National Academies Press: OpenBook
« Previous: Appendix C Workshop Agenda
Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

Appendix D
Biographies

ORGANIZERS

Paul Anastas is the director of the Green Chemistry Institute in Washington, DC. Until June of 2004 he served as assistant director for environment at the White House Office of Science and Technology Policy where his responsibilities included a wide range of environmental science issues, including furthering international public-private cooperation in areas of Science for Sustainability (such as Green Chemistry). Prior to coming to OSTP in October 1999, Dr. Anastas served as the chief of the Industrial Chemistry Branch of the U.S. Environmental Protection Agency since 1989. During that period he was responsible for regulatory review of industrial chemicals under the Toxic Substances Control Act and the development of rules, policy, and guidance. In 1991 he established the industry-government-university partnership Green Chemistry Program, which was expanded to include basic research, and the Presidential Green Chemistry Challenge Awards. Prior to joining the EPA, he worked as an industrial consultant to the chemical industry in the development of analytical and synthetic chemical methodologies. Dr. Anastas received his M.A. and Ph.D. in organic chemistry from Brandeis University and his B.S. in chemistry from the University of Massachusetts at Boston.


Frankie Wood-Black is the director, Business Services for Downstream Technology, Conoco-Phillips with responsibility for finance, business analysis, training, and assets for Downstream Technology. Prior to this, Frankie was the technology services marketing manager for Phillips and was responsible for in-sourcing research and development activities into the Bartlesville Technical Center and also served as quality assurance team leader at the Borger Refinery and Natural Gas Liquids Center. Wood-Black began her career with Conoco-Phillips in 1989 in Bartlesville, Oklahoma, as a research scientist for research and development. In 1994 she was transferred to the Woods Cross Refinery as an environmental scientist whose job responsibilities included regulatory compliance for air, community-right-to-know, and the Toxic Substance Control Act. She was transferred in 1998 to Corporate Health, Environment, and Safety in the Property Risk Management Group to become site manager for nonoperating sites before her relocation to Borger, Texas, in 1999. She received a Bachelor of Science degree in physics with a minor in chemistry from Central State University (now the University of Central Oklahoma) in Edmond, OK, in 1984. She attended Oklahoma State University and received a doctorate in physics in 1989 and completed her M.B.A. in December 2002. Wood-Black has been active in numerous professional activities and serves as the Conoco-Phillips representative on Corporation Associates of the American Chemical Society. She is a contributing editor of the Journal for Chemical Health and Safety with her coauthored column “CHAS Netways.” She has one patent, ten technical publications, and has coauthored a book entitled Emergency Preparedness PlanningA primer for Chemists. Wood-Black regularly makes presentations at the American Chemical Society National meetings. She is a registered environmental manager.

SPEAKERS

David Allen is the Melvin H. Gertz Regents Chair in Chemical Engineering and the director of the Center for Energy and Environmental Resources at the University of Texas at Austin. His research interests lie in air quality and pollution prevention. He is the author of four books and over 150 papers in these areas. The quality of his research has been recognized by the National Science Foundation (through the Presidential Young Investigator Award), the AT&T Foun-

Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

dation (through an Industrial Ecology Fellowship), the American Institute of Chemical Engineers (through the Cecil Award for contributions to environmental engineering), and the State of Texas (through the Governor’s Environmental Excellence Award). In addition, Dr. Allen is actively involved in developing green engineering educational materials for the chemical engineering curriculum. His most recent effort is a textbook on design of chemical processes and products, jointly developed with the EPA. Dr. Allen received his B.S. degree in chemical engineering, with distinction, from Cornell University in 1979. His M.S. and Ph.D. degrees in chemical engineering were awarded by the California Institute of Technology in 1981 and 1983. He has held regular faculty appointments at UCLA and the University of Texas and visiting appointments at the California Institute of Technology and the University of California, Santa Barbara; he joined the University of Texas in 1995.


