National Academies Press: OpenBook

For Greener Skies: Reducing Environmental Impacts of Aviation (2002)

Chapter: Appendix B: Acronyms and Abbreviations

« Previous: Appendix A: Biographies of Committee Members
Suggested Citation:"Appendix B: Acronyms and Abbreviations." National Research Council. 2002. For Greener Skies: Reducing Environmental Impacts of Aviation. Washington, DC: The National Academies Press. doi: 10.17226/10353.
×

B Acronyms and Abbreviations


AIP

Airport Improvement Program

ASEB

Aeronautics and Space Engineering Board


CO

carbon monoxide

CO2

carbon dioxide


dB

decibel

DNL

day-night average sound level

DoD

Department of Defense


EPA

Environmental Protection Agency

EPN dB

effective perceived noise level in decibels


FAA

Federal Aviation Administration

FARs

Federal Aviation Regulations


HSCT

high speed civil transport

HSR

High Speed Research (program)


ICAO

International Civil Aviation Organization

IMC

instrument meteorological conditions

INM

Integrated Noise Model

IPCC

Intergovernmental Panel on Climate Change


MAGENTA

Model for Assessing the Global Exposure to the Noise of Transport Aircraft

MTOW

maximum takeoff weight


NAE

National Academy of Engineering

NAS

National Academy of Sciences

NASA

National Aeronautics and Space Administration

NOx

oxides of nitrogen

NRC

National Research Council


PFC

Passenger Facility Charge (program)


QAT

Quiet Aircraft Technology (program)


SOx

oxides of sulfur


TRL

technology readiness level


UV

ultraviolet

Suggested Citation:"Appendix B: Acronyms and Abbreviations." National Research Council. 2002. For Greener Skies: Reducing Environmental Impacts of Aviation. Washington, DC: The National Academies Press. doi: 10.17226/10353.
×
Page 56
For Greener Skies: Reducing Environmental Impacts of Aviation Get This Book
×
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Each new generation of commercial aircraft produces less noise and fewer emissions per passenger-kilometer (or ton-kilometer of cargo) than the previous generation. However, the demand for air transportation services grows so quickly that total aircraft noise and emissions continue to increase. Meanwhile, federal, state, and local noise and air quality standards in the United States and overseas have become more stringent. It is becoming more difficult to reconcile public demand for inexpensive, easily accessible air transportation services with concurrent desires to reduce noise, improve local air quality, and protect the global environment against climate change and depletion of stratospheric ozone. This situation calls for federal leadership and strong action from industry and government.

U.S. government, industry, and universities conduct research and develop technology that could help reduce aircraft noise and emissions-but only if the results are used to improve operational systems or standards. For example, the (now terminated) Advanced Subsonic Technology Program of the National Aeronautics and Space Administration (NASA) generally brought new technology only to the point where a system, subsystem model, or prototype was demonstrated or could be validated in a relevant environment. Completing the maturation process-by fielding affordable, proven, commercially available systems for installation on new or modified aircraft-was left to industry and generally took place only if industry had an economic or regulatory incentive to make the necessary investment. In response to this situation, the Federal Aviation Administration, NASA, and the Environmental Protection Agency, asked the Aeronautics and Space Engineering Board of the National Research Council to recommend research strategies and approaches that would further efforts to mitigate the environmental effects (i.e., noise and emissions) of aviation. The statement of task required the Committee on Aeronautics Research and Technology for Environmental Compatibility to assess whether existing research policies and programs are likely to foster the technological improvements needed to ensure that environmental constraints do not become a significant barrier to growth of the aviation sector.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!