National Academies Press: OpenBook
« Previous: MOLECULAR BIOLOGY
Suggested Citation:"THE RECOMBINANT DNA REVOLUTION." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 13
Suggested Citation:"THE RECOMBINANT DNA REVOLUTION." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 14
Suggested Citation:"THE RECOMBINANT DNA REVOLUTION." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 15

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THE SECRETS OF LIFE: A MATHEMATICIAN'S INTRODUCTION TO MOLECULAR BIOLOGY 13 THE RECOMBINANT DNA REVOLUTION By 1965, molecular biology had laid bare the basic secrets of life. Without the ability to manipulate genes, however, the understanding was more theoretical than operational. In the 1970s, this situation was transformed by the recombinant DNA revolution. Biochemists discovered a variety of enzymes made by bacteria that allowed one to manipulate DNA at will. Bacteria made restriction enzymes, which cut DNA at specific sequences and served as a defense against invading viruses, and ligases, which join DNA fragments. With these and other tools (which are now all readily available from commercial suppliers), it became possible to cut and paste DNA fragments at will and to introduce them into living cells (Figure 1.8). Such cloning experiments allow scientists to reproduce unlimited quantities of specific DNA molecules and have led to detailed understanding of individual genes. Moreover, producing recombinant DNA molecules that contain bacterial DNA instructions for making a particular human protein (such as insulin) gave birth to the biotechnology industry. A key development was the invention of DNA sequencing, the process of determining the precise nucleotide sequence of a cloned DNA molecule. With DNA sequencing, it became possible to read the sequence of any gene in stretches of 300 to 500 nucleotides at a time. DNA sequencing has revealed striking similarities among living creatures as diverse as humans and yeast, with far-reaching consequences for our understanding of molecular structure and evolution. DNA sequencing has also led to an information explosion in biology, with public databases still expanding at a rapid exponential rate. In early 1993, there were over 100 million bases of DNA in the public databases. For reference, the entire genome of the intestinal bacteria Escherichia coli (E. coli) consists of about 4.6 million bases, and the human genome sequence has roughly 3 billion bases. In recent years a powerful new technique called the polymerase chain reaction (PCR) has been added to the molecular biologist's tool kit (Figure 1.9). PCR allows one to directly amplify a specific DNA sequence without resort to cloning. To perform PCR, one uses short DNA molecules called primers (typically about 20 bases long) that are complementary to the sequences flanking the region of interest. Each

THE SECRETS OF LIFE: A MATHEMATICIAN'S INTRODUCTION TO MOLECULAR BIOLOGY 14 Figure 1.8 By cloning a foreign DNA molecule in a plasmid vector, it is possible to propagate the DNA in a bacterial or other host cell.

THE SECRETS OF LIFE: A MATHEMATICIAN'S INTRODUCTION TO MOLECULAR BIOLOGY 15 Figure 1.9 The polymerase chain reaction (PCR) allows exponential amplification of DNA. The method involves successive rounds of copying (using the enzyme DNA polymerase) between two synthetic primers corresponding to nearby DNA sequences. Each round doubles the number of copies. Courtesy of the Perkin-Elmer Corporation. Reprinted from the National Research Council (1992).

Next: MOLECULAR GENETICS IN THE 1990S »
Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology Get This Book
×
 Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology
Buy Paperback | $80.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As researchers have pursued biology's secrets to the molecular level, mathematical and computer sciences have played an increasingly important role—in genome mapping, population genetics, and even the controversial search for "Eve," hypothetical mother of the human race.

In this first-ever survey of the partnership between the two fields, leading experts look at how mathematical research and methods have made possible important discoveries in biology.

The volume explores how differential geometry, topology, and differential mechanics have allowed researchers to "wind" and "unwind" DNA's double helix to understand the phenomenon of supercoiling. It explains how mathematical tools are revealing the workings of enzymes and proteins. And it describes how mathematicians are detecting echoes from the origin of life by applying stochastic and statistical theory to the study of DNA sequences.

This informative and motivational book will be of interest to researchers, research administrators, and educators and students in mathematics, computer sciences, and biology.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!