National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×

Summary

U.S.-supported scientific ocean drilling has a long and illustrious history—from its earliest roles in the confirmation of plate tectonics to more recent contributions in paleoclimate and global sea level reconstructions. As the current phase of scientific ocean drilling draws to a close in 2013, the National Science Foundation (NSF) requested that an ad hoc National Research Council committee review the scientific accomplishments of U.S.-supported scientific ocean drilling over the past four decades. The committee evaluated how the programs (Deep Sea Drilling Project [DSDP], 1968-1983, Ocean Drilling Program [ODP], 1984-2003, and Integrated Ocean Drilling Program [IODP], 2003-2013) have shaped understanding of Earth systems and Earth history and assessed the role of scientific ocean drilling in enabling new fields of inquiry. The committee also assessed the potential for transformative discoveries1 resulting from implementation of the science plan for the next proposed phase of scientific ocean drilling, which is scheduled to run from 2013 to 2023 if funding is approved by NSF.

SCIENTIFIC ACCOMPLISHMENTS

The committee found that the U.S.-supported scientific ocean drilling programs (DSDP, ODP, and IODP) have been very successful, contributing significantly to a broad range of scientific accomplishments in a number of Earth science disciplines. In addition, the programs’ technological innovations have strongly influenced these scientific advances. To a large extent, the success of IODP and prior scientific ocean drilling programs has been a result of strong international collaboration. Following the broad themes in the IODP Initial Science Plan (2001), the committee identified three general areas in which there have been significant accomplishments: solid Earth cycles; fluids, flow, and life in the subseafloor; and Earth’s climate history. Several of the scientific achievements that could not have been accomplished without scientific ocean drilling are listed in Box S.1.

Scientific ocean drilling fundamentally advanced the fields of plate tectonics, paleomagnetism, geomagnetism, and geochronology. It has been critical to understanding connections between subseafloor fluid flow, microbial communities, and massive sulfide deposits. Technology pioneered by scientific ocean drilling enabled the recovery of intact gas hydrates, strongly influencing the understanding of gas hydrate distribution for economic and geohazard objectives. DSDP and ODP were integral to the study of continental breakup, in conjunction with onshore and offshore geophysical and geologic exploration and geodynamic modeling. Scientific ocean drilling has contributed to increased understanding of lithospheric formation and structure, and to connecting the occurrence of submarine large igneous provinces with volcanic eruption-related climate change. It also played a central role in deciphering the relationship between atmospheric carbon dioxide and global surface temperatures, glacial-interglacial cycles, global sea level change, ocean anoxia events, and the discovery of large climate excursions and abrupt climate change. In addition, scientific ocean drilling lent credence to the meteorite impact hypothesis as a paradigm for global extinction processes, a mainstay of modern Earth science education.

Since their earliest days, scientific ocean drilling programs have actively engaged in educating graduate students

________________

1NSF’s definition of transformative research is: “Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.” See http://www.nsf.gov/about/transformative_research/definition.jsp; accessed August 2011.

Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×

Box S.1
Scientific Accomplishments That
Could Not Have Been Achieved Without
Scientific Ocean Drilling

Solid Earth Cycles

•  Verification of the seafloor spreading hypothesis and plate tectonic theory

•  Development of an accurate geological time scale for the past 150 myr

•  Confirmation that the structure of oceanic lithosphere is related to spreading rate

•  Exploration of the emplacement history of submarine large igneous provinces

•  Contribution to a new paradigm for continental breakup due to studies of rifted margins

•  Definition of subduction zone inputs and confirmation of subduction erosion

Fluids, Flow, and Life in the Subseafloor

•  In situ investigation of fluid flow processes, per­meability, and porosity in ocean sediments and basement rocks

•  Characterization of the sediment- and rock­hosted subseafloor microbial biosphere

•  Study of subseafloor water-rock interactions and the formation of seafloor massive sulfide deposits in active hydrothermal systems

•  Examination of the distribution and dynamics of gas hydrates in ocean sediments

Earth’s Climate History

•  Reconstruction of global climate history for the past 65 myr, based on ocean sediments

•  Development and refinement of the Astronomical Geomagnetic Polarity Timescale

•  Documentation of the pervasive nature of orbital forcing on global climate variability

•  Recognition of past geological analogs (for example, the Paleocene-Eocene Thermal Maximum) for Earth’s response to increases in atmo­spheric carbon dioxide

•  Discovery of the history of polar ice sheet initia­tion, growth and variability, and their influence on fluctuations in global sea level

in the Earth sciences. During ODP, informal activities aimed at undergraduates, K-12, and community outreach were initiated. More structured and extensive programs during IODP included a vigorous education initiative aimed at K-12, undergraduate, graduate, and informal science educators. The education, outreach, and capacity-building programs are of significant value, but evaluations of each of them would enable a better understanding of the impacts of these activities on different groups and would demonstrate the broader impacts of scientific ocean drilling.

