National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary." National Research Council. 2011. Global Change and Extreme Hydrology: Testing Conventional Wisdom. Washington, DC: The National Academies Press. doi: 10.17226/13211.
×

Summary

The National Research Council (NRC) Committee on Hydrologic Sciences (COHS) convened a workshop, titled Global Change and Extreme Hydrologic Events: Testing Conventional Wisdom, to promote dialogue across the science and water resource management communities with respect to climate change and its links to extreme hydrologic events, specifically floods and droughts. The workshop’s purpose was to probe the conventional wisdom that as the climate warms there will be an “acceleration” of the hydrologic cycle that will translate into potentially more frequent and severe floods and droughts. The issue is fundamental not only to the science of climate change but also to the capacity of the nation and, indeed, the world to adapt to changes in the Earth system in the 21st century. The workshop reviewed evidence supporting the conventional wisdom, assessed the degree to which the phenomenon—or at least its perception—is consistent across the atmospheric and hydrologic science realms, and assessed the effectiveness by which the scientific knowledge base is currently being translated into water policy and management. The workshop and deliberations of the host committee yielded several valuable findings as summarized here.

Climate theory dictates that core elements of the climate system, including precipitation, evapotranspiration, and reservoirs of atmospheric and soil moisture, should change as the climate warms, both in their means and extremes. The issue rests theoretically on the Clausius-Clapeyron relation, which describes how a warmer atmosphere can hold more water vapor, which in turn will support more vigorous precipitation and surface wetting, and more intense evaporation and evapotranspiration. Although the current generation of climate models effectively simulates this phenomenon’s atmospheric components, there is mixed observational evidence on the hydrologic response to these postulated changes, namely, floods and droughts. This disconnect between climate model simulations and observational evidence is due in part to the pathways that these atmospheric changes take once they encounter the complexity of land-surface systems. Well-mixed and rapid atmospheric processes interact with heterogeneous substrates and storage and release processes that are regulated by vastly different time constants. In addition, traditional assumptions on the statistical distribution of hydrologic events used to analyze hydrologic extremes are predicated on stationarity, yet the recent record shows that this assumption is not accurate. Furthermore, the nature of hydrologic extremes is convolved with land cover change,

Suggested Citation:"Summary." National Research Council. 2011. Global Change and Extreme Hydrology: Testing Conventional Wisdom. Washington, DC: The National Academies Press. doi: 10.17226/13211.
×

urbanization, and the operation of water management facilities such as dams, irrigation works, wells, and diversions. As a result, a coherent picture of the nature of likely future changes in hydrologic extremes has yet to evolve. A “grand challenge” thus faces the climate and hydrologic sciences communities—to understand the nature of ongoing changes in climate and hydrology and the apparent anomalies that exist in reconciling their extreme manifestations.

The climate science, water science, and engineering applications communities have yet to establish sufficient interaction to appreciate the value of information products generated by each community. For example, critical terms are used freely with different meanings and research agendas have not been unified even around the arguably well-defined question of climate extremes. From a hydrologic perspective this lack of interaction has not only limited fundamental research on climate extremes but also impeded the translation of new and potentially useful outputs from scientists into the planning and management realm. Risk to the nation’s infrastructure from water-related extremes is a function of not only the climate-change-induced hydrologic hazards but also the exposure of assets (and their value) to these extremes, as humans continue to settle and build in hydrologically dangerous settings such as floodplains and river deltas. Without substantially greater interchange of research findings and ideas across these three communities as well as further understanding of the various dimensions of the risk, the design of effective climate change adaptation strategies will remain unrealized.

Hydrologists stand in a useful position between climate change scientists and practitioners to tackle research that expressly links the character of climate variability and change to essential hydrologic process studies and metrics over many scales. With hydrologic processes as the intermediary, hydrologists could lay the groundwork for a more effective translation of climate research findings into applications. Although a full understanding of the hydroclimatology is yet to be secured, practical designs to cope with the possibility of elevated climate and hydrologic extremes based on historical time series and ad hoc margins of error are available for use and these techniques do rely on sufficient observational data. Basic monitoring of key elements of the hydrologic cycle provides an irreplaceable information resource that is particularly critical in a non-stationary environment. Addressing basic questions about the hydrology of extremes requires long and unbroken time series. Although the United States has an enviable record of hydrologic measurement, its ability to maintain this effort is jeopardized by an increasingly fragmented network of water quantity and quality monitoring. Furthermore, reliance on observations-based, a posteriori analysis—although practical in the short-term—may obscure the inherent value of research aimed at causality and improved forecasting.

Suggested Citation:"Summary." National Research Council. 2011. Global Change and Extreme Hydrology: Testing Conventional Wisdom. Washington, DC: The National Academies Press. doi: 10.17226/13211.
×
Page 1
Suggested Citation:"Summary." National Research Council. 2011. Global Change and Extreme Hydrology: Testing Conventional Wisdom. Washington, DC: The National Academies Press. doi: 10.17226/13211.
×
Page 2
Next: Introduction »
Global Change and Extreme Hydrology: Testing Conventional Wisdom Get This Book
×
Buy Paperback | $27.00 Buy Ebook | $21.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Climate theory dictates that core elements of the climate system, including precipitation, evapotranspiration, and reservoirs of atmospheric and soil moisture, should change as the climate warms, both in their means and extremes. A major challenge that faces the climate and hydrologic science communities is understanding the nature of these ongoing changes in climate and hydrology and the apparent anomalies that exist in reconciling their extreme manifestations.

The National Research Council (NRC) Committee on Hydrologic Science (COHS) held a workshop on January 5-6, 2010, that examined how climate warming translates into hydrologic extremes like floods and droughts. The workshop brought together three groups of experts. The first two groups consisted of atmospheric scientists and hydrologists focused on the scientific underpinnings and empirical evidence linking climate variability to hydrologic extremes. The third group consisted of water managers and decision-makers charged with the design and operation of water systems that in the future must be made resilient in light of a changing climate and an environment of hydrologic extremes.

Global Change and Extreme Hydrology summarizes the proceedings of this workshop. This report presents an overview of the current state of the science in terms of climate change and extreme hydrologic events. It examines the "conventional wisdom" that climate change will "accelerate" the hydrologic cycle, fuel more evaporation, and generate more precipitation, based on an increased capacity of a warmer atmosphere to hold more water vapor. The report also includes descriptions of the changes in frequency and severity of extremes, the ability (or inability) to model these changes, and the problem of communicating the best science to water resources practitioners in useful forums.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!