John Andraos earned a Ph.D. in 1992 from the University of Toronto, studying the ketene hydration reaction by flash photolysis. He set up conventional (microsecond) and nanosecond laser flash photolysis apparatuses for the Reaction Intermediates Group at Toronto. He then did postdoctoral work at the University of Ottawa, where he discovered ketene zwitterion intermediates, and at the University of Queensland, Australia, where he discovered the first example of a 1,3-sigmatropic rearrangement in acylketenes by Nuclear Magnetic Resonance Spectroscopy. He also developed computational protocols for the evaluation of kinetic data obtained in heterogeneous media, such as zeolites and low-temperature argon matrices. Since his appointment as lecturer and course director at York University in 1999, he has taught and developed courses in organic chemistry. In 2002 he launched the first industrial and green chemistry course in the history of the Department of Chemistry at York. He has published 35 research articles in refereed journals, 11 of these as an independent researcher. He has given invited addresses to Concordia University, the University of Western Ontario, and the University of Toronto. In 2000 he launched the CareerChem Web site, which is an in-depth resource for tracking and cataloguing all named things in chemistry and physics, chronicling the development of chemistry through scientific genealogies, and supplying career information to young researchers and students for placement in academic and industrial positions worldwide. Since 2000 he has given career workshops at the annual Canadian Society of Chemistry conference for students and postdoctoral fellows. His awards of recognition include the Junior Research Award from the Australian Research Council in 1996, and he is currently the president of the University of Toronto Sigma Xi Chapter.


Michael Cann was born and raised in the Saratoga region of upstate New York and attended Marist College, where he earned his B.A. in chemistry in 1969. Mike received his M.A. and Ph.D. in organic chemistry from State University of New York, Stony Brook, in 1972 and 1973. He was a postdoctoral fellow at the University of Utah (1973-1974), and a lecturer at the University of Colorado-Denver (1974-1975). Since 1975 he has been a faculty member at the University of Scranton. He is also the codirector of the environmental science program. His areas of interest encompass nitrenium ions, nitrogen heterocycles, and green chemistry. His interests in green chemistry consist of microwave-assisted organic reactions, solvent-free organic reactions, and green chemistry education.


Amy Cannon recently graduated as the first Ph.D. in green chemistry at the University of Massachusetts, Boston, working in Professor John Warner’s research group. Her research at UMass Boston involved the environmentally benign synthesis of photoactive materials, including titanium dioxide semiconductors, photoresist polymers, and novel spiropyran photoactive materials. Amy received her B.S. in chemistry from Saint Anselm College in Manchester, NH, and worked for the Gillette Company as an analytical chemist for five years before returning to graduate school. She was awarded the Kenneth G. Hancock Memorial Award in Green Chemistry in 2004 for her work on titanium dioxide semiconductors and their application in dye-sensitized solar cells. Amy currently works as a chemist for Rohm & Haas Electronic Materials in Marlborough, MA, where she is developing silicon polymeric materials for optical electronic devices. She is also an adjunct professor of green chemistry at the University of Massachusetts, Lowell.


Terry Collins is the Thomas Lord Professor of Chemistry at Carnegie Mellon University, where he directs the Institute for Green Oxidation Chemistry. He is also an honorary professor at the University of Auckland, New Zealand. Professor Collins earned his B.Sc. (1974), M.Sc. (1975), and Ph.D. (1978) degrees from the University of Auckland, where his graduate advisor was Warren R. Roper. After postdoctoral work at Stanford University with Jim Collman, he joined the faculty of Caltech in 1980 and the faculty of Carnegie Mellon University in 1987. He has a number of research awards, including the 1998 Presidential Green Chemistry Challenge Award. Professor Collins writes and lectures widely on the possibilities before chemists to develop vibrant new economies to promote sustainability. His research program is focused on greening oxidation technologies by designing non-toxic catalysts for activating the natural oxidants, hydrogen peroxide and oxygen, for nonpolluting oxidations. Professor Collins serves on the editorial advisory boards of C&E News and Environmental Chemistry. He is involved in steering or contributing to numerous international conferences and educational programs aimed at promoting green chemistry.


