National Academies Press: OpenBook

Realizing the Energy Potential of Methane Hydrate for the United States (2010)

Chapter: 4 Coordinating Process for the Methane Hydrate Research and Development Program

« Previous: 3 Review of Central Research Efforts Within the Methane Hydrate Research and Development Program
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

CHAPTER 4
Coordinating Process for the Methane Hydrate Research and Development Program

During the past 5 years, the Program has instituted several programmatic changes and reinforced some existing program directions to refine the Program’s overall scientific directions and strengthen its management process. These changes, which are examined in this chapter, were enacted to increase the success of the research funded by the Program, to communicate scientific results, to support education and training of young researchers, to enhance collaborative engagements with other research entities domestically and internationally, and to increase management efficiency and the transparency of its activities.

RESEARCH INFRASTRUCTURE, SCIENCE COMMUNICATION, AND EDUCATION AND TRAINING

The majority of the Program’s modest resources are directed toward research through field projects and other cooperative agreements (Appendix F). These types of projects and agreements are conducted primarily by university researchers and their students with added contributions, particularly in the large field projects, from industry. The remainder of the resources is directed toward support for activities at the National Energy

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Technology Laboratory (NETL) and other national laboratories, with smaller proportions allocated to program management, selected activities at other federal agencies, graduate research fellowships, and technology transfer (Allison, 2008). The process used by the Program to call for external research proposals and grant support for research projects, to evaluate the progress of individual research projects, and to communicate the scientific results of the projects is examined briefly in the following section.

In its review and assessment of this process, the committee took three issues into consideration: (1) the Department of Energy’s (DOE’s) authorized role in identifying, facilitating, and coordinating methane hydrate research; (2) the very fundamental nature of much of the research that the Program supports; and (3) the external factors, particularly with field projects, that affect research progress but which may often be beyond DOE’s direct control.

Project Selection and Peer Review

The Program includes project selection and performance evaluation for procedures for two primary project types: cooperative agreements selected competitively through publicly announced funding opportunity announcements and those awarded directly through interagency agreements and national laboratory field work proposals (FWPs). Cooperative agreements are openly solicited and competed, and are evaluated on three main criteria: scientific and technical merit, technical approach, and technical and management capabilities. The review panel to examine proposals consists of both internal (Program) reviewers and external reviewers who are considered to be leading scientists within the methane hydrate community. Each reviewer conducts an independent assessment of the proposals, and external reviews are then used by the internal review team in their deliberations. Interagency agreements and FWPs, which typically account for one-fifth of the total program funding, are noncompetitive. They are negotiated directly with the research partner and do not go through an external review process (DOE/NETL, 2008).

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Once projects are funded and become part of the Program portfolio, they undergo a merit review process. External reviewers from the methane hydrate community are selected to evaluate project quality, relevance, progress, and results. As in the Program’s selection process, the internal review team uses feedback from the external review to create consensus evaluations of each project. Currently, reviews alternate annually, with cooperative agreements assessed in one year and interagency agreements and FWPs in the subsequent year. DOE is considering a plan to consolidate the two reviews into a full program review (of cooperative and interagency agreements, and FWPs) to maximize data exchange between different projects within the portfolio.

Fundamentally new research is being undertaken on a number of fronts by the Program, particularly in the field projects where new types of exploration and drilling of test wells are being evaluated and conducted and which require significant planning, coordination, and resources. Factors such as land permitting and land ownership, and in offshore areas, drill rig availability, are key aspects to conducting successful drilling activities, but are not directly under the Program’s or industry partners’ influence to control. Delays in any of these aspects of a drilling expedition may delay a project’s schedule and acquisition of results.

To address some of these practical challenges, the Program has incorporated some flexibility in its oversight of projects; for example, the Program coordinates its research projects in phases rather than strictly by a fiscal- or calendar-year schedule (see Chapter 3 for examples). At a phase transition, both parties to the agreement (the Program management and the project research partner) may evaluate the progress and relevance of the work and make adjustments to schedules and costs. The decision to move into the next project phase is made by the project research partner by submitting an application to the Program for continuation of the project, with a description of changes, if any, to the research plan (DOE/NETL, 2008).

Although the newly introduced peer reviews and other forms of periodic reporting by the performers to the Program are positive additions to Program management and project oversight, the committee notes that the large field projects, in particular, may benefit from more

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

comprehensive and frequent external peer review to evaluate the scientific goals of these projects, the projects’ progress toward achieving these goals, and, if necessary, any modifications in the research plan that may help avoid obstacles to achieving the goals. The greater sophistication of the field tests as the Program moves these large field projects forward toward sustained production of methane from methane hydrate will require greater concentration of resources. More frequent, external peer review assessments may give the Program and project researchers increased confidence in the field tests and in efficient allocation of resources.

