National Academies Press: OpenBook

Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies (2012)

Chapter: Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies

« Previous: Appendix B: Current and Prospective Missions to Icy Bodies of Astrobiological Interest
Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×

C

Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies

The binary decision-making framework outlined in Chapter 2 provides an alternative to probabilistic estimates of contamination constrained by the uncertain and/or unknowable factors included in the Coleman-Sagan equation. The decision-making framework can be visualized in a number of different ways. The committee’s preferred depiction (see Figure 2.2) may not be the one most familiar to all relevant scientific and technical communities. Indeed, engineers tend to visualize decision networks as event sequence diagrams.

The event sequence diagram presented in Figure C.1 is included to provide mission planners with the functional equivalent of the decision-making framework in Chapter 2, but in a more familiar format.

Figure C.1 indicates the process to be applied for the two determinations necessary, the first of which is related to potential habitability of the icy body target (that is, its “fragility” against bio-propagation), and the second related to the type of mission proposed so as to address the potential for “initiating” a bio-contamination of a potentially habitable icy body. This bimodal determination process (that is, the determination of the fragility of the process, design, target) and the determination of the potential for damage initiation are consistent with the general process of risk determination used across a variety of applications.1,2

The left-hand portion of Figure C.1 represents the decision of whether the planetary body of interest should be considered to be potentially habitable. Four criteria are used to judge the habitability of the planetary body and specifically question whether the planetary body is known to possess liquid water, the key elements considered essential for terrestrial life, environments known to be compatible with known extreme conditions of terrestrial life, and accessible sources of chemical energy. If the planetary body does not possess one or more of these attributes, then it is judged as uninhabitable by terrestrial life and, although assembly of spacecraft intended for these bodies should be performed in a clean room, no bioload reduction is required for planetary protection. If the planetary body does possess these four essential attributes for habitability by terrestrial life, or if this information remains undetermined at the time of the mission, then the planetary body is deemed to be potentially habitable.

The right-hand portion of Figure C.1 considers the nature of the mission itself (e.g., flyby, orbiter, lander) as relevant to determining planetary protection requirements for missions to potentially habitable planetary bodies. Consideration must be given to whether the mission employs a lander and/or an orbiter and whether a flyby attempt will be made of the given planetary body. If a lander is employed, the likelihood of the spacecraft interacting with a habitable region must be evaluated, and for all missions the probability of the lander crashing or otherwise interacting with a region where surface-subsurface transport is possible must be assessed. If this likelihood is less than 10–4 over a period of 103 years, then no bio-load reduction measures are required for planetary protection

Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×

beyond clean-room assembly. If the probability for interacting with habitable regions exceeds 10–4 over a period of 103 years, then specific consideration must be given to whether the lack of complex and heterogeneous organic nutrients in aqueous environments of icy moons would preclude the propagation of any microbes that may have survived extreme irradiation and desiccation environments in transport. If the lack of nutrients indeed precludes propagation, then clean-room assembly is deemed sufficient; however, if the potential for propagation remains, then at least minimal planetary protection methods are required, and the final-decision question then considers whether heat treatment at 60°C for 5 hours would fail to eliminate all physiological groups that could potentially propagate on the target body. If so, then stringent planetary protection methods are required for the mission to proceed, or else the mission must either be reformulated or cancelled.

REFERENCES

1. J. Fragola, B. Putney, and J. Minarck III, An Evaluation of Containment Assurance Risk for Earth Entry Vehicle and Space Shuttle Sample Return, Earth Entry Vehicle Office, NASA Langley Research Center Hampton, Va., September 30, 2002.

2. J. Fragola, B. Putney, and J. Minarck III, Mars Sample Return Probabilistic Risk Assessment Final Report: An Evaluation of Containment Assurance Risk for Earth Entry Vehicle and Space Shuttle Sample Return, Contract No. 123-4119, NASA Langley Research Center, Hampton, Va.

Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×

image

FIGURE C.1 Event sequence diagram for the determination of planetary protection measures for missions to icy bodies.

Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×

image

Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×
Page 70
Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×
Page 71
Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×
Page 72
Suggested Citation:"Appendix C: Event Sequence Diagram for the Determination of Planetary Protection Measures for Missions to Icy Bodies." National Research Council. 2012. Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies. Washington, DC: The National Academies Press. doi: 10.17226/13401.
×
Page 73
Next: Appendix D: Committee and Staff Biographical Information »
Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies Get This Book
×
Buy Paperback | $43.00 Buy Ebook | $34.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

NASA's exploration of planets and satellites during the past 50 years has led to the discovery of traces of water ice throughout the solar system and prospects for large liquid water reservoirs beneath the frozen ICE shells of multiple satellites of the giant planets of the outer solar system. During the coming decades, NASA and other space agencies will send flybys, orbiters, subsurface probes, and, possibly, landers to these distant worlds in order to explore their geologic and chemical context. Because of their potential to harbor alien life, NASA will select missions that target the most habitable outer solar system objects. This strategy poses formidable challenges for mission planners who must balance the opportunity for exploration with the risk of contamination by Earth's microbes, which could confuse the interpretation of data obtained from these objects.

The 2000 NRC report Preventing the Forward Contamination of Europa provided a criterion that was adopted with prior recommendations from the Committee on Space Research of the International Council for Science. This current NRC report revisits and extends the findings and recommendations of the 2000 Europa report in light of recent advances in planetary and life sciences and, among other tasks, assesses the risk of contamination of icy bodies in the solar system.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!