National Academies Press: OpenBook
« Previous: A Bayesian Hierarchical Air-Sea Interaction Model
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 57
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 58
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 59
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 60
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 61
Suggested Citation:"Figure Captions." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 62

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 57 circulation models will be discussed. References Berliner, L.M., R.F.Milliff and C.K.Wikle, 2002: “Bayesian hierarchical modelling of air-sea interaction” , J. Geophys. Res., Oceans, in press. Chin, T.M., R.F.Milliff, and W.G.Large, 1998: “Basin-scale, high-wavenumber sea surface wind fields from multi-resolution analysis of scatterometer data”, J. Atmos. Ocean. Tech., 15, 741–763. Milliff, R.F., M.H.Freilich, W.T.Liu, R.Atlas and W.G.Large, 2001: “Global ocean surface vector wind observations from space”, in Observing the Oceans in the 21st Century, C.J.Koblinsky and N.R.Smith (Eds.), GODAE Project Office, Bureau of Meteorology, Melbourne, 102–119. Milliff, R.F., W.G.Large, J.Morzel, G.Danabasoglu and T.M.Chin, 1999: “Ocean general circulation model sensitivity to forcing from scatterometer winds”, J. Geophys. Res., Oceans, 104, 11337–11358. Royle, J.A., L.M.Berliner, C.K.Wikle and R.F.Milliff, 1998: “A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea.” in Case Studies in Bayesian Statistics IV, C.Gatsonis, R.E.Kass, B.Carlin, A.Cariquiry, A.Gelman, I.Verdinelli, and M.West (Eds.), Springer-Verlag, 367–381. Wikle, C.K., R.F.Milliff, D.Nychka and L.M.Berliner 2001: “Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds”, J. Amer. Stat. Assoc., 96(454), 382–397. Figure Captions Table 1. Past, present, and planned missions to retrieve global surface vector wind fields from space (from Milliff et al., 2001). The table compares surface vector wind accuracies with respect to in-situ buoy observations. Launch dates for SeaWinds on ADEOS-2 and Windsat on Coriolis have slipped to 14 and 15 December 2002, respectively. Figure 1. Three panel depiction of the statistical blending method for surface winds from scatterometer and weather-center analyses. Panel (a) depicts the wind stress curl for the weather-center analyses on 24 January 2000 at 1800 UTC. Wind stress curl from QSCAT swaths within a 12-hour window

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 58 centered on this time are superposed on the weather-center field in panel (b). Panel (c) depicts the wind stress curl for the blended field. Derivative fields such as wind stress curl are particularly sensitive to unrealistic boundaries in the blended winds. Figure 2. A Bayesian Hierarchical Model is used to infer surface vector wind fields in the tropical Indian and western Pacific Oceans, given surface winds from QSCAT and the NCEP forecast model. Five realizations from the posterior distribution for (left) zonal wind and (right) surface divergence are shown for the entire domain on 30 January 2001 at 1800 UTC. The two panels in the first row are zonal wind and divergence from the first realization. Subsequent rows are zonal wind differences and divergence differences with respect to the first realization. The differences are for realizations 10, 20, 30, and 40 from a 50 member ensemble of realizations saved from the Gibbs sampler. Figure 3. Summary plots for the Air-Sea interaction Bayesian hierarchical model (from Berliner et al., 2002). The basin average ocean kinetic energy distributions as functions of time are compared with a single trace (solid) from a “truth” simulation described in the text. The posterior mean vs. time (dashed) is indicated in panel (a) for the full air- sea BHM, and in panel (b) for an air-sea BHM from which all pseudo-altimeter data have been excluded. Panels (c-f) compare BHM probability density function estimates at days 1, 3, 5, and 7.

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 59

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 60

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 61

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 62 Mission Measurement Swath (km) Resolution Accuracy(wrt URL(http://) approach daily cov. (km) buoys) ERS-1/2 AMI C-BAND 500/41% 50 (~70) 1.4–1.7 m/s earth.esa.int 4/91–1/01 SCATT. rms spd 20º rms dir ~2 m/s random comp. ASCAT/ C-BAND 2×550/68% 25 50 Better than ERS esa.int/esa/progs/ METOP SCATT. www.METOP.html NSCAT 9/96– Ku-BAND 2×600/75% (12.5) 25 50 1.3 m/s (1–22 winds.jpl.nasa.gov/ 6/97 SCATT. (fan m/s) spd 17º missions/nscat beam) (dir) 1.3 random comp. SeaWinds/ Ku-BAND 1600/92% 12.5 25 1.0 m/s (3–20 winds.jpl.nasa.gov/ QuickSCAT SCATT. (dual (1400) m/s) spd 25º missions/quickscat 7/99–present conical scan) (dir) 0.7 random comp. SeaWinds/ Ku-BAND 1600/92% (12.5) 25 Better than winds.jpl.nasa.gov/ ADEOS-2 2/02 SCATT. (w/u- (1400) QuickSCAT missions/seawinds wave Rad.) WINDSAT/ DUAL-LOOK 1100/~70% 25 ±2 m/s or 20% www.ipo.noaa.gov/ CORIOLIS POL. RAD. spd windsat.html 3/02 ±20°?? CMIS/ SINGLE-LOOK 1700/>92% 20 ±2 m/s or 20% www.ipo.noaa.gov/ NPOESS 2010? PO. RAD. spd cmis.html ±20°?? (5–25 m/s)

Next: Summary »
Statistical Analysis of Massive Data Streams: Proceedings of a Workshop Get This Book
×
 Statistical Analysis of Massive Data Streams: Proceedings of a Workshop
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!