Resource Allocation, Coordination, and Partner Contributions

The heaviest investments for the Program continue to be in industry partnerships in the field. Of the Program’s allocated and planned support for projects since the Program’s inception, approximately 63 percent has been directed toward the four currently active field-based projects (see Chapter 3; Appendixes E and F). The allocation of this proportion of the Program’s annual resources to these projects is understood in the context of the high cost of conducting major field expeditions in the Arctic and offshore, including the cost of exploratory and production test drilling. The total cost for field operations in the Alaska North Slope project managed by BP Exploration Alaska is less than that needed to conduct work in the Gulf of Mexico—as of late 2008, the total DOE share contributed to work in the Gulf of Mexico was $24.6 million and to work on the Alaska North Slope project was about $10 million. The cost differences between the two projects are largely due to high daily rates for drill ships in the deepwater Gulf of Mexico which, when combined with logging tool rentals and other costs, reach about $500,000/day (DOE/NETL, 2008). Substantial direct and indirect resource contributions from industry and federal agency partners to these projects are also notable and necessary. By the close of 2008, industry had contributed an additional 29 percent share to the Gulf of Mexico joint industry project (JIP) and about a 37 percent additional share to the Alaska North Slope project; industry contributions in both

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

projects take the form of donated seismic and other data, in addition to sharing a proportion of the labor costs (DOE/NETL, 2008).

A significant contribution to these two field projects has also come in the form of research contributions from other federal agencies. Most of the agencies involved in the interagency collaboration on methane hydrate (see also below) have their own, dedicated methane hydrate research programs which are funded internally and thus are conducted in true partnership with the Program. Any funding support provided by the Program to these agencies for the interagency work is small, if it occurs at all, and is directed toward very specific aspects of the work. In the Gulf of Mexico JIP, involvement by the U.S. Geological Survey (USGS), Minerals Management Service (MMS), and Naval Research Laboratory (NRL) has led to significant advances in the science and success of the project. Similarly, in the Alaska North Slope project, many years of research engagement on the part of the USGS and Bureau of Land Management (BLM) have been fundamental to the achievements of the project thus far (see also Chapters 2 and 3). Specific agency contributions to the interagency methane hydrate collaborations are described later in this chapter. The Program also provided ancillary support to projects associated with the Integrated Ocean Drilling Program Expedition 311 in 2005.1

Other research activities that involve experimental laboratory or theoretical modeling or field work not specifically tied to one of the two large field studies comprise the remainder of the Program funding and typically involve one or more institutions as principal investigators, often with explicit student research involvement. Figure 4.1 shows the general resource allocation for the Program appropriation in fiscal year 2008 as an example.

The research supported in this way by the Program is robust, with more than 20 higher education and oceanographic institutions, as well as national laboratories, currently receiving project support (Appendix F). The projects not related to the large field drilling and production research are typically of shorter duration (approximately 2-3 years) and are awarded in

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
FIGURE 4.1 Funding allocation for the Program’s appropriated $14.8 million in fiscal year 2008. Somewhat less than half of the Program’s funds were directed toward the field projects. Note that most of the projects also include a cost-sharing arrangement (see Appendix F). SOURCE: Allison (2008).

FIGURE 4.1 Funding allocation for the Program’s appropriated $14.8 million in fiscal year 2008. Somewhat less than half of the Program’s funds were directed toward the field projects. Note that most of the projects also include a cost-sharing arrangement (see Appendix F). SOURCE: Allison (2008).

response to specific proposal requests by the Program. The range of research themes addressed by these projects includes remote sensing, geomechanics, geohazards, and the environment. Modeling, laboratory experiments, and field observations are employed to examine various aspects of each of these themes (Appendix F; see also Chapter 3). Although most of these projects are stand-alone in the sense that each one is proposed by an academic researcher or research team to address one or more specific research topics, a number of the projects are or could be adapted to provide input data, newly developed technologies, or other results to the active field projects in the Gulf of Mexico or on the Alaska North Slope. For example, a laboratory and modeling effort to build a new pressure-core analysis device for use in the Gulf of Mexico JIP is being conducted by the Georgia Institute of

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Technology. This project is a separate laboratory and modeling project funded as a Cooperative Agreement through the Program but will feed directly into the JIP in the Gulf of Mexico. The committee is supportive of Program efforts to attempt to integrate research results, where appropriate from individual projects, in order to augment the overall advances of the Program’s research, particularly related to the large field projects.