F. Fleming Crim is the John E. Willard and Hilldale Professor of Chemistry at the University of Wisconsin-Madison.

Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

He received his Ph.D. from Cornell University in 1974 and worked on semiconductor manufacturing techniques at the Engineering Research Center of Western Electric Co. until 1976. He then spent a year as a director’s postdoctoral staff member at Los Alamos National Laboratory and moved to Madison as an assistant professor in 1977. He was chair of the department from 1995 to 1998, and is currently chair of the Committee on Professional Training of the American Chemical Society. His research in chemical reaction dynamics uses lasers to explore and control the course of chemical reactions in both gases and liquids. He is a member of the National Academy of Sciences.


Berkeley W. Cue, known as Buzz to most of us, consults with several technology companies who serve the pharmaceutical industry to create innovative solutions for pharmaceutical science and manufacturing challenges. Most recently, he was responsible for pharmaceutical sciences at Pfizer’s Groton, Connecticut, R&D site. He created and led Pfizer’s green chemistry initiative. Dr. Cue retired from Pfizer in April 2004 after almost 29 years, but he continues his mission of advancing green chemistry in the pharmaceutical industry. Since he retired in 2004 he has given more than a three dozen presentations on various aspects of green chemistry in the pharmaceutical industry. He received a B.A. with honors from the University of Massachusetts, Boston (1969); his Ph.D. (organic chemistry) from the University of Alabama (1973); completed postdoctoral research at the Ohio State University (1974); and was a National Cancer Institute Research fellow at the University of Minnesota (1975). He is a member of the Gamma Sigma Epsilon chemistry honors fraternity at the University of Alabama. In 2003 he received the Pfizer Groton Labs Green Chemistry Award and was presented the Seldon Award by University of Massachusetts, Lowell, for his contributions to green chemistry.


Liz Gron is an associate professor of chemistry at Hendrix College. Her research interests focus on green chemistry, specifically in the area of organic reactions in near-critical water. The research goal is to replace nonrenewable petrochemical solvents while exploiting the unique properties of extremely hot water to investigate underlying mechanistic interactions between the reactants and the solvent. Additionally, Professor Gron has developed educational materials for the introductory chemistry curriculum. At present, this work focuses on designing green experiments that teach analytical and environmental chemistry to introductory chemistry students. She has taught courses in general, analytical, and inorganic chemistry while at Hendrix. Liz Gron earned her B.A. in chemistry at Colgate University and her Ph.D. in inorganic chemistry with Arthur B. Ellis at the University of Wisconsin-Madison, 1987. She was a postdoctoral fellow and an industrial research liaison at the Department of Chemical Engineering, University of Delaware, before starting at Hendrix in 1994. During her latest sabbatical, Professor Gron held a position of visiting assistant professor of chemical engineering, Massachusetts Institute of Technology, while working as a visiting scientist with Jefferson Tester. Professor Gron is an active member of Project Kaleidoscope’s faculty for the 21st century and has presented on aspects of chemistry curriculum at a number of related workshops.


Julie A. Haack is a senior instructor and assistant department head for chemistry at the University of Oregon, where her work has focused on the incorporation of green chemistry principles into the introductory chemistry curriculum for both science and nonscience majors. She is a leader in facilitating the identification, development, and dissemination of green chemistry educational materials throughout the chemistry curriculum.

Dr. Haack has developed Greener Education Materials (GEMs)s for chemists, a database of green chemistry laboratory exercises and educational materials that is enabling educators at all levels to easily identify and incorporate green chemistry into their curriculum. GEMs is also becoming instrumental in supporting the development of a growing community of green chemistry educators interested in new materials development. Dr. Haack received her Ph.D. in biology from the University of Utah (1991) and her B.S. in chemistry from the University of Oregon (1986). She completed postdoctoral work in pharmacology at the University of North Carolina at Chapel Hill and in biophysics as a Howard Hughes research associate at the University of Oregon.


