National Academies Press: OpenBook

Issues in Risk Assessment (1993)

Chapter: CASE STUDY 1: UNCERTAINTY AND RISK IN AN EXPLOITED ECOSYSTEM: A CASE STUDY OF GEORGES BANK

« Previous: Discussion
Suggested Citation:"CASE STUDY 1: UNCERTAINTY AND RISK IN AN EXPLOITED ECOSYSTEM: A CASE STUDY OF GEORGES BANK." National Research Council. 1993. Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/2078.
×

ed by human modification of habitats), deliberate introductions to "improve nature" or for aquaculture or horticulture, and a wide variety of accidental introductions. CBC seems to have a better safety record than other types of introduction. It is not clear whether this is because the activity is basically benign, because the safety precautions work well, or because CBC involves small organisms that pose smaller risks than larger organisms. The worst failures in all categories have occurred in insular environments such as islands and lakes.

The assessment of risks posed by introductions has been addressed separately by scientists in different disciplines (e.g., agriculture, freshwater and marine ecology, and nature conservation). Communication between the disciplines is poor, and several sets of criteria, procedures, and protocols have been developed independently. Whereas the U.S. Department of Agriculture has adopted flow charts as a way to systematize decision-making, other agencies (e.g., the International Council for the Exploration of the Sea) have concluded that too little is known about ecosystem functioning for flow charts to be useful.

Dr. Policansky commented that risk assessment for species introductions is difficult to fit into the four-step Red Book paradigm. Hazard is taken for granted (because it is the introduction of the species itself); dose-response and exposure are yes-no categories, not continuous variables, because the more important point is whether the species is present or not, not how much of the species is present. A more suitable paradigm might be that presented in the 1986 NRC report Ecological Knowledge and Environmental Problem-Solving: Concepts and Case Studies, which placed more emphasis on problem-scoping and problem-solving than on categorical activities.

CASE STUDY 1:Uncertainty and Risk in an Exploited Ecosystem: A Case Study of Georges Bank

M. J. Fogarty, A. A. Rosenberg, and M. P. Sissenwine, National Marine Fisheries Service

This paper addressed the risks of overexploitation of harvested marine

Suggested Citation:"CASE STUDY 1: UNCERTAINTY AND RISK IN AN EXPLOITED ECOSYSTEM: A CASE STUDY OF GEORGES BANK." National Research Council. 1993. Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/2078.
×

ecosystems, with specific application to Georges Bank, a highly productive area off the northeastern United States. In this context, risk assessment involves determining the probability that a population will be depleted to an arbitrarily predetermined "small" (e.g., 1% or 5%) size. The "quasi-extinction" level may be defined (Ginzburg et al., 1982) as (1) the population level below which the probability of poor recruitment increases appreciably or (2) the smallest population capable of supporting a viable fishery.

The primary determinant of the long-term dynamics of any population is the relationship between the adult population (stock) and recruitment. The null hypothesis is that the relationship is linear, i.e., that recruitment is independent of density (Sissenwine and Shepherd, 1987). Compensatory changes in survival or in reproductive output result in nonlinear stock-recruitment curves. Nonlinearity permits stable equilibrium under harvesting pressure (i.e., under increased mortality rates), up to a critical exploitation level, beyond which the population will decline to quasi-extinction. Stochastic variation in the stock-recruitment relationship or in multispecies interactions can increase risks of adverse effects at moderate exploitation levels. In practice, because of uncertainties resulting from stochastic variations and measurement errors, it is often impossible to reject the null hypothesis of no compensation. Assuming there is no compensation will, in general, result in a conservative assessment of production capacity and its ability to withstand exploitation.

Haddock populations on Georges Bank fluctuated about relatively stable levels between 1930 and 1960 when the fraction of the total haddock population killed per year by fisherman (annual fishing mortality rate) varied between 0.3-0.6, but collapsed after the fishing mortality rate increased to 0.8 during the 1960s (Grosslein et al., 1980). The empirical relationship between stock and recruitment was extremely variable with little indication of the form of the underlying curve. Analysis of the population dynamics showed that a density-independent null model could not be rejected and gave a neutral equivalent harvest rate of 0.5, which agrees well with the stable period of the fishery. In contrast, the compensatory model is over optimistic with respect to the long-term harvest rate.

The decrease in populations of haddock and other groundfish was accompanied by increases in other species, notably elasmobranchs (rays and sharks). The biomass of predatory species increased dramatically

Suggested Citation:"CASE STUDY 1: UNCERTAINTY AND RISK IN AN EXPLOITED ECOSYSTEM: A CASE STUDY OF GEORGES BANK." National Research Council. 1993. Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/2078.
×
Page 305
Suggested Citation:"CASE STUDY 1: UNCERTAINTY AND RISK IN AN EXPLOITED ECOSYSTEM: A CASE STUDY OF GEORGES BANK." National Research Council. 1993. Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/2078.
×
Page 306
Next: Discussion »
Issues in Risk Assessment Get This Book
×
Buy Paperback | $65.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The scientific basis, inference assumptions, regulatory uses, and research needs in risk assessment are considered in this two-part volume.

The first part, Use of Maximum Tolerated Dose in Animal Bioassays for Carcinogenicity, focuses on whether the maximum tolerated dose should continue to be used in carcinogenesis bioassays. The committee considers several options for modifying current bioassay procedures.

The second part, Two-Stage Models of Carcinogenesis, stems from efforts to identify improved means of cancer risk assessment that have resulted in the development of a mathematical dose-response model based on a paradigm for the biologic phenomena thought to be associated with carcinogenesis.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!