National Academies Press: OpenBook
« Previous: PANEL 2 DISCUSSION
Suggested Citation:"DESIGNING CHEMICAL SENSOR SYSTEMS FOR ELECTRONIC OLFACTION." National Research Council. 2004. Summary of the Sensing and Positioning Technology Workshop of the Committee on Nanotechnology for the Intelligence Community: Interim Report. Washington, DC: The National Academies Press. doi: 10.17226/11032.
×
Page 11

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NATURAL CHEM/BIO TAGS 11 TOPIC 3: NATURAL CHEM/BIO TAGS Two presentations were made in this session, one by Alan Gelperin, Monell Chemical Senses Center, and one by Steven Martin, Sandia National Laboratories. DESIGNING CHEMICAL SENSOR SYSTEMS FOR ELECTRONIC OLFACTION Alan Gelperin reviewed recent progress in electronic olfaction technology based on biological models. For example, moths are hypersensitive to a few specific compounds (e.g., pheromones), while a dog's nose has more general sensitivity. The general-purpose nose can be trained to detect new odors, such as TNT. The artificial nose requires an array of odor sensors, with diverse odor responses (there are some 1,000 different odor receptor classes in mice, 300 in humans), and a computational module for analyzing odor patterns. Hopfield published a paper3 showing that a larger number of different sensor classes in an array (up to ~100) gives a different and richer response than an array with a smaller number of sensor classes. Gelperin felt that an algorithm developed by Hopfield is quietly revolutionizing this field. The algorithm allows a system to recognize a new odor pattern in terms of known odor patterns. Gelperin focused on organic field effect transistors in which the odor vapor is flowed over a chemically active organic layer between the source and drain of a transistor, and the degree of interaction between the odorant molecules and the active layer is reflected by changes in the current flow. This system has the advantage that the odor can be driven out (to reset the sensor) by reversing the gate voltage rather than having to flow fresh air over the sensor. The organic surface layer should be as thin as possible to maximize the influence of the surface. Another configuration demonstrated for the detection of O2 and CO gases uses changes in current flow through carbon nanotube wires (or nanowires made of other materials) as the sensor. Special challenges of these systems include the following: • Ensuring that the identification of the odor does not depend on concentration; • Separating odor “objects” (multiple odors that arrive together); • Identifying weak known odors against a background of strong unknown odors; • Storing odor patterns for later pattern matches; and • Subtracting constant background odors while remaining sensitive to new weak odor inputs.4 3J.J.Hopfield 1999. Odor space and olfactory processing: Collective algorithms and neural implementation, Proceedings of the National Academy of Sciences 96 (22):12506–12511. 4For example, dogs have to be trained on local background odors for about 2 weeks before they are used to detect land mines in a given region.

Next: PANEL 3 DISCUSSION »
Summary of the Sensing and Positioning Technology Workshop of the Committee on Nanotechnology for the Intelligence Community: Interim Report Get This Book
×
Buy Paperback | $21.00 Buy Ebook | $16.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The second activity performed by the NRC for the Intelligence Technology Innovation Center was a workshop to explore how nanotechnology might enable advances in sensing and locating technology. Participants at this workshop focused on tagging, sensing, and tracking applications of interest to the intelligence community. This report presents a summary of that workshop. In includes an overview of security technologies, and discussions of systems, natural chemical/biological tags, passive chemical/biological tags, and radio/radar/optical tags.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!