National Academies Press: OpenBook
« Previous: Electronic Tags
Suggested Citation:"NETWORKED SENSORS FOR THE BATTLEFIELD." National Research Council. 2004. Summary of the Sensing and Positioning Technology Workshop of the Committee on Nanotechnology for the Intelligence Community: Interim Report. Washington, DC: The National Academies Press. doi: 10.17226/11032.
Page 5

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SECURITY TECHNOLOGIES OVERVIEW 5 microchips (“nanoblocks”) that can carry many bits of product identification data unique to a particular item in a way that is similar to a car's license plate. Advantages of chipless tags are their small size and low cost (1–5 cents per tag). Disadvantages are the short read range and low data capacity. Chip tags, on the other hand, have high data capacity with read, write, and erase capability and a high reading range but are expensive (50 cents to $5 per tag). The tags themselves are generally small, but the associated antennas are large. Finally, Jotcham offered some thoughts on the problem of finding, in an urban setting, an individual who doesn't want to be found. He proposed three steps for finding such an individual: the elimination of cover; use of unique characteristics of the individual; and looking for an environmental fingerprint—the effects of the individual on his environment. NETWORKED SENSORS FOR THE BATTLEFIELD Michael Kolodny noted that the Army is moving toward fast, lightweight, smart forces that will trade armor for information. The Army is attempting to develop a family of high-fidelity, affordable, multimission, integrated sensors that will provide near-real-time, high-resolution, “in-the-mud” close-up information and a common operational picture to forces at all levels. The sensors will be deployed in clusters or networks that will require sensor fusion at the node and network levels, robust communication links, self-configuring and self-healing ad- hoc networks, and decision support tools. Five technology areas are key: • Acoustic/seismic sensors that could detect and identify vehicles, helicopters, and the like and provide cueing for imagers (there are serious issues with triggering by spurious noises); • Magnetic sensors that could detect vehicles and small arms (tanks can be detected at 50 to 500 meters, rifles at 2 to 17 meters); • Infrared imagers for target identification; • Radars as moving target indicators; and • Radio frequency (RF) energy sensors to detect unintentional RF emissions (e.g., engine noise) as well as intentional emissions (e.g., detection and classification of radio signals). Fusion of all of the signals from these sensors will create a network that is more than the sum of its parts. The sensor network should degrade gracefully when individual units fail. Current programs are aimed at higher-cost (>$100 each), more capable sensor nodes but there is a desperate need for disposable sensors that could provide human detection capabilities in confined urban settings such as buildings, tunnels, and alleys. Urban warfare is the most difficult problem; most people in the world live in cities. The Army's vision is for acoustic, magnetic, or seismic nodes (or very low-cost imagers) costing approximately $5 to $10 each that will require minimum communication bandwidth and power, because the more traditional form of RF devices probably will not be effective in these confined terrains. There are pacing issues regarding the timing of the sensor network communications, and the system must be resistant to jamming. Kolodny believes nanotechnology can contribute here by reducing size, thereby improving covertness. So far, the Army is focuing on commercial, off-the-shelf technology, because the design must be mass-producible. Low- power algorithms will have to be packaged into a modest-performance processor. The Army is evaluating a form of smart dust funded by the Defense Advanced Research Projects Agency (DARPA) that consists of a solar- powered chip (4.8 mm3 displaced volume) combined with acceleration and ambient light sensors and bidirectional communications. GPS-based systems are probably not viable. Major challenges include cost/size reduction of integrated microelectronics (wireless networks and filters for communications; large number of sensor arrays; high-frequency components; and

Summary of the Sensing and Positioning Technology Workshop of the Committee on Nanotechnology for the Intelligence Community: Interim Report Get This Book
Buy Paperback | $21.00 Buy Ebook | $16.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The emergence of nanotechnology as a major science and technology research topic has sparked substantial interest by the intelligence community. In particular the community is interested both in the potential for nanotechnology to assist intelligence operations and threats it could create. To explore these questions, the Intelligence Technology Innovation Center asked the National Research Council to conduct a number of activities to illustrate the potential for nanotechnology to address key intelligence community needs. The second of these was a workshop to explore how nanotechnology might enable advances in sensing and locating technology. This report presents a summary of that workshop. In includes an overview of security technologies, and discussions of systems, natural chemical/biological tags, passive chemical/biological tags, and radio/radar/optical tags.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!