Developing the Next Generation of Researchers

Training and educating new researchers in methane hydrate studies is essential for continued growth of the field, and helps to ensure that the appropriate level of basic and applied knowledge is available to carry work forward to develop safe and environmentally sustainable potential commercial production. The Program has shown a commitment to training the next generation of energy scientists in a diverse range of disciplines including chemical, petroleum, and mechanical engineering; geology, geochemistry, and geophysics; chemistry; biology and microbiology; hydrology; and numerical modeling. During the period between 2000 and 2008, the Program provided research opportunities and financial support to over 150 students (mostly master’s and doctoral degree students) and 16 post-doctoral researchers from 42 U.S. universities.2

Student and postgraduate research projects are linked directly to various existing research projects coordinated by academic, national laboratory, industry, and government researchers. This linkage gives these students and postgraduates a broader context for their studies as well as umbrella organizations and contacts through which to pursue professional careers. In 2006, partially in response to recommendations in the NRC (2004) report and the reauthorization language of 2005, the Program also initiated a Methane Hydrate R&D Fellowship program to provide 2 years of support for particularly deserving graduate or postdoctoral fellows. Selection of fellows is based on the technical and scientific merit of proposed projects, html.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

their potential to advance the stated goals of the Program, and the nature of the proposed research environment (including mentors and hosting institutions). As of the end of 2008, about 50 students and 3 postgraduate fellows were actively pursuing methane hydrate research through support from the Program.3

Communication of Research Results

The public communication of research results supported by the Program has increased substantially in the past 5 years. This result is partially due to an increase in the number of active research projects and their relative maturity, but has been enhanced by several dedicated efforts on the part of the Program to encourage public awareness of active research in methane hydrate. Primary information outlets for methane hydrate research that have been promoted by the Program include (1) the Program Web site,4 including release of news and new research results from the international research community in the Fire in the Ice quarterly online newsletter;5 (2) participation in international conferences;6 (3) mandatory quarterly reporting for its supported research projects by project investigators (available under each project description on the Program Web site;)7 and (4) publication of peer-reviewed articles (e.g., Ruppel et al., 2008). Federal agency partners are also active in publishing their own research results in professional papers and official reports.8 The Program Web site, established by DOE within the NETL Web site is a significant source

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

of information about methane hydrate research and the Program, more specifically. Enhancements to the Web site, including a more navigable menu of topics and regular Web site updates have been made during the past several years.

The Web site also has an extensive bibliography of all publications for the Program, peer-reviewed and non-peer-reviewed.9 An analysis of this bibliography suggests that the use of peer-reviewed publications to communicate research results was emphasized by some project teams and agencies and was notably absent in others. Some of this imbalance in absolute numbers of peer-reviewed publications is related to project duration and size—projects with many organizations and research participants would likely produce a greater number of publications than other projects with single institutions with small numbers of researchers conducting research over shorter time periods. In addition, the committee was not able to assess whether researchers who published results after their Program funding had ended were obliged to provide this information to the Program. These issues notwithstanding, the committee noted a discrepancy between number of projects and their duration, and the low number of peer-reviewed publications by many of the projects; for example, of 13 projects funded in 2006, 4 projects had 5 or more peer-reviewed publications, whereas 8 other projects have not produced any. Although peer-reviewed publications are only one means to report research results, the committee supports greater emphasis on this means of communication as a mechanism to provide community support for and validation of the Program’s achievements.

COLLABORATIVE ENGAGEMENTS: INTERAGENCY AND INTERNATIONAL COORDINATION

The Program is dependent upon collaborative engagement and strong cooperation with other federal agencies that have active programs and direct interest in methane hydrate research. Some of these agencies, most

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

notably USGS, have had active methane hydrate programs for 3 decades. The Program’s interest in collaboration extends to the international community, as the number of countries with active methane hydrate research programs continues to grow. Both of these areas of collaboration are explored below.

Interagency Coordination

Seven federal agencies, including DOE with the mandated coordinating role, have taken a constructive approach toward the interagency collaboration specified in the congressional authorization language for the Program in both 2000 and 2005. Specifically, DOE was tasked to collaborate with the Department of Commerce (represented by the National Oceanic and Atmospheric Administration [NOAA]), the Department of Defense (represented by NRL), the Department of the Interior (including BLM, MMS, and the USGS), and the National Science Foundation (NSF) on basic and applied methane hydrate research and technological development. Interagency coordination occurs via four mechanisms: (1) cofunding of projects, (2) building upon agencies’ various areas of expertise, (3) direct funding from DOE to other agencies, and (4) using other agencies’ technological expertise to develop research and development programs. To facilitate collaboration, an interagency coordination committee and a technical coordination team were established.

