National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Abstract." National Research Council. 1985. Space-Based Broadcasting: The Future of Worldwide Audio Broadcasting. Washington, DC: The National Academies Press. doi: 10.17226/10335.
×
Page 1

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ABSTRACT WORKING PAPER There are powerful economic, operational, political and cultural reasons for pursuing the establishment of a high-quality, high-capacity, DBS-A, common-user worldwide system-service. Surface-based shortwave broadcasting is beset with serious and growing problems of limited coverage, capacity, reliability and quality; exceedingly complex globe] frequency assignment and monitoring, and ever-increasing signal interference. The world community of audio broadcasters should explore the possibility of using orbiting transmitters to provide worldwide audio broadcasting services to eliminate these problems. Two conceptual common-user, common-carrier, system designs are described in this paper that would allow Direct to the receiver Broadcast from Space-Audio (DBS-A) services to be provided throughout the world with excellent quality, reliability, and at low cost. One service uses a frequency band in the upper part of the high frequency (HF) portion of the radiowave spectrum, the other uses a frequency band in the high ultra high frequency (UHF) region. The paper compares the relative advantages and limitations of each. Although either could serve al] countries of the world on an equitable basis, the UHF band offers important cost and service advantages. A worldwide system of this character could be installed region-by-region and could provide a standard service of as many as 1,000 5-kHz audio channels for each of as many as 1,000 individual surface areas. Each area would be 10,000 square miles (25,000 square kilometers) at the Earth's surface. The acquisition cost of a technologically sophisticated space segment, installed and serviced in space using the Space Station, of a global system with a large capacity could approximate $500 million (U.S. 1985), and the ongoing cost of ownership and operation would approximate, roughly, $100 million (U.S. 1985) per year. This cost would be much lower than the tote] now being paid by the wor1d's shortwave broadcasters for a service with much less coverage, and lower quality and reliability. The surface segment would be made up of new fixed and portable spacewave receivers, each costing tens of dollars, would cost $10 billion on a worldwide basis. Although governments could finance the space segments of such a system, the private sector could reasonably be expected to finance and acquire the system and offer its services to government broadcasters throughout the world. Such a system-service could be in operation by the end of the century. Smaller channel capacity or coverage area services could be provided in less than a decade and at lower space segment cost. Regional system-services could be installed initially and expanded to provide worldwide coverage. The space technology used to provide such worldwide audio broadcasting could be employed for national, domestic, low-cost broadcasting as well; it could do so at a low marginal cost. Reliability, quality, and cost also suggest that the private sector, as well as governments, would be interested in using the system. . ~ WORKI NG PAP ER

Next: Introduction »
Space-Based Broadcasting: The Future of Worldwide Audio Broadcasting Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!