National Academies Press: OpenBook

Next Generation Science Standards: For States, By States (2013)

Chapter: APPENDIX A: Conceptual Shifts in the Next Generation Science Standards

« Previous: VOLUME 2: APPENDIXES
Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×

APPENDIX A
CONCEPTUAL SHIFTS IN THE NEXT GENERATION SCIENCE STANDARDS

The Next Generation Science Standards (NGSS) provide an important opportunity to improve not only science education but also student achievement. Based on A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (Framework), the NGSS are intended to reflect a new vision for American science education. The following conceptual shifts in the NGSS demonstrate what is new and different about the NGSS:

1. K–12 science education should reflect the interconnected nature of science as it is practiced and experienced in the real world.

The framework is designed to help realize a vision for education in the sciences and engineering in which students, over multiple years of school, actively engage in scientific and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields. (NRC, 2012, p. 12)

The vision represented in the Framework is new in that students must be engaged at the nexus of the three dimensions:

  • Science and Engineering Practices,
  • Crosscutting Concepts, and
  • Disciplinary Core Ideas.

Currently, most state and district standards express these dimensions as separate entities, leading to their separation in both instruction and assessment. Given the importance of science and engineering in the 21st century, students require a sense of contextual understanding with regard to scientific knowledge, how it is acquired and applied, and how science is connected through a series of concepts that help further our understanding of the world around us. Student performance expectations have to include a student’s ability to apply a practice to content knowledge. Performance expectations thereby focus on understanding and application as opposed to memorization of facts devoid of context. The Framework goes on to emphasize that

learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K–12 science education. (NRC, 2012, p. 11)

2. The Next Generation Science Standards are student performance expectations—NOT curriculum.

Even though within each performance expectation Science and Engineering Practices (SEPs) are partnered with a particular Disciplinary Core Idea (DCI) and Crosscutting Concept (CC) in the NGSS, these intersections do not predetermine how the three are linked in curriculum, units, or lessons. Performance expectations simply clarify the expectations of what students will know and be able to do by the end of the grade or grade band. Additional work will be needed to create coherent instructional programs that help students achieve these standards.

As stated previously, past science standards at both the state and district levels have treated the three dimensions of science as separate and distinct entities, leading to preferential treatment in assessment or instruction. It is essential to understand that the emphasis placed on a particular Science and Engineering Practice or Crosscutting Concept in a performance expectation is not intended to limit instruction, but to make clear the intent of the assessments.

An example of this is illustrated in two performance expectations in high school physical sciences that use the practice of modeling. Models are basically used for three reasons: (1) to represent or describe, (2) to collect data, or (3) to predict. The first use is typical in schools because models and representations are usually synonymous. However, the use of models to collect data or to predict phenomena is new. For example:

Construct models to explain changes in nuclear energies during the processes of fission, fusion, and radioactive decay and the nuclear interactions that determine nuclear stability.

Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×

and

Use system models (computer or drawings) to construct molecular-level explanations to predict the behavior of systems where a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present.

In the first performance expectation, models are used with nuclear processes to explain changes. A scientific explanation requires evidence to support the explanation, so students will be called on to construct a model for the purpose of gathering evidence to explain these changes. Additionally, they will be required to use models to both explain and predict the behavior of systems in equilibrium. Again, the models will have to be used to collect data, but they will be further validated in their ability to predict the state of a system. In both cases, students will need a deep understanding of the content, as well as proficiency in the ability to construct and use models for various applications. The practice of modeling will need to be taught throughout the year—and indeed throughout the entire K–12 experience—as opposed to during one two-week unit of instruction.

The goal of the NGSS is to be clear about which practice students are responsible for in terms of assessment, but these practices and crosscutting concepts should occur throughout each school year.

3. The science concepts in the Next Generation Science Standards build coherently from K–12.

The focus on a few Disciplinary Core Ideas is a key aspect of a coherent science education. The Framework identified a basic set of core ideas that are meant to be understood by the time a student completes high school:

To develop a thorough understanding of scientific explanations of the world, students need sustained opportunities to work with and develop the underlying ideas and to appreciate those ideas’ interconnections over a period of years rather than weeks or months.... This sense of development has been conceptualized in the idea of learning progressions.... If mastery of a core idea in a science discipline is the ultimate educational destination, then well-designed learning progressions provide a map of the routes that can be taken to reach that destination. Such progressions describe both how students’ understanding of the idea matures over time and the instructional supports and experiences that are needed for them to make progress. (NRC, 2012, p. 26)

There are two key points that are important to understand:

  • First, focus and coherence must be a priority. What this means to teachers and curriculum developers is that the same ideas or details are not covered each year. Rather, a progression of knowledge occurs from grade band to grade band that gives students the opportunity to learn more complex material, leading to an overall understanding of science by the end of high school. Historically, science education was taught as a set of disjointed and isolated facts. The Framework and the NGSS provide a more coherent progression aimed at overall scientific literacy with instruction focused on a smaller set of ideas and an eye on what students should have already learned and what they will learn at the next level.
  • Second, the progressions in the NGSS automatically assume that previous material has been learned by students. Choosing to omit content at any grade level or band will impact the success of students in understanding the core ideas and will put additional responsibilities on teachers later in the process.

