National Academies Press: OpenBook

Reusable Booster System: Review and Assessment (2012)

Chapter: 1 Background

« Previous: Summary
Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×

1

Background

On June 15, 2011, the Air Force Space Command (AFSPC) established a new vision, mission, and goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory (AFRL), the Space and Missile Systems Center (SMC), and 14th and 24th Air Forces, AFSPC identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system has been proposed as an approach to realizing this lower cost.

AFSPC requested that the Aeronautics and Space Engineering Board of the National Research Council (NRC) conduct an independent review and assessment of the reusable booster system (RBS) concept before decisions are made on whether to continue RBS-related activities in the AFRL research portfolio and whether to initiate a more extensive RBS development program.

This chapter briefly describes the national security payload spacelift requirement now delivered by Evolved Expendable Launch Vehicles (EELVs), introduces the RBS program, and discusses the potential for emerging new-entrant candidates to enable the launch of EELV-class payloads. In this report, RBS is taken to mean both the reusable first stage and the expendable upper stages of the baseline reusable launcher concept. This chapter also summarizes the Air Force request for an NRC evaluation of the RBS program and the NRC’s actions to support that request. More details on these items and further descriptive material are provided in Chapter 2.

1.1 SPACELIFT REQUIREMENTS AND OBJECTIVES FOR NATIONAL SECURITY PAYLOADS

Assured access to space is an overarching requirement for national security payloads, and it is Air Force policy to provide launches for them. The present manifest1 for these payloads, which is illustrated in Table 1.1, comprises five different functional requirements, a variety of final orbits, and an average annual launch rate of eight per year. So far, EELVs have provided launches for these payloads with extremely high reliability. However, current plans call for the EELVs to be phased out in 2030 and it is now an objective2 of the Air Force to achieve dramatically

_____________

1 Air Force Space and Missile Systems Center, “Reusable Booster System Costing, SMC Developmental Planning,” presentation to the Committee for the Reusable Booster System: Review and Assessment, February 15, 2012. Approved for Public Release.

2 Air Force Space Command, “AFSPC Operational Requirements for Launch,” presentation to the Committee for the Reusable Booster System: Review and Assessment, March 28, 2012. Distribution Statement: No Restrictions.

Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×

TABLE 1.1 Satellite Launch Characteristics Showing Satellite Type and Associated Orbits, Launchers, and Effective Average Launch Rates

Satellite Type Orbit Requirement EELV Used Average Annual Rate
Communications GTO Atlas V 531 0.64
Meteorological GTO
SSO
Atlas V 501
Delta IV M
0.25
0.32
Navigation MEO Atlas V 401 1.96
Missile warning GTO SSO Atlas V 411
Delta IV M
0.31
2.12
Intelligence LEO (high inclination) Delta IV M+(4,2) 0.20
LEO (high inclination) Delta IV H 0.29
LEO (high inclination) Atlas V 541 0.20
HEO Atlas V 551 0.29
Polar Delta IV H 0.29
Polar Atlas V 401 0.16
GTO Delta IV M+(5,4) 0.50
GEO Delta IV H 0.50
Average annual launch rate 8.00

NOTE: EELV, Evolved Expendable Launch Vehicle; GEO, geosynchronous Earth orbit; GTO, geosynchronous transfer orbit; HEO, high Earth orbit; LEO, low Earth orbit; MEO, medium Earth orbit; SSO, Sun-synchronous orbit.

SOURCE: Air Force Space and Missile Systems Center, SMC Developmental Planning, “Reusable Booster System Costing,” presentation to the committee, February 15, 2012. Approved for Public Release.

lower launch costs, while maintaining the reliability achieved by EELVs, considering the average launch rate of only approximately eight per year distributed among the missions shown in Table 1.1.

1.2 REUSABLE BOOSTER SYSTEM APPROACH AND POTENTIAL BENEFITS

The proposed RBS must accommodate the reliable and cost-effective delivery of the manifest in Table 1.1 via appropriate vehicle designs and ground infrastructure/operations capabilities. After analyses3 by the Air Force and the Aerospace Corporation, the RBS was proposed as an approach to meet overall launch requirements. The concept of operations (CONOPS) for the RBS is shown in Figure 1.1.

An essential feature of the RBS is that it uses reusable first stages and expendable upper stages. For reasons of operational efficiency and performance, the first stage would employ an oxygen-rich, staged-combustion (ORSC) cycle engine with liquid oxygen and kerosene-type propellants. The baseline expendable upper stage uses liquid hydrogen and oxygen propellants. A solid motor is added as a final stage to the expendable upper stage for the most energetic missions. As will be explained in Chapter 2, the staging velocity, where the first stage and second stage separate, is selected to minimize overall costs and maximize operational efficiency. This is unlike the usual selection criterion for fully expendable launch vehicles, which is to maximize delivered payload and is a critical characteristic of the RBS concept.

1.3 POTENTIAL EXPENDABLE NEW ENTRANTS

No alternatives to RBS-based launch approaches were presented to the committee; however, credible opportunities may soon be available that meet or exceed the Air Force goals for launches of EELV-class payloads. The U.S.

_____________

3 K.R. Hampsten and R.A. Hickman, Next Generation Air Force Spacelift, AIAA 2010-8723, paper presented at the AIAA Space 2012 Conference and Exposition, Anaheim, Calif., August 30-September 2, 2012. This meeting was unrestricted and open to the public.

Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×

image

FIGURE 1.1 Diagram of flight path of reusable booster with an expendable upper stage. Following separation, the first stage is rotated approximately 180 degrees as part of the rocketback return-to-launch-site maneuver. SOURCE: Air Force Research Laboratory, “AFRL Portfolio: Responsive and Reusable Boost System (RBS),” presentation to the committee, February 17, 2012. Distribution A: Approved for Public Release.

Government Accountability Office (GAO)4 recently released a study of the EELV situation for the U.S. Congress. The study said that “domestic commercial launch providers are emerging that may satisfy some of [the Department of Defense’s] EELV-class launch vehicle needs. According to DOD officials, the newer providers have not yet demonstrated adequate reliability to provide launches for critical satellites, but may be poised in the future to compete with the current sole-source EELV provider.” The GAO report also indicated that DOD and the National Reconnaissance Office plan to spend about $3 billion per year for EELV launches over the 2013 to 2017 time frame.

The Falcon 9 made by SpaceX is one of the more mature options as it has successfully flown three times, most recently delivering cargo to the International Space Station (ISS). In addition, SpaceX has entered more than 20 contracts to launch commercial satellites (COMSATs) and has a contract with the National Aeronautics and Space Administration (NASA) for more ISS cargo delivery missions. A brief review indicated that implementation of higher performance in-space propulsion or disaggregation of payloads would enable the Falcon 9 to deliver all or most of the national security payloads shown in Table 1.1. The reliability of the vehicle and its associated launch costs for Air Force payloads are not established, although it is noted that SpaceX has entered a fixed-price contract with NASA for 12 cargo missions to the ISS for $1.6 billion.5 The 2011 price for a Falcon 9 launch of a commercial COMSAT is $54 million.6 Perhaps more important, commercial launchers (1) could eliminate or greatly mitigate requirements for a new Air Force launcher development; (2) might be implemented much sooner than RBS; and (3) would have a large, intensively competitive customer base.

_____________

4 U.S. Government Accountability Office, Evolved Expendable Launch Vehicles, GAO-11-641, U.S. GAO, Washington, D.C., September 2011, p. 9.

5The Economist, “Keep on truckin,” Science and Technology, pp. 77-78, May 15, 2012.

6 See “Space Exploration Technologies Corporation, “Falcon 9 Overview,” available at http://www.spacex.com/falcon9.php.

Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×

1.4 NRC EVALUATION OF THE REUSABLE BOOSTER SYSTEM

Given the potential benefits offered by the RBS and by alternative launch approaches, the Air Force asked the NRC to conduct an independent review and assessment of the RBS concept. As defined in the statement of task (provided in Appendix A), the purpose of this study was to review and assess the SMC/AFRL RBS concept for the U.S. Air Force. The items to be addressed include these:

• Criteria and assumptions used in the formulation of current RBS plans;

• Methodologies used in the current cost estimates for RBS;

• Modeling methodology used to frame the business case for an RBS capability, including

— The data used in the analysis

— The models’ robustness if new data become available;

• The impact of unclassified government data that had not previously been available;

• The technical maturity of elements critical to RBS implementation; and

• The ability of current technology development plans to meet technical readiness milestones.

Accordingly, the NRC formed the Committee for the Reusable Booster System: Review and Assessment, which consists of experts independent of current RBS activities but with experience in the areas of launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. Brief biographies of the committee members are provided in Appendix B.

The committee held meetings in February, March, and May of 2012. Air Force perspectives on issues associated with the RBS concepts were provided by representatives of AFSPC, SMC, and AFRL. Costing analyses supporting the RBS concept were provided by the Aerospace Corporation. NASA perspectives on space launch were solicited, and presentations were provided by representatives of the Marshall Space Flight Center and the Kennedy Space Center. Input from industry was solicited, and presentations were received from four commercial aerospace companies involved with launch systems, two propulsion system providers, and one small business. A listing of all presenters is provided in Appendix C.

Using the materials provided, committee analyses, other available open sources of information, and its own experience and expertise, the committee developed the findings, conclusions, and recommendations contained in this report. These findings, conclusions, and recommendations represent a consensus view of the committee members regarding the RBS concept, and the bulk of this report aims to support the committee’s view.

1.5 REPORT ORGANIZATION

The RBS system, the launch approach, and the basis for the RBS business case are described in Chapter 2. Chapters 3 and 4 provide evaluations of the technical and economic aspects, respectively, of the RBS as presented to the committee. The potential implementation issues surrounding the RBS program are given in Chapter 5, followed by findings and recommendations in Chapter 6. Appendix E provides details on previous U.S. reusable vehicle developments and Appendix F provides committee thoughts on operability issues associated with the design of RBS boosters.

Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×
Page 6
Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×
Page 7
Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×
Page 8
Suggested Citation:"1 Background." National Research Council. 2012. Reusable Booster System: Review and Assessment. Washington, DC: The National Academies Press. doi: 10.17226/13534.
×
Page 9
Next: 2 Air Force EELV-Class Launch Requirements and Approaches »
Reusable Booster System: Review and Assessment Get This Book
×
Buy Paperback | $42.00 Buy Ebook | $33.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge.

The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation.

The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!