National Academies Press: OpenBook

New Directions in Manufacturing: Report of a Workshop (2004)

Chapter: 19 Manufacturing, Energy, and the Future of New Technology

« Previous: 18 Collaborating to Meet Manufacturing Challenges
Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×

19
Manufacturing, Energy, and the Future of New Technology

Robert W. Garland

U.S. Department of Energy

The industrial sector currently accounts for about 38 percent of all U.S. energy consumption, at an annual cost of more than $120 billion.1 Manufacturing processes are amongst the most energy-intensive industrial systems. Energy costs are therefore a major driver for many plants in the United States. In general, manufacturing processes that use heat and force to transform raw materials into durable goods and consumer products and the equipment to carry out these tasks, consume much of the fossil fuel imported by the United States.

By developing and adopting more energy-efficient technologies, U.S. industry can boost its productivity and competitiveness while strengthening national energy security, improving the environment, and reducing emissions linked to global climate change. Toward this end, the U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP) supports technology partnerships aimed at improving industrial energy efficiency. Working with a wide array of state, community, industry, and university partners, this program invests in a diverse portfolio of energy technologies.

Attaining energy independence is a growing concern across the nation. If the United States intends to maintain its current standard of living, the goods we use in the future must be made more efficiently. Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for the United States.

ENERGY INTENSIVENESS

Manufacturing has traditionally been an energy-intensive industry, dominated by fossil fuels. Efficiency enhancements to technologies that are widely used in a broad range of U.S. industrial sectors can have a large impact, even if the improvements are small. Substantial energy and cost savings can be achieved if these enhancements are adopted across entire industries.

About half of the petroleum products and 10 percent of the natural gas consumed by industry are used as feedstock for heat and power. Heat, power, and process heating systems combined offer tremendous savings for many industrial plants. Further, the process of combustion is used in almost every industry, and a better understanding and control of this process can improve energy efficiency, reduce emissions, and enhance fuel flexibility.

The basics behind many manufacturing processes are the motors, steam, and compressed air systems. Applying best practices in these basics can save up to 30 percent of energy used in a plant in a few years. Materials technology is also a key area, and improvements for superior strength and resistance to environmental degradation in high-

1  

Approximately one third of the total energy used in the United States is in transportation and another third is used in buildings. Energy Information Administration. Annual Energy Review. 2002.

Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×

temperature industrial environments is important for efficient operations.

Sensors and controls can provide integrated measurement systems for operator-independent control of plant processes. Extending sensor reach and accuracy in harsh environments and improving the integration of processing of sensor data can enable online, automated assessments and adjustment of system parameters.

STRATEGY FOR SUCCESS

Manufacturing firms within the same industry face common technological hurdles to improving efficiency. Many of these hurdles involve basic, energy-intensive processes integral to the industry. Due to the complex technologies involved, meaningful advances in these processes require costly research and development (R&D) efforts that are beyond the reach of many individual firms.

Since 1994, U.S. industries have used DOE’s Industries of the Future strategy to set their own R&D goals and priorities. The bulk of the federal budget goes to providing cost-shared support to selected R&D partnerships—partnerships that pool the resources of industry, academia, and government to accelerate the pace of R&D in meeting industry’s top needs and achieving national goals for energy and the environment.

The ITP brings firms together in a neutral environment, facilitates consensus building, and supports collaborative R&D to address priority needs. By concentrating on high-risk, high-payoff research in pre-competitive areas, U.S. firms find that they can collaborate effectively to accelerate the pace of technology development.

Formal industry partnerships include developing a broad vision of the industry’s future as well as one or more roadmaps reflecting industry consensus on R&D priorities and other activities needed to achieve that vision. The strategy has also generated

  • Alignment of public-private investment with industry’s R&D priorities;

  • Dozens of commercially successful technologies;

  • Better industry access to federal laboratory facilities;

  • Streamlined contracting processes for industry partners; and

  • New industry associations to facilitate and administer collaborative R&D.

The project portfolio includes over 1,000 projects in which the Office of Industrial Technology (OIT) has been involved, including more than 140 projects that have reached the commercial market. Products also include publications, software tools, and databases.

COLLABORATIVE RESEARCH AND DEVELOPMENT

Despite the fact that U.S. industrial facilities run streamlined, technologically sophisticated operations, they still face tough economic, technological, and environmental challenges. Manufacturing typically operates with low profit margins and is dependent on capital-intensive equipment. This limits the availability of R&D funds. Direct price competition with foreign firms that employ cheap labor or receive heavy government support or dispensations also affects R&D expenditures. However, with the increased complexity and sophistication of products and processes, R&D is critical. Finally, there is growing pressure to restrict emissions and effluents, and this also requires technology advances.

Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×

Competitiveness is a critical issue for both small and large companies. In order to be more competitive, these companies must work toward:

  • Reducing the cost and risk of pre-competitive R&D;

  • Acquiring a stronger voice in directing R&D;

  • Staying at the forefront of technology and expanding their technical knowledge base;

  • Leveraging available funds and information resources;

  • Protecting proprietary technologies and capabilities;

  • Gaining access to complementary technical expertise and facilities that can help today, as well as in the future;

  • Acquiring new patents or licensing agreements; and

  • Launching new products or spin-off companies.

Collaborative partnerships can help to focus resources on vital, higher-risk research and can help to ensure that the resulting technologies are successfully commercialized, thereby cleaning the air, conserving resources, strengthening our economy, and improving our quality of life.

SUMMARY

By focusing on process and energy efficiency, U.S. industry can maximize and leverage their resources to tackle projects that would otherwise be beyond their reach. Once commercialized, the resulting technologies benefit all members of industry by:

  • Saving energy and materials;

  • Facilitating cost-effective compliance with environmental regulations;

  • Increasing productivity and reducing waste;

  • Enhancing product quality;

  • Reducing production costs (and creating a ripple effect throughout the U.S. economy); and

  • Boosting competitiveness in the global marketplace.

Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×
Page 105
Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×
Page 106
Suggested Citation:"19 Manufacturing, Energy, and the Future of New Technology." National Research Council. 2004. New Directions in Manufacturing: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11024.
×
Page 107
Next: 20 Army Manufacturing Technology Program Responds to 21st Century Challenges »
New Directions in Manufacturing: Report of a Workshop Get This Book
×
Buy Paperback | $51.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The processes and techniques of manufacturing have changed substantially over the decades and that evolution continues today. In order to examine the potential impacts of these changes, the Department of Commerce asked the NRC to design a workshop to focus on issues central to the changing nature of manufacturing. The workshop brought together a number of experts to present papers about and to discuss the current state of manufacturing in the United States and the challenges it faces. This report presents the results of that workshop. Key challenges that emerged from the workshop and that are discussed include understanding manufacturing trends; manufacturing globalization; information technology opportunities; maintaining innovation; strengthening small and medium-sized enterprises; workforce education; and rising infrastructure costs.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!