National Academies Press: OpenBook

Climate Change: Evidence and Causes (2014)

Chapter: Summary

« Previous: Table of Contents
Page 2
Suggested Citation:"Summary." National Academy of Sciences. 2014. Climate Change: Evidence and Causes. Washington, DC: The National Academies Press. doi: 10.17226/18730.
×
Page 2

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

14 Clim ate Cha nge n Q& A Why is Arctic sea ice decreasing while Antarctic sea ice is not? Sea ice extent is affected by winds and ocean currents as well as temperature. Sea ice in the partly-enclosed Arctic Ocean seems to be responding directly to warming, while changes in winds and in the ocean seem to be dominating the patterns of climate and sea ice change in the ocean around Antarctica. Sea ice in the Arctic has decreased dramatically since the late 1970s, particularly in summer and autumn. Since the satellite record began in 1978 (providing for the first time a complete and continuous areal coverage of the Arctic), the yearly minimum Arctic sea ice extent (which occurs in early to mid-September) has decreased by more than 40% [Figure 5]. Ice cover expands again each Arctic winter but the ice is thinner than it used to be. Estimates of past sea ice extent suggest that this decline may be unprecedented in at least the past 1,450 years. The total volume of ice, the product of ice thickness and area, has decreased faster than ice extent over the past decades. Because sea ice is highly reflective, warming is amplified as the ice decreases and more sunshine is absorbed by the darker underlying ocean surface. Sea ice in the Antarctic has shown a slight increase in extent since 1979 overall, although some areas, such as that to the west of the Antarctic Peninsula, have experienced a decrease. Changes in surface wind patterns around the continent have contributed to the Antarctic pattern of sea ice change while ocean factors such as the addition of cool fresh water from melting ice shelves may also have played a role. The wind changes include a recent strengthening of westerly winds, which reduces the amount of warm air from low latitudes penetrating into the southern high latitudes and alters the way in which ice moves away from the continent. The change in winds may result in part from the effects of stratospheric ozone depletion over Antarctica (i.e., the ozone hole, a phenomenon that is distinct from the human- driven changes in long-lived greenhouse gases discussed in this document). However, short- term trends in the Southern Ocean, such as those observed, can readily occur from natural variability of the atmosphere, ocean and sea ice system. 12 Figure 5. The Arctic summer sea ice extent in 2012, (measured in September) was a record low, shown (in white) compared to the median summer sea ice extent for 1979 to 2000 (in orange outline). In 2013, Arctic summer sea ice extent rebounded somewhat, but was still the sixth smallest extent on record. Source: National Snow and Ice Data Center

Next: Q&A »
Climate Change: Evidence and Causes Get This Book
×
Buy Ebook | $0.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked.

Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!