RECOMMENDATION: Formal evaluation of education, outreach, and capacity-building activities should be implemented to demonstrate the broader impacts of scientific ocean drilling.

ASSESSMENT OF THE 2013-2023 SCIENCE PLAN

The committee also assessed the potential for future transformative scientific discoveries envisioned in Illuminating Earth’s Past, Present, and Future: The International Ocean Discovery Program Science Plan for 2013-2023, which was released in June 2011 by Integrated Ocean Drilling Program Management International. The science plan is divided into four research themes: climate and ocean change, biosphere frontiers, Earth connections (deep Earth processes), and Earth in motion (direct time series observations on human scales). There are 14 scientific challenges within these four themes, which the committee evaluated individually for potential for transformative discovery, synergy between science plan challenges and themes, and linkages to NSF-supported and other research programs. Each of the four themes within the science plan identifies compelling challenges with potential for transformative science that can only be addressed by scientific ocean drilling. Some challenges within these themes appear to have greater potential for transformative science than others.

The committee was particularly positive about the potential for transformative discoveries resulting from subseafloor biosphere exploration and for continuing paleoclimate investigations to provide constraints on projected climate change. It also noted the need for data in under-represented regions such as high latitudes and for deeper sampling into intact ocean crust. The themes and challenges identified in the science plan were well-justified and timely, although there was a lack of guidance as to which challenges were most important.

RECOMMENDATION: The scientific ocean drilling community should establish a mechanism to prioritize the challenges outlined in the science plan in a manner that complements the existing peer-review process.

The scientific ocean drilling programs have a history of making excellent use of legacy samples and data that have helped to quickly advance new areas of research. Using legacy data and samples to their maximum capabilities will continue to increase the scientific value of the scientific ocean drilling programs. Expanded use of legacy materials could help, for example, with prioritization of drilling objectives in the next phase of scientific ocean drilling.

There are several natural areas of synergy between the challenges and themes, and more detailed examination of potential integration would be valuable in lending strength to the overall program. Integration of scientific ocean drilling

Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×

objectives is currently done in an ad hoc fashion during the expedition planning process.

RECOMMENDATION: From the earliest stages of proposal development and evaluation, possibilities for increasing program efficiency through integration of multiple objectives into single expeditions should be considered by proponents and panels.

Transformative discoveries are critically dependent on technological breakthroughs, and it is essential for future scientific ocean drilling programs to continue to advance a technological agenda. This is an area where prior programs have demonstrated great strength.

RECOMMENDATION: Pathways for innovations in technology should be encouraged. In addition, setting aside some resources specifically to promote technological research and development could increase the potential for transformative science.

Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×

This page intentionally left blank.

Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×
Page 1
Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×
Page 2
Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×
Page 3
Suggested Citation:"Summary." National Research Council. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: The National Academies Press. doi: 10.17226/13232.
×
Page 4
Next: 1 Introduction to U.S. Scientific Ocean Drilling »
Scientific Ocean Drilling: Accomplishments and Challenges Get This Book
×
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Through direct exploration of the subseafloor, U.S.-supported scientific ocean drilling programs have significantly contributed to a broad range of scientific accomplishments in Earth science disciplines, shaping understanding of Earth systems and enabling new fields of inquiry. Scientific Ocean Drilling: Accomplishments and Challenges reviews the scientific accomplishments of U.S.-supported scientific ocean drilling over the past four decades. The book evaluates how the programs (Deep Sea Drilling Project [DSDP], 1968-1983, Ocean Drilling Program [ODP], 1984-2003, and Integrated Ocean Drilling Program [IODP], 2003-2013) have shaped understanding of Earth systems and Earth history and assessed the role of scientific ocean drilling in enabling new fields of inquiry. This book also assesses the potential for transformative discoveries for the next proposed phase of scientific ocean drilling, which is scheduled to run from 2013 to 2023.

The programs' technological innovations have played a strong role in these accomplishments. The science plan for the proposed 2013-2023 program presents a strong case for the continuation of scientific ocean drilling. Each of the plan's four themes identifies compelling challenges with potential for transformative science that could only be addressed through scientific ocean drilling, although some challenges appear to have greater potential than others. Prioritizing science plan challenges and integrating multiple objectives into single expeditions would help use resources more effectively, while encouraging technological innovations would continue to increase the potential for groundbreaking science.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!