National Academies Press: OpenBook
« Previous: The Need to Improve STEM Learning
Suggested Citation:"Goals for U.S. STEM Education ." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×

GOALS FOR U.S. STEM EDUCATION

Questions about effectiveness can be addressed only in the context of the purposes or goals one wants to measure. Three broad and widely espoused goals for K-12 STEM education in the United States capture the breadth of the purposes for STEM education and reflect the types of intellectual capital needed for the nation’s growth and development in an increasingly science- and technology-driven world. These goals are to increase advanced training and careers in STEM fields, to expand the STEM-capable workforce and to increase scientific literacy among the general public.13

These three goals are not mutually exclusive. Moreover, because they are broad long-term goals for STEM education in the United States, numerous intermediate goals are encompassed in and central to all of them. Among others, the intermediate goals include learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners.14

GOAL 1: Expand the number of students who ultimately pursue advanced degrees and careers in STEM fields and broaden the participation of women and minorities in those fields.

During the past century, the STEM fields propelled the United States to the forefront of an innovation-based global economy. Indeed, more than half of the tremendous growth to per capita income in the 20th century can be accounted for by U.S. advances in science and technology.15 Several reports have drawn a direct line between the nation’s competitiveness and K-12 STEM education to support the next generation of scientists and innovators.16 Thus, one goal for STEM education focuses on the flow of students into STEM majors and careers.

image

An important dimension of this goal is to increase the participation of groups that are underrepresented in the sciences, especially blacks, Hispanics, and low-income students who “disproportionately fall out of the high-achieving group” in K-12 education.17 It is important to provide opportunities for highly talented students from these groups because “changing immigration patterns, the rapid improvement of education and economies in developing countries, and a heavy focus on talent development—and competition for the talented—in both developing and developed countries [have] drastically changed the playing field for American education.”18 Indeed, only 10 percent of all STEM doctorates are awarded to nonwhite, non-Asian students, although these groups now represent one-quarter of the U.S. population.19 The changing demographics in the United States will require increased

Suggested Citation:"Goals for U.S. STEM Education ." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×

participation by domestic nonwhite and non-Asian students in STEM. Efforts in K-12 to serve these groups will play a major role in addressing this crucial issue.

image

GOAL 2: Expand the STEM-capable workforce and broaden the participation of women and minorities in that workforce.

Although there is a clear need to increase the number of students who obtain advanced degrees in the STEM disciplines, it is equally important to the U.S. economy to increase the number of people who are prepared for STEM-related careers, such as being K-12 teachers in the STEM disciplines, medical assistants, nurses, and computer and green energy technicians.20 These careers generally require vocational certification with specialized STEM knowledge, an associate degree, or a baccalaureate degree with a major in a STEM field.21 The current demand for STEM-capable workers surpasses the supply of applicants who have trained for those careers. Moreover, 16 of the 20 occupations with the largest projected growth in the next decade are STEM related, but only 4 of them require an advanced degree.22 Given these unmet needs for a STEM-capable workforce, the nation’s economic future depends on preparing more K-12 students to enter these fields.

GOAL 3: Increase STEM literacy for all students, including those who do not pursue STEM-related careers or additional study in the STEM disciplines.

Personal and societal decisions in the 21st century increasingly require scientific and technological understanding. Whether about health, the environment, or technology, a certain level of scientific knowledge is vital to informed decision making. Thus, another goal of STEM education is to increase STEM literacy—defined as the knowledge and understanding of scientific and mathematical concepts and processes required for personal decision making, participation in civic and cultural affairs, and economic productivity for all students. 23 Targeting all students, not just those who will pursue postsecondary education or careers in STEM or STEM-related fields, will better prepare citizens to face the challenges of a science- and technology-driven society.

Schools and districts might not consciously adopt and work toward these three broad goals for STEM education. Instead, they may have their own, intermediate goals for success, such as increased enrollment in STEM courses, achievement test scores, high school graduation rates, college or career readiness, and matriculation into postsecondary institutions. Scientific research provides little evidence about how to accomplish the three broad goals. Research is even limited with respect to the intermediate goals, including goals related to accountability, when success is often measured at the school or district level.

Suggested Citation:"Goals for U.S. STEM Education ." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×
Page 4
Suggested Citation:"Goals for U.S. STEM Education ." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×
Page 5
Next: Three Types of Criteria to Identify Successful STEM Schools »
Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics Get This Book
×
Buy Paperback | $17.95 Buy Ebook | $14.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school.

Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields.

Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!