National Academies Press: OpenBook

Statistical Analysis of Massive Data Streams: Proceedings of a Workshop (2004)

Chapter: Blending QSCAT and Weather-Center Analysis Winds

« Previous: GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA
Suggested Citation:"Blending QSCAT and Weather-Center Analysis Winds." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 54

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 54 14 December 2002 (i.e. the same day this talk is scheduled for delivery at NRC/CATS!). For the first time, tandem scatterometer missions will return true synoptic resolution of the global ocean surface wind field. Global and regional applications of surface wind data from scatterometer systems often require regularly gridded surface vector wind fields with physically consistent treatments for missing data (e.g. due to rain contamination and/or attenuation of the radar signals). Computer models for the simulation of the ocean general circulation have been shown to be sensitive to surface wind forcing on diurnal time scales. The implied space-time requirements do not match well with the native organization of surface vector winds from scatterometer systems occurring in swaths from westward precessing orbits. A variety of statistical models have been developed to infer global and regional surface vector wind fields from scatterometer observations, on regular grids, and at diurnal temporal resolution. Blending QSCAT and Weather-Center Analysis Winds A statistical model has been developed to blend scatterometer surface vector winds with surface wind fields from weather-center analyses to create global ocean datasets, 4-times per day, at 0.5º resolution (http://dss.ucar.edu/ ds744.4). The blending methodology is constrained by an approximate power-law relation that is observed, with regional and monthly variability, in wavenumber spectra for surface winds from scatterometer systems. The weather- center winds are used only in swath gaps and missing data regions with respect to the QSCAT orbits. They must be augmented at high wavenumbers to retain the regional and seasonal power-law relation that is observed. The augmentation is implemented in a multi-resolution wavelet procedure designed by Chin et al (1998). Figure 1 depicts three panels of the global wind stress curl field for 24 January 2000 at 1800 UTC. The wind stress curl is a scalar summary of the surface vector wind field that is useful to illustrate the blending method. The top panel shows the wind stress curl from the weather-center analyses field. Analysis fields combine the latest forecast field with relevant surface observations that accrue over the forecast interval (e.g. between initialization and verification times). In the middle panel, the wind stress curl derived in the QSCAT swaths for this time period are superposed on the analysis field. Note the higher wavenumber content in the surface wind stress curl from the satellite observations. The blending method operates to augment the higher wavenumber content of the weather-center analyses such that the

Next: Bayesian Hierarchical Model for Surface Winds in the Tropics »
Statistical Analysis of Massive Data Streams: Proceedings of a Workshop Get This Book
×
 Statistical Analysis of Massive Data Streams: Proceedings of a Workshop
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!