A summary of each federal agency’s role in the coordination effort follows, with a focus on significant projects and funding sources. Agencies are listed below in alphabetical order without intent to prioritize. The “Interagency Five-Year Plan for Methane Hydrate Research and Development 2007-2011,”10 “An Interagency Roadmap for Methane Hydrate Research and Development,”11 the “Interagency Coordination on Methane Hydrates

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

R&D” brochure,12 and discussions with partner agency representatives were sources of information for this overview. All of the agency contacts with whom the committee interacted during the course of the study expressed very positive opinions of the value of interagency collaboration regarding methane hydrate research and the efforts of the Program to coordinate these collaborations. The committee notes the importance of revisiting and updating these interagency plans and roadmaps as methane hydrate research efforts proceed.

BLM

Specifically through its established agreements with the USGS and MMS, BLM’s engagement in interagency methane hydrate research focuses on examination of the environmental and land impacts of methane hydrate occurrences on the Alaska North Slope and quantification of methane hydrate resources. In anticipation of eventual commercial production of this resource, BLM’s efforts are oriented toward understanding the resource for future management purposes. BLM has provided the USGS with interpreted geophysical data, assisted with new interpretations of geophysical data, and provided supplemental funding to USGS for its assessment of the resources in the Alaska North Slope project. As work in the Arctic continues, BLM will also collaborate with USGS on safe drilling practices.

MMS

With responsibility to manage the U.S. mineral resources along the Outer Continental Shelf (OCS), MMS has been a key participant in the Gulf of Mexico JIP. In addition to understanding the size of the in-place resource, MMS uses information gained from methane hydrate research to evaluate the potential environmental impacts from the recovery of the resource offshore including the potential hazards of drilling through methane hydrate. The MMS has worked since 2003-2004 to develop and employ an

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

extensive new assessment model for the methane hydrate resource in the Gulf of Mexico and has been a participant in the Gulf of Mexico JIP (see also Chapters 2 and 3). An interim report was produced in February 2008 (Frye, 2008)13. The ultimate goal of this work is to provide estimates of technically and economically recoverable methane hydrate along the entire U.S. OCS. Together with NOAA and DOE, MMS has also provided support for the Center for Marine Resources and Environmental Technology Sea Floor Observatory in the Gulf of Mexico.

NOAA

NOAA focuses on the role of methane hydrate as it may relate to the global carbon cycle and climate change and its role in the ocean environment as a source of bioproducts. Recent projects include studies of chemosynthetic communities at methane seeps along the U.S. West Coast, East Coast, and Gulf of Mexico14 (e.g., Van Dover et al., 2003). NOAA is also one of several agencies (with DOE and MMS) that funds the Gulf of Mexico Seafloor Observatory, used to examine interactions between methane hydrate, biological communities, sediment, and the water column. In 2004, a workshop cosponsored by DOE, MMS, USGS, and the Woods Hole Oceanographic Institution was held to study the role of marine hydrate in global climate change, and to integrate climate scientists with the methane hydrate community (NOAA, 2005).

The majority of NOAA’s methane hydrate research is funded through NOAA’s Office of Exploration and Research (OER; formerly the Undersea Research Program), which has supported methane hydrate research for approximately 15 years. A small amount of additional funding comes through NOAA’s Arctic program. NOAA’s OER program leverages ship time and assets through a partnership with MMS, which contributes science funding.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

NRL

NRL is currently interested in the role of methane flux in climate change with an emphasis on the Arctic. The agency is leading an expedition in collaboration with the USGS and DOE to the Beaufort Sea in September 2009, where the plan is to investigate methane transport from the seafloor to the atmosphere. In the Gulf of Mexico JIP, NRL contributed to drill-site evaluations through seismic surveys, geochemical analyses of piston-core pore water, and deployment of heat-flow probes and interpretation of the measurements they register. Together with the USGS, NRL has also led the development of U.S.-international collaborations in methane hydrate research. In 2001, NRL’s methane hydrate research program and the University of Hawaii established an international consortium for methane hydrate research, which presently involves the United States, Canada, Chile, Germany, and Japan. NRL has also hosted three international workshops on methane hydrate research and development (Max et al., 2006). In conjunction with DOE, NRL has also initiated contacts with New Zealand to explore opportunities for collaborative research. To the extent possible, NRL also attempts to facilitate the participation of foreign researchers in U.S.-based methane hydrate research projects.

NSF

NSF supports the study of marine methane hydrate through the competitive grant process. The agency has supported methane hydrate studies off the coasts of Oregon and the Cascadia Margin through the Ocean Drilling Program (Leg 204) and the Integrated Ocean Drilling Program (Leg 311). Leg 311 was funded in conjunction with DOE and included scientific research from the USGS. NSF also funds microbiological and chemical research into methane hydrate through its Life in Extreme Environments project, and has funded research cruises to investigate geophysical indicators of gas hydrate.