Steve Howdle holds a chair of chemistry at the School of Chemistry, University of Nottingham, and prior to this held a distinguished Royal Society University Research Fellowship (1991-1999). In 2001 he was a recipient of both the Jerwood-Salters Environment Award and the Corday-Morgan Medal and Award of the Royal Society of Chemistry. In 2003 he received a Royal Society–Wolfson Research Merit Award. Steve’s academic interests focus on the utilization of supercritical carbon dioxide for polymer synthesis, polymer processing and preparation of novel polymeric materials for tissue engineering and drug delivery. A more detailed description of his research can be viewed at http://www.nottingham.ac.uk/~pczctg/Index.htm. He has to his credit over 180 academic papers, reviews, and patents, and is also the driving force behind a spin-off company, Critical Pharmaceuticals Ltd., which was founded upon his academic work. Steve obtained a B.Sc. in chemistry from the Victoria University of Manchester in 1986 and a Ph.D. on “Spectroscopy in Liquefied Noble Gases” from the University of Nottingham in 1989.


James (“Jim”) Hutchison is currently professor of chemistry and director of the Materials Science Institute at the University of Oregon (UO). Since joining the faculty at UO in the fall of 1994, Hutchison and his research group have

Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

worked to design and make new functional molecules, materials, and nanomaterials. His specific research interests are preparation and study of nanoscale materials, surface, and polymers for applications such as nanoelectronics, biocompatibility, and environmental remediation. He has pioneered the emerging field of green (environmentally friendly) nanoscience. He is a leading chemical educator, having played key roles in developing the UO’s nation-leading program in green organic chemistry and designing the Materials Science Institute Graduate Internship Program in Semiconductor Processing.

Before joining the faculty at the University of Oregon, Hutchison was a National Science Foundation postdoctoral fellow with Professor Royce W. Murray at the University of North Carolina at Chapel Hill, where studied the surface and electrochemistry of monolayers on gold films and nanoparticles. He received his Ph.D. in 1991 at Stanford University under the direction of Dr. James P. Collman, studying the binding and redox chemistry of hydrogen, oxygen, and dinitrogen by specifically designed cofacial diporphyrin catalysts. His undergraduate degree, a B.S. in chemistry, was completed in 1986 at the University of Oregon.


D. Tyler McQuade, assistant professor of chemistry and chemical biology at Cornell University, began his faculty position in 2001. He is currently a Dreyfus, 3M, Rohm and Haas, Beckman, and NYSTAR Young Investigator and one of the 2004 MIT Tech Review 100. McQuade was born in Atlanta, GA, and raised in the Santa Cruz mountains of California. He received a B.S. in chemistry and a B.S. in biology from the University of California, Irvine, and a Ph.D. in chemistry from University of Wisconsin-Madison under the guidance of Professor Samuel Gellman. His education was completed by a NIH Fellowship at MIT with Professor Timothy Swager. The McQuade group is focused on creating synthetic systems that use site isolation (via encapsulation) and selectivity (via recognition) to carry out multistep syntheses with greater efficiency. The group’s multidisciplinary environment, using tools from biology, chemistry, and materials science, is yielding both polymers and small molecules that will provide the building blocks for the next generation of reagents for sustainable process chemistry. Many of these early innovations nucleated the Sustainable Pharmaceutics enterprise that won Cornell’s Big Red Ventures 2005 Business Idea Competition.


James R. Mihelcic is a professor of civil and environmental engineering at Michigan Technological University (Houghton, MI) and an adjunct graduate faculty member at Southern University and A&M College (Baton Rouge, LA). He also serves as the codirector of the Sustainable Futures Institute (www.sfi.mtu.edu) and director of the Master’s International Program in Civil and Environmental Engineering (www.cee.mtu.edu/peacecorps). This latter program allows graduate students to work on sustainable development issues overseas while combining graduate studies with engineering service in the U.S. Peace Corps. His teaching and research interests are in the areas of sustainability and green engineering; biological and chemical processes; and water and sanitation issues in the developing world. He has also conducted extensive research in developing methods to estimate environmental properties of chemicals based on chemical structure and integrated these estimation methods with models of environment risk, the economy, and environmental fate and transport to evaluate emerging chemicals and sustainable economic activities.


