National Academies Press: OpenBook
« Previous: 1 Introduction
Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×

2
General Themes

While a variety of curricular issues were identified during workshop discussions, three overlapping global themes clearly emerged. They included (a) the need to restructure engineering curricula to focus on inductive teaching and learning, (b) the importance of applying integrated, just-in-time learning of relevant topics across the STEM fields, and (c) the need to increase significantly the use and implementation of learning technologies. In the text below, each one of these global themes is examined and observations that flowed from the workshop are noted.

RESTRUCTURING ENGINEERING CURRICULA TO FOCUS ON INDUCTIVE TEACHING AND LEARNING

Techniques for teaching engineering and science are traditionally deductive. That is, they tend to introduce the general principles of a topic in a classroom lecture, develop mathematical models using those principles, demonstrate how these models may be applied, assign homework where these models must be applied, and finally, test the student’s performance to do similar work on an exam.10 Deductive instruction begins with the proposal of a concept, and the explanation of the concept follows, often in a rigid pattern of exposing students to a general rule, offering specific examples and requesting students practice.11

An instructor practicing inductive teaching methods would first illustrate to students why a certain academic principle is important, require some sort of practice, often real world, and only then propose the general rule or lesson.


Felder and Prince12 note that

Inductive teaching and learning is an umbrella term that encompasses a range of instructional methods, including inquiry learning, problem-based learning, project-based learning, case based teaching, discovery learning, and just-in-time teaching. These methods have many features in common, besides the fact that they all qualify as inductive. They are all learner-centered (also known as student-centered), meaning that they impose more responsibility on students for their own learning than the traditional lecture-based deductive approach. They are all supported by research findings that students learn by fitting new information into existing cognitive structures and are unlikely to learn

10

Prince, Michael, and Richard Felder. “Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases.” Journal of Engineering Education, vol. 95, no. 2, (2006): pages 123-38.

11

Stern, Hans Heinrich. “Issues and Options in Language Teaching.” Oxford University Press, 1992.

12

Prince, Michael, and Richard Felder. “Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases.” Journal of Engineering Education, vol. 95, no. 2, (2006): pages 123-38.

Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×

if the information has few apparent connections to what they already know and believe. They can all be characterized as constructivist methods, building on the widely accepted principle that students construct their own versions of reality rather than simply absorbing versions presented by their teachers. The methods almost always involve students discussing questions and solving problems in class (active learning), with much of the work in and out of class being done by students working in groups (collaborativeor cooperative learning).

A focus on the elements of inductive teaching provided a common thread within the keynote addresses by Bordogna, Flowers, Orsak, and Duderstadt. Many workshop attendees were supportive of Duderstadt’s suggestion that a professional graduate degree in engineering provide the gateway to research and practice as an engineer. They saw Duderstadt’s vision of undergraduate engineering coursework as a liberal arts subject as providing a means to address Fromm’s opening challenge to engage non-engineering majors in the benefits of studying engineering.

Discussants in the breakout group focused on “existing curricular models and lessons learned” observed that some courses possessing significant innovations are predominately inductive in nature. These include (a) programs at the University of Pittsburgh, where students spend spring break engaged in a variety of cultural and technical activities in Asian countries, (b) a cognitive apprenticeship at the Georgia Institute of Technology, in which faculty facilitate first-year learning by working in problem-solving groups in classrooms with writable walls extending from the floor to ceiling in order to stimulate thinking in terms of diagramic representations, (c) a program at Olin College, in which engineering students start and run a business as a team, with all profits donated to charity, similar to a project immersion program at Southern Methodist University and an Enterprise Program at Michigan Tech, and (d) Living with the Lab, a project-centered interdisciplinary, integrated engineering/math/science curriculum for all first-year engineering majors at Louisiana Tech. One person noted that in 1996 the American Society of Mechanical Engineers (ASME)13 started inductive curriculum reform to create an environment of active, discovery-based learning, in which multidisciplinary “enterprise teams” advocated advancing engineering education. Another attendee noted that the calls by Duderstadt and Bordogna for integrating technical and educational research findings into classroom instruction provides further opportunities for inductive instruction.