USGS

The USGS, the largest and most long-standing agency contributor to methane hydrate development, has had an active research program since

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

1981. The agency’s focus is on methane hydrate as a potential energy source and as a geohazard for conventional oil and gas drilling. USGS scientists contribute to the interagency coordination effort through developing methane hydrate research plans, evaluating research proposals, reviewing ongoing projects supported by the Program, and leading workshops to identify key methane hydrate research topics. The agency has also completed an assessment of technically recoverable methane hydrate in association with BLM (Collett et al., 2008; see also Chapters 2 and 3), has participated in code-comparison studies, and has been involved over many years with methane hydrate resource characterization and production on the Alaska North Slope. Many results produced on the Program’s Alaska North Slope project build upon the experience of USGS scientists who had participated in the Mallik well project in Canada (see Chapter 2). The USGS also has a strong engagement with the Gulf of Mexico JIP in (1) support of drilling activities (including identification and evaluation of drill sites) and (2) providing data and interpretation to support the controlled-source electromagnetic survey (CSEM; project lead is Scripps Institution of Oceanography; Pierce, 2008; see also Chapters 2 and 3).15 In 2006, the USGS also led a large science team, working in collaboration with the government of India, to explore deep-sea methane hydrate resources of the Indian coast through scientific drilling, well logging, coring, and shipboard scientific analyses of recovered samples (National Gas Hydrate Program Expedition 01).16 The Program contributed support to this endeavor, as well.

International Collaboration

Many nations are currently pursuing methane hydrate research and development. These active interests range from countries such as Norway, with abundant natural energy resources, and not dependent on foreign sources of energy, to countries such as Japan, which is highly dependent upon

15

 Note that some DOE funds were provided to USGS specifically to conduct laboratory analyses on Scripps’ CSEM results.

16

 http://energy.usgs.gov/other/gashydrates/india.html.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

imports to supply its energy needs (Box 4.1). The Program’s participation in international projects has progressed during the last several years from a role primarily as an observer, to one that is more actively engaged in both provision of resources and scientific input to various international endeavors, including signing formal, collaborative agreements with the national program leaders in Japan, Korea, and India. An increasing number of opportunities for the Program to participate more directly in international collaboration have also been facilitated through interagency partners (notably the USGS and NRL; see above).

With specific direction to foster further international collaboration (e.g., P.L. 109-58, Section 968 of the Energy Policy Act of 2005), the Program has pursued collaborations with research groups in India (see above, under USGS), China, and South Korea. Program scientists participated in 2007 expeditions to the South China Sea, led by the Guangzhou Marine Geological Survey (GMGS), China Geological Survey, and the Ministry of Land and Resources of the People’s Republic of China, and to the Ulleung Basin, led by the Korea Gas Hydrate R&D Organization and the Korea Institute of Geoscience and Mineral Resources17 (see Figure 1.1 for locations of these offshore drilling expeditions). Efforts to engage in collaborative research with New Zealand and Chile have also been noted (see discussion on NRL, above).

Although the Program has participated in various international collaborations, including international partnerships established by other agencies such as the USGS and NRL, comprehensive scientific engagement with international partners has been challenging for the Program to develop. Although some aspects of these challenges may lie in the Program’s ability to allocate the needed resources to these efforts, the committee encourages high-level administrative support by DOE to the Program to complement inroads already being made by the Program to engage more fully with the international methane hydrate research community.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

BOX 4.1

International Efforts in Methane Hydrate Research

Research in various nations:


Canada

  • University-driven research since 1985 is focused mainly on the west coast and Arctic.

  • “National” program through the Geological Survey of Canada since 2001 (Council of Canadian Academies, 2008).

  • Since 1997, Mallik research site in the Mackenzie Delta—I, II, III and achievements in proof of concept for production. Mallik is considered the best-evaluated methane hydrate deposit in the world.

Chile

  • The Foundation for Scientific Development and Technology in Chile funds a national gas hydrate program, Underwater Gas Hydrate: A New Source of Energy for the 21st Century, in existence since 2001.

  • Pontifical Catholic University of ValparaIso, in collaboration with researchers from the United States, Europe, Japan, Germany, and Canada, conducts marine methane hydrate field surveys offshore Chile.

China

  • Government establishes Guangzhou Center for Gas Hydrate Research in 2004.

  • GMGS-1, the first gas hydrate drilling program, was completed in the South China Sea in 2007 for the Guangzhou Marine Geological Survey, the China Geological Survey, and the Ministry of Land and Resources of the People’s Republic of China.

  • GMGS-1 reveals thick sediment layers rich in gas hydrate just above the base of the methane hydrate stability zone at three of the eight sites drilled (see Figure 1.1 for drill-site location).

