National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"1 Overview." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

1
Overview

A hot new topic in both chemistry and chemical engineering is green. Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.1 Green engineering is the development and commercialization of industrial processes that are economically feasible and reduce the risk to human health and the environment. At the forefront of the green chemistry and engineering movement is Dr. Paul Anastas, director of the American Chemical Society (ACS) Green Chemistry Institute (GCI). According to the GCI, the overall goal of green chemistry and green engineering is to unleash “the creativity and innovation of our scientists and engineers in designing and discovering the next generation of chemicals and materials so that the chemicals and materials provide increased performance and value while meeting all goals to protect and enhance human health and the environment.”

In this workshop, widespread implementation of green chemistry into undergraduate and graduate education was explored.2 This workshop focused on the integration of green chemistry and engineering into the established and developing chemistry and chemical engineering curricula. Leading educators and industry managers showcased exemplary programs and provided a forum for discussion and critical thinking about the development, evaluation, and dissemination of promising educational activities in green chemistry. Speakers at the workshop:

  • Provided an overview and current status of green chemistry education. They addressed how green chemistry and engineering bring value to the chemistry curriculum and why some educators in other disciplines choose to incorporate green chemistry and engineering educational principles into their teaching.

  • Highlighted the most effective green chemistry educational practices to date, including government-industry collaborations and assessment activities in green chemistry.

  • Discussed the most promising educational materials and software tools in green chemistry and engineering, including compelling industry examples that can be used as green chemistry and engineering teaching tools.

This summary is a compilation of the three main speaker sessions and the six breakout session discussions that allowed the participants to explore how to make green chemistry and engineering an integral part of curricula at all educational levels. The three main speaker session topics were (1) Current status; (2) Tools and materials; and (3) Where do we go from here?

The topics of the six breakout session discussions were:

  1. Green chemistry and green engineering in future curricula;

  2. What materials, programs, and tools are needed?

  3. What is needed to achieve interdisciplinary approaches?

  4. Green chemistry and green engineering industry and education;

  5. Green chemistry and green engineering and the new faculty; and

  6. Creating incentives, removing impediments.

The overall purpose of this summary is to be a resource for any educator who is interested in green science and technology education.

1

ACS Green Chemistry Institute. Available at http://www.chemistry.org/portal/a/c/s/1/acsdisplay.html?DOC=greenchemistryinstitute\index.html.

2

The views and opinions expressed in this the Green Chemistry and Engineering Education workshop and this workshop summary is not representative of the view of the Chemical Sciences Roundtable.

Suggested Citation:"1 Overview." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

SETTING THE WORKSHOP STAGE: PRE-WORKSHOP PARTICIPANT SURVEY

As a precursor to the workshop, Dr. Anastas captured constructive ideas on how to address green education issues through an informal 10-question pre-workshop survey3 of the workshop participants. Forty-three of the workshop participants—people from academe, industry, government, and nonprofit organizations—answered a mix of multiple-choice, yes-no, and open-ended questions. The questions covered many topics in green education, including who was interested, how it should be taught, who would benefit, and what mechanisms existed for funding. According to the survey results, in addition to helping teach technical issues, the main benefits of teaching green chemistry and green engineering were enthusiasm, continued interest, and increased job opportunities. The majority of participants also felt that integrating green chemistry and engineering throughout the four years of an undergraduate curriculum, is a more effective method for teaching green chemistry and engineering than having a single undergraduate course or waiting until the graduate level. In addition to the basic issue of funding mechanisms, other barriers for teaching green chemistry and engineering identified by the respondents included lack of tools and resources, already crowded curricula, and collegial resistance. The results of the pre-workshop survey were used by the workshop leaders to guide the discussions of what is being done at all levels of education and what can be done in the future to further green chemistry and green engineering education.

OPENING REMARKS

Workshop organizers Anastas and Wood-Black warmly welcomed the 75 attendees to the two-day discussion of green chemistry and engineering education. They explained the purpose and organization of the workshop.

Anastas explained that the time is right for leaders in green chemistry and engineering to push green concepts because the ideas of green chemistry and engineering are slowly being accepted within the broader scientific community. One example of the emerging interest in green approaches cited was the awarding of the 2005 Nobel Prize in Chemistry to Robert Grubbs, Richard Schrock, and Yves Chauvin “for the development of the metathesis method in organic synthesis” provided an excellent example of green chemistry and engineering. A second example he gave was the movement of the Green Chemistry Research and Development Act through both the U.S. House and Senate after passing the first hurdle of the House in April 2004.4 A third example provided by Anastas was the placement of green chemistry education on the Carnegie Groups’ agenda (e.g., Center for Sustainable Engineering).5

Anastas closed his remarks by discussing impediments to innovation. He explained that change can come much more slowly than anyone would expect because people do not like to do things differently from the way they have done them before. New ideas and new perspectives often face harsh opposition. He led the audience in considering some amusing historical examples of mistakes made by a few of our greatest scientific leaders:

  • Lord Kelvin, discoverer of the temperature scale named for him, denied his date for the age of the earth (24 million years old) was wrong even after radioisotope dating had demonstrated his value to be false;

  • Mendeleev, inventor of the periodic table, denied the existence of radiation and the electron; and

  • J. J. Thompson, discoverer of the electron, adhered to the belief in the existence of the “ether,” which “is as essential to our lives as the air we breathe,” long after this concept was disproved.

3

A list of the 10 questions and tabulated answers are listed in Appendix A.

4

Green Chemistry Research and Development Act of 2005. Available at http://thomas.loc.gov/cgi-bin/query/z?c109:h.r.1215.

5

http://www.csengin.org/.

Suggested Citation:"1 Overview." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 1
Suggested Citation:"1 Overview." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 2
Next: 2 Current Status »
Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable Get This Book
×
 Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!