Kathryn E. Parent is a staff associate for the Green Chemistry Institute at the American Chemical Society. Parent leads educational initiatives at GCI. She received her B.S. in chemistry from George Fox University in Newberg, Oregon. Following graduation she worked as a research assistant at Oregon Health Sciences University. Parent became involved with green chemistry in 2000 when she became a graduate teaching fellow in the Chemistry Department at the University of Oregon. She moved to Washington, DC, to begin working for GCI in 2002. Her major interests include green chemistry, education, and community outreach. Her recent efforts include editor for Going Green: Integrating Green Chemistry into the Curriculum (2004); conference administrator for the joint meeting of the Second International Conference on Green and Sustainable Chemistry and the Ninth Annual Green Chemistry and Engineering Conference (2005); and program director for the ACS Summer School on Green Chemistry (2005). She is a frequent contributor to the ACS magazine for student affiliates, Chemistry Magazine.


David R. Shonnard received a Ph.D. in chemical engineering from the University of California, Davis, in 1991 and conducted postdoctoral research at Lawrence Livermore National Laboratory (1990-1992). His research and teaching interests include green engineering, biotechnology and bioprocessing, enzyme engineering, and environmental lifecycle impact assessment. At MTU he is a research and education pioneer in areas of environmental impact assessment for chemical products and processes and coauthor of the textbook Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002. He has consulted with several major chemical manufacturers (BASF, UOP) on the use of life-cycle assessment to evaluate and improve environmental performance. He is the recipient of the 1998 NSF/Lucent Technologies Foundation Industrial Ecology Research Fellowship and the 2003 Ray Fahien Award of the American Society for Engineering Education. He has received over $2 million in research funding at Michigan Technological University and published over 50 peerreviewed research papers.


Linda Vanasupa is currently serving as chair of California

Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

Polytechnic State University’s Materials Engineering Department (mate.calpoly.edu) and associate director of Cal Poly’s Center for Sustainability in Engineering (csine. calpoly.edu). As principal investigator of a National Science Foundation Department-Level Reform grant, she and her colleagues are exploring the design of engineering learning experiences that promote systems thinking, responsible global citizenship, and retention of underrepresented individuals. Her recent research interests have included thin film processing and characterization and materials degradation in hydrogen fuel cells. Professor Vanasupa has degrees in material science and engineering (Ph.D. Stanford University, 1991; M.S. Stanford University, 1987) and metallurgical engineering (B.S. Michigan Technological University, 1985). Since joining Cal Poly in 1991, she has received Cal Poly’s Distinguish Teaching Award (2002-2003), the Northrop-Gumman Excellence in Teaching and Applied Research Award (2000-2001), the American Society for Engineering Education Dow Outstanding New Faculty Award (1997), and the TRW Excellence in Teaching Award (1992-1993).


John Warner received his B.S. in chemistry from the University of Massachusetts, Boston, his M.S. and Ph.D. from Princeton in organic chemistry. He worked at the Polaroid Corporation for nine years, and then went to UMASS Boston, where he has started the world’s first green chemistry Ph.D. program. He is now at the University of Massachusetts, Lowell, where he directs a large research group working on a diverse set of projects involving green chemistry, using principles of crystal engineering, molecular recognition, and self-assembly. His work combines aspects of community outreach, government policy, and industrial collaboration. He is associate editor of the journal Organic Preparations and Procedures International and on the editorial board of Crystal Engineering and Crystal Growth and Design. He recently received the 2004 Presidential Award for Excellence in Science Mentoring from President Bush and the Outstanding Service to Nursing Award from Sigma Theta Tau International Honor Society of Nursing. He was awarded the American Institute of Chemistry’s Northeast Division’s Distinguished Chemist of the Year for 2002. His recent patents in the fields of semiconductor design, biodegradable plastics, personal care products, and polymeric photoresists are examples of how green chemistry principles can be immediately incorporated into commercially relevant applications. Professor Warner is coauthor of the book “Green Chemistry: Theory and Practice” and serves on the Board of Directors of the Green Chemistry Institute in Washington, DC.

Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 36
Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 37
Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 38
Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 39
Suggested Citation:"Appendix D Biographies." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 40
Next: Appendix E Workshop Attendees »
Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable Get This Book
×
 Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!