France

  • Methane hydrate hazards are studied at Institut Francais du Pétrole and work on methane hydrate engineering concerns are carried out at École Nationale Supérieure des Mines de St-Etienne.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Germany

  • Government launches national program, Gas Hydrates in the Geosystem, in 2000.

  • Germany participates in international expeditions to Hydrate Ridge, Gulf of Mexico, Black Sea, Congo Delta, and the Chilean Margin.

  • The German Gas Hydrate Organisation is initiated in 2007 by government and research organizations, and includes several private-sector companies as members.

  • The SUGAR (Submarine Gas Hydrate Reservoirs; http://www.ifm-geomar.de/index.php?id=3563&L=1) project was launched in 2008 and aims to produce natural gas from marine methane hydrate and to sequester carbon dioxide from power plants and other industrial sources as carbon dioxide hydrate in marine sediments.

  • The international Methane on the Move program is coordinated in Germany and includes participation by various German research institutes and universities as well as by the United States (USGS), Norway (Geological Survey of Norway), and Australia (Commonwealth Scientific and Industrial Research Organisation)

India

  • Directorate General of Hydrocarbons (DGH) coordinates the Indian National Gas Hydrate Program (NGHP), which is monitored by a Steering Committee chaired by the Secretary of Petroleum & Natural Gas.

  • NGHP Expedition 01, April-August 2006, with the collaboration of the DGH, the USGS, and the Consortium for Scientific Methane Hydrate Investigations cored and drilled 39 holes at 21 sites, penetrated more than 9,250 meters of section, found methane hydrate in Krishna-Godavari, Mahanadi and Andaman basins, and recovered 2,850 meters of core for analysis by international experts. A second NGHP drilling expedition is proposed for 2009-2010 to drill and log the most promising sand-dominated methane hydrate prospects

Ireland

  • Ireland has not formally quantified its offshore methane hydrate resource, but believes it to be of future significance. An informal assessment was performed in 2003.

  • By 2013, Ireland plans to identify and quantify its hydrate resources. It also plans to increase international participation.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Japan

  • Ministry of Economy, Trade, and Industry (METI: then Ministry of International Trade and Industry) establishes the Japan National Gas Hydrate Program in 1995, the first large-scale national gas hydrate program in the world.

  • Japan Oil Gas & Metals National Corp. (JOGMEC) develops a highly integrated gas hydrate R&D program of basic research and field studies.

  • Seismic surveys confirm extensive bottom seismic reflectors in the Nankai Trough.

  • The first 5 years of the Japan National Gas Hydrate Program culminated in 1999/2000 with the drilling of closely spaced core and geophysical logging holes in the Nankai Trough.

  • METI launches the Japan Methane Hydrate Exploitation Program in 2001 to evaluate the resource potential of deepwater methane hydrate in the Nankai Trough area. The program carried out multiwell drilling for 16 sites in 2004, cored and analyzed methane hydrate–bearing sands, and plans field testing for 2009 and development of commercial production technologies by 2016.

  • JOGMEC plays a leadership role in all three phases of the Mallik research program in Canada’s Mackenzie Delta.

Mexico

  • Mexican deepwater east coast is geologically similar to the U.S. Gulf of Mexico, with natural oil seeps.

  • A 2004 forum on methane hydrate was organized by various industry, government, and academic interests.

New Zealand

  • The New Zealand Foundation of Science, Research, and Technology funded small methane hydrate research projects from 1997 to at least 2004.

  • New Zealand (NZ) Gas Hydrates Steering Group is currently developing a strategy for the commercial development of NZ’s gas hydrate resources, and aims to make the business and science case in 2009-2011 for an offshore gas hydrate technology demonstration site at a sweet spot off the eastern coast of the North Island.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Norway

  • Gas hydrate hazard assessment, climate change implications, and CO2 capture and sequestration are the key drivers for hydrate research led by industry, government agencies, and academia at the Universities of Bergen and Tromsø and the Geotechnical Institute in Oslo.

  • Norway is collaborating with ConocoPhillips on CO2-CH4 exchange process and Alaska North Slope drilling.

Russia

  • Russia claims that 5 × 109 m3 (0.18 TCF) of gas have been produced from gas hydrate in the Messoyakha gas field since 1969 (see also discussion in Chapter 2).

  • The Laboratory for Gas Hydrate Geology at VNIIOkeangeologiya in 1980 published worldwide gas hydrate estimates, consistent with other widely cited estimates.

  • VNIIOkeangeologiya published field studies in the North Atlantic, Black Sea, Caspian Sea, and Okhotsk Sea off Sahkalin Island.

South Korea

  • Ministry of Commerce, Industry and Energy supports a strong national gas hydrate program, which includes government research organizations and industry partners.