APPLY INTEGRATED, JUST-IN-TIME LEARNING, OF RELEVANT TOPICS ACROSS STEM FIELDS

Several attendees observed that Flower’s presentation suggested an opportunity to make greater use of just-in-time learning. Just-in-time learning offers learning opportunities that can be structured and delivered exactly when an individual needs them, and allows for the acquisition of knowledge or skills at a point in which a student is most

13

ASME Curricular Innovation Awards http://www.asme.org/Governance/Honors/UnitAwards/Curriculum_Innovation_Awards.cfm [Accessed May 6, 2009].

Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×

receptive.14 An illustration of just-in-time teaching would be an interaction between online study assignments and an active learner classroom. For example, students could respond electronically to web-based coursework due shortly before class, allowing the instructor to consider student performance “just-in-time,” and adjust the classroom lesson to suit the students’ needs.15

Some workshop participants expressed the hope that implementing just-in-time learning and teaching could strengthen efforts to address better the informational needs of students with varying skill sets. An example was offered from Olin College where students have the option to create their own engineering program, allowing undergraduates to pursue individual interests using differing timetables. This program is referred to as the E:Self, and its flexibility allows for the interdisciplinary integration of other curricula into traditional engineering paradigms. Self-directed learning, both in terms of time course and curriculum, is a large component of programs such as E:Self that are designed with the aim of fostering a student’s sense of engagement and control.

INCREASE THE USE AND IMPLEMENTATION OF MODERN LEARNING TECHNOLOGIES

A concern echoed by many of the workshop participants was that the current classroom paradigm, in which nearly all teaching efforts consist of the instructor explaining information from a textbook, is archaic and must be changed. It was noted that the modern textbook has evolved very little from its origins in 1871 when Christopher Columbus Langdell, a law professor at Harvard, decided that compiling thick, imposing casebooks, with hundreds of appeals court rulings, should be the foundation of legal teaching.16 Flowers made a similar point in his keynote address.

Many workshop attendees commented that the keynote and panel speakers had proposed a variety of innovative examples of the use of modern learning technologies including Vest’s citation of the David Baker video game Foldit and Flower’s “new media” model.

Discussions in the breakout section on “using engineering education research findings to inform curricular innovation” included general support for the view that in order for education and technical research findings to more effectively inform curricular innovation, engineering educators should create virtual communities that establish collaborative links17 among and between education researchers, classroom innovators, and traditional engineering faculty. This could be accomplished, for example, through wikis (i.e., websites that can be collaboratively edited by multiple users) which contain information regarding the successes and failures of past and current educational techniques, or a globally accessible database of curricular innovations and promising educational models.

14

Sanders, Ted "U.S. Seeks a Nation of Learners For New Century," Chicago Tribune, December 17, 1996.

15

From Just in Time Teaching at http://jittdl.physics.iupui.edu/jitt/what.html [Accessed May 6, 2009].

16

Monaghan, Peter. “Due processors: Educators Seek a Digital Upgrade for Teaching Law.” Chronicle of Higher Education, vol. 55, no. 8, (2008) page 10.

17

Wegner, Etienne et al., “Cultivating Communities of Practice” Harvard Business School Press, 2002.

Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×
Page 10
Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×
Page 11
Suggested Citation:"2 General Themes." National Academy of Engineering. 2010. Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12824.
×
Page 12
Next: 3 Specific Observations »
Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In April 2009 a workshop was held to explore how engineering curricula could be enhanced to better prepare future engineers. The workshop, summarized in this volume, included individuals from industry, academia, government agencies, and professional societies.

During the workshop participants addressed the rationale for the scope and sequence of current engineering curricula, considering both the positive aspects as well as those aspects that have outlived their usefulness. Other topics of discussion included the potential to enhance engineering curricula through creative uses of instructional technologies; the importance of inquiry-based activities as well as authentic learning experiences grounded in real world contexts; and the opportunities provided by looking more deeply at what personal and professional outcomes result from studying engineering.

General themes that appeared to underlie the workshop attendees' discussions included desires to (a) restructure engineering curricula to focus on inductive teaching and learning, (b) apply integrated, just-in-time learning of relevant topics across STEM fields, and (c) make more extensive use and implementation of learning technologies. During breakout discussions, many additional suggestions were offered for means by which to facilitate curricular innovation.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!