s) Naval Studies Board. Prior to joining the NRC in 1997, Dr. Draper was the lead mechanical engineer at S.T. Research Corporation, where he provided technical and program management support for satellite earth station and small satellite design. He received his Ph.D. in mechanical engineering from Vanderbilt University in 1995; his doctoral research was conducted at the Naval Research Laboratory (NRL), where he used an atomic force microscope to measure the nano-mechanical properties of thin film materials. In parallel with his graduate student duties, Dr. Draper was a mechanical engineer with Geo-Centers, Inc., working onsite at NRL on the development of an underwater x-ray backscattering tomography system used for the nondestructive evaluation of U.S. Navy sonar domes on surface ships.

Ronald D.Taylor has been the director of the Naval Studies Board of the National Research Council since 1995. He joined the National Research Council in 1990 as a program officer with the Board on Physics and Astronomy and in 1994 became associate director of the Naval Studies Board. During his tenure at the National Research Council, Dr. Taylor has overseen the initiation and production of more than 40 studies focused on the application of science and technology to problems of national interest. Many of these studies address national security and national defense issues. From 1984 to 1990 Dr. Taylor was a research staff scientist with Berkeley Research Associates, working onsite at the Naval Research Laboratory on projects related to the development and application of charged particle beams. Prior to 1984 Dr. Taylor held both teaching and research positions in several academic institutions, including assistant professor of physics at Villanova University, research associate in chemistry at the University of Toronto, and instructor of physics at Embry-Riddle Aeronautical University. Dr. Taylor holds a Ph.D. and an M.S. in physics from the College of William and Mary and a B.A. in physics from Johns Hopkins University. In addition to science policy, Dr. Taylor’s scientific and technical expertise is in the areas of atomic and molecular collision theory, chemical dynamics, and atomic processes in plasmas. He has authored or coauthored nearly 30 professional scientific papers or technical reports and given more than two dozen contributed or invited papers at scientific meetings.

Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 47
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 48
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 49
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 50
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 51
Suggested Citation:"Appendix A: Biographies of Committee Members and Staff." National Research Council. 2001. 2001 Assessment of the Office of Naval Research's Aircraft Technology Program. Washington, DC: The National Academies Press. doi: 10.17226/10200.
×
Page 52
Next: Appendix B: Meeting Agenda »
2001 Assessment of the Office of Naval Research's Aircraft Technology Program Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Office of Naval Research (ONR) contracted with the Naval Studies Board (NSB) of the National Research Council (NRC) to establish a committee to review ONR's Aircraft Technology Program (ATP). The committee convened on May 15 and 16, 2001, and reviewed some 28 science and technology (S&T) efforts that were presented as constituting the ATP. The committee met separately on May 17, 2001, to formulate its findings and recommendations. This report represents the consensus opinion of the committee and is based on the information presented at the review. The ONR ATP resides within the Strike Technology Division (Code 351) of the Naval Expeditionary Warfare Science and Technology Department (Code 35). In 2001 the ATP is funded at $55.0 million, which is approximately 60 percent of the Strike Technology Division budget. The ATP S&T 2001 budget is further divided into the following categories: (1) 6.1 basic research at $4.3 million, (2) 6.2 exploratory development at $18.1 million, and (3) 6.3 advanced development, including technology demonstrations, at $32.5 million. However, the ATP will be in major transition beginning in FY02.

Starting in FY02, all of the 6.3 funding and one-half of the 6.2 funding at the ONR will be dedicated to 12 major program areas referred to as Future Naval Capabilities (FNCs). The purpose of the FNCs is to focus advanced technology development at ONR on naval force capabilities that have been identified as high priority for the future by a cross-functional group of naval operators, naval development and support organizations, and ONR program managers. Plans have been made to integrate several of the Code 351 programs reviewed into FNCs. The ATP was presented to the committee in six thrust areas: integrated avionics, propulsion and power, air vehicle technology, unmanned aerial vehicles/unmanned combat air vehicles (UAVs/UCAVs), survivability, and special aviation projects. Several projects were presented within each thrust area. The committee organized this report in response to these thrust areas, and in several of these areas it also suggests new S&T topics for consideration for the future ATP. The findings and recommendations of the committee are summarized in this report.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!