  • Program aims to commercially produce gas from gas hydrate by 2015 and provide a 30-year supply of natural gas.

  • Korean Gas Hydrate Research and Development project began in 2000 in the East Sea and Ulleung Basin; two phases are now complete with two more planned up to 2014.

  • Project carries out first deep-drilling expedition in the Ulleung Basin in 2007.

  • New drilling is planned for 2010.

Taiwan

  • Since 2004, the Central Geological Survey has led ongoing gas hydrate research efforts and is working on the development of a national program.

  • Government launched a 4-year program in 2007 to study offshore gas hydrate occurrences. That year, total estimated reserves of 600 × 109 m3 of methane in methane hydrate were discovered off the coast of Taiwan.

  • Mature Drilling Proposal was presented in 2008 to be forwarded to the Integrated Ocean Drilling Program (IODP).

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

United Kingdom

  • Gas hydrates in nature are studied at the National Oceanographic Centre in Southampton and the University of Birmingham. Flow assurance problems are studied at Heriot-Watt University and the University of Coventry.

  • The European Union–managed HYDRATECH project is established to develop techniques for the quantification of methane hydrate in European continental margins, with a focus on developing seismic techniques that can be used to identify and quantify methane hydrates along the Norwegian margin.

International Program

IODP is an international program that drills research boreholes on the seafloor. IODP is the continuation of the Deep Sea Drilling Project and Ocean Drilling Project. These projects have provided much of the ground-truth information on methane hydrate on the continental margins of the world, both through missions focused specifically at methane hydrate research and by providing a global database on marine sediments and their properties.


SOURCES: Max et al. (2006); Council of Canadian Academies (2008); http://www.marine.ie/NR/rdonlyres/FABFA12E-6338-42B4-BCAO-86517O551F57/O/Oil_Gas.pdf.

EXTERNAL PROGRAM OVERSIGHT—THE METHANE HYDRATE ADVISORY COMMITTEE

The Methane Hydrate Advisory Committee (MHAC) was originally established by the Methane Hydrate Research and Development Act of 2000 to assist the Program with development of program priorities. The first MHAC interpreted its main role as a program advocate rather than a provider of scientific oversight (NRC, 2004). Based upon a recommendation from the NRC (2004) and reinforced by language in the reauthorization for the program in 2005 (Appendix A) the role of the MHAC was widened to

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

include scientific oversight for the Program, including assessing progress toward program goals and evaluating program balance. The Program has sought and encouraged a more proactive and independent role for the MHAC to help guide the Program. The MHAC has several meetings a year, organized by the Program management, in which it is briefed on the progress of research projects and other aspects of the Program’s activities. The current MHAC members interpret their primary role as one that provides advice to the Program regarding broad program goals over the longer term, rather than to provide detailed evaluations or advice on specific projects. As part of this broadly interpreted advisory role, members have reviewed the Interagency Roadmap for Methane Hydrate Research & Development18 and in 2007, in accordance with Section 968 of the Energy Policy Act of 2005, submitted a report to Congress that assessed the Program and its 5-Year Research Plan.19 The current MHAC is composed of 13 members representing academia, oceanographic institutions, state agencies, and industry.

CONCLUDING REMARKS

The Program strengthened its management in several areas during the past 5 years, particularly through initiation of its project peer review process, in balanced allocation of fairly modest resources to numerous research themes relevant to the Program’s goals (e.g., Appendix E), through transparent and timely electronic communications, through enhanced support of young researchers, and in efforts to coordinate interagency research endeavors and increase its international project engagement. Although the Program does issue calls for proposals based on research themes identified as critical, the research breadth and depth supported by the Program depend upon the proposals it receives from academic, national laboratory, industry, and interagency research partners and grantees; the Program seems to manage the projects it supports effectively. Recently introduced improvements

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

in the proposal assessment and merit review process are the use of both internal and external reviewer panels. However, the procedures are not applied, especially with regard to external review of the major field activities, with as much frequency as might benefit the increasing sophistication and resource investment in these projects. The committee views as very positive the total number of degrees granted and the range of projects completed by students and postgraduates under the Program’s auspices; these numbers indicate increasing interest in this growing research field.

The Program adds value from collaborations with other federal agencies on methane hydrate research, and is commended for leading interagency coordination. In addition to interagency work, the Program has expanded its level of activity in international programs with modest resources. These collaborations further national methane hydrate knowledge and provide access to crucial data and samples. A more deliberate approach that includes all levels of DOE management may be needed to better identify the basis for DOE’s international participation, including specific objectives and benefits.

REFERENCES

Allison, E. 2008. Department of Energy Methane Hydrate Program. Presentation to the Committee on Assessment of the Department of Energy’s Methane Hydrate Research and Development Program: Evaluating Methane Hydrates as a Future Energy Resource, Washington, DC, September 11.

