National Academies Press: OpenBook
« Previous: 7 A Complementary Approach to Meeting PETMAN System Goals
Suggested Citation:"8 Overarching Conclusions and Recommendations." National Research Council. 2008. Soldier Protective Clothing and Equipment: Feasibility of Chemical Testing Using a Fully Articulated Robotic Mannequin. Washington, DC: The National Academies Press. doi: 10.17226/11959.
×
Page 133
Suggested Citation:"8 Overarching Conclusions and Recommendations." National Research Council. 2008. Soldier Protective Clothing and Equipment: Feasibility of Chemical Testing Using a Fully Articulated Robotic Mannequin. Washington, DC: The National Academies Press. doi: 10.17226/11959.
×
Page 134
Suggested Citation:"8 Overarching Conclusions and Recommendations." National Research Council. 2008. Soldier Protective Clothing and Equipment: Feasibility of Chemical Testing Using a Fully Articulated Robotic Mannequin. Washington, DC: The National Academies Press. doi: 10.17226/11959.
×
Page 135
Suggested Citation:"8 Overarching Conclusions and Recommendations." National Research Council. 2008. Soldier Protective Clothing and Equipment: Feasibility of Chemical Testing Using a Fully Articulated Robotic Mannequin. Washington, DC: The National Academies Press. doi: 10.17226/11959.
×
Page 136

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

8 Overarching Conclusions and Recommendations The feasibility of meeting the Protection Ensemble Test Mannequin (PETMAN) system threshold and objective requirements were considered individually and as an integrated whole. Specific conclusions and recom- mendations were presented in the preceding chapters of this report. Here, three overarching issues are presented for Product Director, Test Equip- ment, Strategy, and Support (PD TESS) to consider as it seeks to develop a PETMAN system: priority-setting among PETMAN requirements, con- tractor qualifications, and a complementary option to a PETMAN system. Each is discussed below. PrioritY SETTING AMONG petman Requirements The Committee on Full-System Testing and Evaluation of Personal Protection Equipment Ensembles in Simulated Chemical-Warfare Environ- ments was charged with assessing the feasibility of a PETMAN system on the basis of all delineated Department of Defense (DOD) system design requirements (see Appendix B). The PETMAN requirements cover all the desired and required features of mannequin function with little or no prior- ity-setting. PD-TESS indicated that a concurrent exercise was being carried out to set priorities among the requirements but that the results would probably not be available in time to inform the PETMAN feasibility study. The feasibility study concludes the following: Conclusion 8-1: Taken independently, most of the PETMAN threshold requirements can be met with current technologies or incremental de- 133

134 SOLDIER PROTECTIVE CLOTHING AND EQUIPMENT velopments of existing technologies (see detailed discussions in chapters 2 through 6). Conclusion 8-2: Several options are available for chemical-agent sens- ing, robotic actuation, and overall system design. Conclusion 8-3: Using currently available technologies, it may be pos- sible to meet some of the threshold requirements in a nontethered system, but largely due to available battery technology such a system would be limited to an operating time of two hours. The other thresh- old and objective requirements may be difficult or impossible to meet with a nontethered mannequin. Conclusion 8-4: Integrating all the objective requirements will be a major challenge for design and implementation of a full PETMAN system. Conclusion 8-5: Meeting the threshold requirement of a tethered sys- tem, which would reduce the number of subsystems housed in the mannequin, is feasible. In light of those conclusions, PD TESS should take the following actions: Recommendation 8-1: To achieve greater success with the future pro- posal solicitation for a PETMAN system, PD TESS should set pri- orities among the PETMAN requirements according to the program objectives. Recommendation 8-2: PD TESS should adopt a phased approach to the development of the PETMAN system, first addressing the high-risk areas as identified in the study (see Chapter 6) and then deciding on the achievable objectives according to the priorities it has set. Contractor Qualifications The development of a PETMAN system is a large undertaking for any organization. The development of individual components—in particular the robotics capability—will require considerable resources and expertise. Simulating human physiology in addition to developing a robot may be beyond the means of a single group. On the basis of that assessment, the study concludes the following:

OVERARCHIING CONCLUSIONS AND RECOMMENDATIONS 135 Conclusion 8-6: The design and development of a PETMAN system will require a multidisciplinary effort that encompasses expertise in computer software engineering, robot design, mannequin design, ma- terials science and engineering, human physiologic simulation, sensor technologies, and systems integration. PD TESS should take the following action in connection with assess- ing the qualifications of the company or companies chosen to develop a PETMAN system: Recommendation 8-3: The primary contractor should have demon- strated capabilities in systems integration. Recommendation 8-4: A workshop should be organized to inform the proposing groups fully of the objective and threshold requirements. The invitation list should include system integrators and developers and suppliers of component technologies for the mannequin, materials, and sensors. A complEmentary approach The current Man-in-Simulant Test (MIST) protocol evaluates individual protection ensembles (IPE) on soldiers rather than mannequins, and this offers the benefit of testing the effects of actual human movements and physiologic conditions. However, one of the major shortcomings of MIST is its method of under-ensemble data acquisition. It has been shown (see Chapters 2, 5, and 7) that recreating human-like movement, respiration, perspiration, and body proportions will be difficult and expensive. In con- trast, simulant chemicals mimic almost all the physical features of actual chemical agents. On the basis of that assessment, the study concludes the following: Conclusion 8-7: Some of the technologies reviewed in this report—such as real-time sensing of chemicals, temperature, and humidity—could be used in the MIST to provide real-time leak detection and characteriza- tion of the microenvironments in the protective garments. Conclusion 8-8: Some technologies are sufficiently mature to support construction of a whole-body suit for a human—a sensor-integrated body suit (SIBS)—outfitted for real-time sensing of chemicals, body temperature, heart rate, cardiographic characteristics, and humidity without the need for a tether (see Chapter 7 for discussion of the SIBS). Such a suit would allow substantial improvement in the MIST with-

136 SOLDIER PROTECTIVE CLOTHING AND EQUIPMENT out the expense and risk associated with a fully developed PETMAN system and at a small fraction of costs in money and time. The only limitation would be the inability to use actual chemical agents. In light of those conclusions, PD TESS should take the following action: Recommendation 8-5: A SIBS should be seriously considered as an update of the MIST and as complementary to the proposed PETMAN system. Unless there is an absolute requirement of all the capabilities as- sociated with the proposed PETMAN system, this sensor-integrated ap- proach would provide many of the key capabilities in the interim. Such an approach would provide substantial improvements over current testing while the critical paths and absolute requirements for PETMAN development are explored. It would allow testing to continue with hu- man subjects and allow collection of data on a broader array of human characteristics than will be possible with the PETMAN system. In light of the full list of requested functionalities of the PETMAN system, it will be difficult to design a nontethered, free-standing, 50th- percentile-male robotic test mannequin that can operate continuously be- yond the available battery capacity of two hours. Tests longer than two hours will require reduced motion, a recharging or refueling method, a tether, or other approaches that would require research extending beyond the sponsor’s desired development timeframe. The main design challenge for the PETMAN system is the integration of all system components (power, control, sensors, perspiration, respiration, actuation, and so on) within the size constraints. Setting priorities among the PETMAN systems require- ments, improving guidance for proposing contractors, and considering complementary test approaches with simulants and real-time sensing will enhance the ability of PD TESS to develop a PETMAN system and ulti- mately improve the protection capability of IPE against chemical-warfare agents.

Next: Appendix A: Statement of Task »
Soldier Protective Clothing and Equipment: Feasibility of Chemical Testing Using a Fully Articulated Robotic Mannequin Get This Book
×
Buy Paperback | $56.00 Buy Ebook | $44.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

There is an ongoing need to test and ensure effectiveness of personal protective equipment that soldiers use to protect themselves against chemical warfare agents. However, testing using human subjects presents major challenges and current human-size thermal mannequins have limited testing capabilities. The U.S. Department of Defense (DOD) along with their counterparts from other countries are seeking to develop more human like mannequins, which would include features like human motion, in order to carry out more advanced chemical testing. At the request of DOD Product Director, Test Equipment, Strategy and Support, the National Research Council formed an ad hoc committee to evaluate the feasibility of developing an advanced humanoid robot, or Protection Ensemble Test Mannequin (PETMAN) system that meets the DOD requirements. The book concludes that although most of the individual requirements can technically be met, fulfilling all of the requirements is currently not possible. Based on this conclusion the committee recommends that DOD considers three issues, prioritization of current system requirements, use qualified contractor for particular technical aspects, incorporate complementary testing approaches to the PETMAN system.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!