National Academies Press: OpenBook

Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters (2011)

Chapter: Appendix B: The Forensics Potential of Stable Isotope Analysis

« Previous: Appendix A: Radiocarbon Dating
Suggested Citation:"Appendix B: The Forensics Potential of Stable Isotope Analysis." National Research Council. 2011. Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters. Washington, DC: The National Academies Press. doi: 10.17226/13098.
×

Appendix B

The Forensics Potential of Stable Isotope Analysis

Typically, elements in nature behave the same chemically and biologically, independent of their isotopic identity. However, there are differences in a number of physical, chemical, and biological processes that produce small variations in the ratios of minor isotopes of elements to their major components. These differences are small, but with good analytical instrumentation they can be detected. One example is the process of evaporation and condensation. Water that has been evaporated from a large source, such as the ocean, tends to be deficient in the heavier isotopes of hydrogen and oxygen, relative to the original source. In the reverse process of condensation the heavier isotopes will condense more readily, yielding rain that is enriched in the heavier isotopes. This continual cycle of evaporation and condensation makes the ratio of 2H/1H and 18O/16O lower for water sources that are farther removed from the oceans (the major ultimate water source). The results are also a function of temperature (summer versus winter precipitation) and altitude. An extensive sampling of river waters in the United States was performed to provide a baseline for further studies (Kendall and Coplen, 2001). River water can come from a number of sources—groundwater as well as surface runoff—but even with this complexity there are some clear geographical trends in the resultant maps of the deviation of the 2H and 18O composition of the water when compared to mean ocean water, expressed as δ2H and δ18O in ‰ (parts per thousand). Negative values mean that the water is depleted in the heavier isotopes relative to ocean water. Since this process affects both the 2H/1H and 18O/16O ratios, a plot of δ2H versus δ18O gives a roughly straight line called the meteoric water line (MWL). Samples that fall below this line are usually from arid regions with low humidities. While different regions have different local linear relationships, the overall trend can be used to infer an average value of δ18O from a given δ2H value.

The isotopes of carbon are influenced by the biological processes that are used in the synthesis of the organic compounds by an organism. There are very different ratios of 13C/12C for the C3 and C4 photosynthetic pathways. A C3 plant will typically exhibit a δ13C around −25‰, when referenced against a

Suggested Citation:"Appendix B: The Forensics Potential of Stable Isotope Analysis." National Research Council. 2011. Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters. Washington, DC: The National Academies Press. doi: 10.17226/13098.
×

standard limestone, while a C4 plant will give δ13C values around −9‰. A δ13C of about −16‰ might represent either a mixture of the two sources or a plant that has grown in water (algae or a hydroponically grown plant). Animals will acquire the δ13C signature of their food sources. In the case of bacteria cultured in the laboratory, the signature of the growth medium will be reflected in that of the spores produced. Tests of this expectation for liquid growth medium bear this out (Kreuzer-Martin and Jarman, 2007).

In the case of δ2H and δ18O, cultured microorganisms record the isotopic signature of the water in the culture medium as well the nutrients in the medium. Since the anthrax attacks of 2001 there have been extensive studies testing these relationships using the nonpathogenic Bacillus subtilis. On average about 70 percent of the oxygen atoms in spores produced come from the water, while only about 30 percent of the hydrogen atoms come from the water (Kreuzer-Martin et al., 2003, 2005) Results show a strong positive correlation between the δ2H and δ18O content of the culture water and resultant spores for liquid cultures (Kreuzer-Martin and Jarman, 2007; Kreuzer-Martin et al., 2003). Samples grown on an agar medium are also subjected to isotopic fractionation from evaporation of water from the medium. It was found that the influence of evaporation was small for δ2H, but significant for δ18O (Kreuzer-Martin et al., 2005). Exchange of water vapor with the ambient atmosphere could also be important if the agar was prepared in one location and used in another, or anytime there is a different isotopic signature of the water used and that of the surrounding water vapor, as in the case of studies at Lawrence Livermore National Laboratory, where the source of the tap water is largely the Sierra Mountains and the ambient atmosphere can have a significant marine input (Kreuzer-Martin et al., 2005)

The forensic value of isotopic measurements on bacteria cultures depends on the individual circumstances. It has the potential to rule out certain combinations of water and growth media as well as to provide a distinguishing marker for discrimination between production batches of spores.

Suggested Citation:"Appendix B: The Forensics Potential of Stable Isotope Analysis." National Research Council. 2011. Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters. Washington, DC: The National Academies Press. doi: 10.17226/13098.
×
Page 183
Suggested Citation:"Appendix B: The Forensics Potential of Stable Isotope Analysis." National Research Council. 2011. Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters. Washington, DC: The National Academies Press. doi: 10.17226/13098.
×
Page 184
Next: Appendix C: Committee Evaluation of Statistical Analysis Report »
Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters Get This Book
×
Buy Paperback | $49.00 Buy Ebook | $39.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Less than a month after the September 11, 2001 attacks, letters containing spores of anthrax bacteria (Bacillus anthracis, or B. anthracis) were sent through the U.S. mail. Between October 4 and November 20, 2001, 22 individuals developed anthrax; 5 of the cases were fatal.

During its investigation of the anthrax mailings, the FBI worked with other federal agencies to coordinate and conduct scientific analyses of the anthrax letter spore powders, environmental samples, clinical samples, and samples collected from laboratories that might have been the source of the letter-associated spores. The agency relied on external experts, including some who had developed tests to differentiate among strains of B. anthracis. In 2008, seven years into the investigation, the FBI asked the National Research Council (NRC) of the National Academy of Sciences (NAS) to conduct an independent review of the scientific approaches used during the investigation of the 2001 B. anthracis mailings.

Review of the Scientific Approaches Used During the FBI's Investigation of the Anthrax Letters evaluates the scientific foundation for the techniques used by the FBI to determine whether these techniques met appropriate standards for scientific reliability and for use in forensic validation, and whether the FBI reached appropriate scientific conclusions from its use of these techniques. This report reviews and assesses scientific evidence considered in connection with the 2001 Bacillus anthracis mailings.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!