Collett, T. S., W. F. Agena, M. W. Lee, M. V. Zyrianov, K. K. Bird, T. C. Charpentier, D. W. Houseknect, T. R. Klett, R. M. Pollastro, and C. J. Schenk. 2008. Assessment of gas hydrate resources on the North Slope, Alaska. U.S. Geological Survey Fact Sheet 2008-3073, 4 pp.

Council of Canadian Academies. 2008. Energy from Gas Hydrates: Assessing the Opportunities and Challenges for Canada. Ottawa, Ontario: Council of Canadian Academies. 206 pp.

DOE/NETL (Department of Energy/National Energy and Technology Laboratory). 2008. Written responses to questions from the Committee on Assessment of the Department of Energy’s Methane Hydrate Research and Development Program: Evaluating Methane Hydrates as a Future Energy Resource, Washington, DC. Public Access Records file of the National Research Council.

Frye, M. 2008. Gas Hydrate Resource Evaluation: U.S. Outer Continental Shelf. Presentation to the Committee on Assessment of the Department of Energy’s Methane Hydrate Research and Development Program: Evaluating Methane Hydrates as a Future Energy Resource, Golden, CO, December 3.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

Max, M. D., A. H. Johnson, and W. P. Dillon. 2006. Economic Geology of Natural Gas Hydrate. Dordrecht, The Netherlands: Springer. 341 pp.

NOAA (National Oceanic and Atmospheric Administration). 2005. The Role of Ocean Methane and Gas Hydrates in Global Climate Change. Report from a Workshop. Boulder, CO: NOAA Climate Monitoring and Diagnostics Laboratory. 74 pp. Available at: http://www.nurp.noaa. gov/Docs/-Role%20of%20ocean%20hydrates%20and%20climate-%20inal%20rpt-%20050505. pdf. Accessed October 19, 2009.

NRC (National Research Council). 2004. Charting the Future of Methane Hydrate Research in the United States. Washington, DC: The National Academies Press. 202 pp.

Pierce, B. 2008. USGS Natural Gas Hydrates Activities. Presentation to the Committee on Assessment of the Department of Energy’s Methane Hydrate Research and Development Program: Evaluating Methane Hydrates as a Future Energy Resource, Golden, CO, December 3.

Ruppel, C., R. Boswell, and E. Jones, eds. 2008. Thematic set on scientiic results of 2005 U.S. DOE-Chevron JIP Drilling for Methane Hydrates Objectives in the Gulf of Mexico. Marine and Petroleum Geology 25(9); doi: 10.1016/S0264-8172(09)00163-3.

Van Dover, C. L., P. Aharon, J. M. Bernhard, E. Caylord, M. Doerriesa, W. Flickinger, W. Gilhooly, S. K. Goffredi, K. E. Knick, S. A. Macko, S. Rapoport, E. C. Raulfs, C. Ruppel, J. L. Salerno, R. D. Seitz, B. K. Sen Gupta, T. Shank, M. Turnipseed, and R. Vrijenhoek. 2003. Blake Ridge methane seeps: Characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Research Part I: Oceanographic Research Papers 50:281-300.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×

This page intentionally left blank.

Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 109
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 110
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 111
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 112
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 113
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 114
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 115
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 116
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 117
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 118
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 119
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 120
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 121
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 122
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 123
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 124
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 125
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 126
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 127
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 128
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 129
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 130
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 131
Suggested Citation:"4 Coordinating Process for the Methane Hydrate Research and Development Program." National Research Council. 2010. Realizing the Energy Potential of Methane Hydrate for the United States. Washington, DC: The National Academies Press. doi: 10.17226/12831.
×
Page 132
Next: 5 Conclusions and Recommendations »
Realizing the Energy Potential of Methane Hydrate for the United States Get This Book
×
Buy Paperback | $58.00 Buy Ebook | $46.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Natural gas, composed mostly of methane, is the cleanest of all the fossil fuels, emitting 25-50% less carbon dioxide than either oil or coal for each unit of energy produced. In recent years, natural gas supplied approximately 20-25% of all energy consumed in the United States. Methane hydrate is a potentially enormous and as yet untapped source of methane. The Department of Energy's Methane Hydrate Research and Development Program has been tasked since 2000 to implement and coordinate a national methane hydrate research effort to stimulate the development of knowledge and technology necessary for commercial production of methane from methane hydrate in a safe and environmentally responsible way.

Realizing the Energy Potential of Methane Hydrate for the United States evaluates the program's research projects and management processes since its congressional re-authorization in 2005, and presents recommendations for its future research and development initiatives.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!