4. The Next Generation Science Standards focus on deeper understanding of content as well as application of content.

The Framework identified a smaller set of Disciplinary Core Ideas that students should know by the time they graduate from high school, and the NGSS are written to focus on the same. It is important that teachers and curriculum/assessment developers understand that the focus is on the core ideas—not necessarily the facts that are associated with them. The facts and details are important evidence, but not the sole focus of instruction. The Framework states:

The core ideas also can provide an organizational structure for the acquisition of new knowledge. Understanding the core ideas and engaging in the scientific and engineering practices helps to prepare students for broader understanding, and deeper levels of scientific and engineering investigation, later on—in high school, college, and beyond. One rationale for organizing content around core ideas comes from studies comparing experts and novices in any field. Experts understand the core principles and

Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×

theoretical constructs of their field, and they use them to make sense of new information or tackle novel problems. Novices, in contrast, tend to hold disconnected and even contradictory bits of knowledge as isolated facts and struggle to find a way to organize and integrate them.... The assumption, then, is that helping students learn the core ideas through engaging in scientific and engineering practices will enable them to become less like novices and more like experts. (NRC, 2012, p. 25)

5. Science and engineering are integrated in the Next Generation Science Standards from kindergarten through twelfth grade.

The idea of integrating technology and engineering into science standards is not new. Chapters on the nature of technology and the human-built world were included in Science for All Americans (AAAS, 1989) and Benchmarks for Science Literacy (AAAS, 1993, 2008). Standards for science and technology were included for all grade spans in the National Science Education Standards (NRC, 1996).

Despite these early efforts, however, engineering and technology have not received the same level of attention in science curricula, assessments, or the education of new science teachers as the traditional science disciplines have. A significant difference in the NGSS is the integration of engineering and technology into the structure of science education. This integration is achieved by raising engineering design to the same level as scientific inquiry in classroom instruction when teaching science disciplines at all levels and by giving core ideas of engineering and technology the same status as those in other major science disciplines.

The rationale for this increased emphasis on engineering and technology rests on two positions taken in the Framework. One position is aspirational, the other practical.

From an aspirational standpoint, the Framework points out that science and engineering are needed to address major world challenges such as generating sufficient clean energy, preventing and treating diseases, maintaining supplies of food and clean water, and solving the problems of global environmental change that confront society today. These important challenges will motivate many students to continue or initiate their study of science and engineering.

From a practical standpoint, the Framework notes that engineering and technology provide opportunities for students to deepen their understanding of science by applying their developing scientific knowledge to the solution of practical problems. Both positions converge on the powerful idea that by integrating technology and engineering into the science curriculum, teachers can empower their students to use what they learn in their everyday lives.

6. The Next Generation Science Standards are designed to prepare students for college, careers, and citizenship.

There is no doubt that science and science education are central to the lives of all Americans. Never before has our world been so complex and science knowledge so critical to making sense of it all. When comprehending current events, choosing and using technology, or making informed decisions about one’s health care, understanding science is key. Science is also at the heart of the the ability of the United States to continue to innovate, lead, and create the jobs of the future. All students no matter what their future education and career path must have a solid K–12 science education in order to be prepared for college, careers, and citizenship.

7. The Next Generation Science Standards and Common Core State Standards (English Language Arts and Mathematics) are aligned.

The timing of the release of NGSS comes as most states are implementing the Common Core State Standards (CCSS) in English Language Arts and Mathematics. This is important to science for a variety of reasons. First, there is an opportunity for science to be part of a child’s comprehensive education. The NGSS are aligned with the CCSS to ensure a symbiotic pace of learning in all content areas. The three sets of standards overlap in meaningful and substantive ways and offer an opportunity to give all students equitable access to learning standards.

Some important work is already in progress regarding the implications and advantages to the CCSS and NGSS. Stanford University recently released 13 papers on a variety of issues related to language and literacy in the content areas of the CCSS and NGSS (Stanford University, 2012).

Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×

REFERENCES

AAAS (American Association for the Advancement of Science) (1989). Science for all Americans. New York: Oxford University Press.

AAAS. (1993, 2008). Benchmarks for science literacy. New York: Oxford University Press.

NRC (National Research Council). (1996). National science education standards. Washington, DC: National Academy Press.

NRC. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Stanford University. (2012). Understanding language. Available at: http://ell.stanford.edu/papers.

Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×
Page 335
Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×
Page 336
Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×
Page 337
Suggested Citation:"APPENDIX A: Conceptual Shifts in the Next Generation Science Standards." National Research Council. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. doi: 10.17226/18290.
×
Page 338
Next: APPENDIX B: Responses to the Public Drafts »
Next Generation Science Standards: For States, By States Get This Book
×
Buy Paperback | $54.95 Buy Ebook | $43.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Next Generation Science Standards identifies the science all K-12 students should know. These new standards are based on the National Research Council's A Framework for K-12 Science Education. The National Research Council, the National Science Teachers Association, the American Association for the Advancement of Science, and Achieve have partnered to create standards through a collaborative state-led process. The standards are rich in content and practice and arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education.

The print version of Next Generation Science Standards complements the nextgenscience.org website and:

  • Provides an authoritative offline reference to the standards when creating lesson plans
  • Arranged by grade level and by core discipline, making information quick and easy to find
  • Printed in full color with a lay-flat spiral binding
  • Allows for bookmarking, highlighting, and annotating
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!