National Academies Press: OpenBook
« Previous: Likelihood Methods
Suggested Citation:"Discussion." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 148

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

CALIBRATING THE CLOCK: USING STOCHASTIC PROCESSES TO MEASURE THE RATE OF EVOLUTION 148 where s = 7. Assuming that πC and πT are given by their observed frequencies, there is just the single parameter θ to be estimated. Preliminary simulation results give the maximum likelihood estimate of θ at about = 17 . This corresponds to a per site C → T rate of α = 1.14, and a per site T → C rate of β = 1.28. These rates are about 50 times higher than those based on the analysis in the section on the K-allele models above using all 201 sites. Of course, this set of sites was chosen essentially because of the high mutation rates in the region and so should represent an extreme estimate of the rates in the whole molecule. Nonetheless, the results do point to the lack of homogeneity in substitution rates in this molecule. For other approaches to the modeling of hypervariable sites, see Lundstrom et al. (1992b). Discussion The emphasis in this chapter has been the discussion of inference techniques for the coalescent, a natural model for the analysis of samples taken from large populations. An interesting development in the mathematical theory has been the study of measure-valued diffusions initiated by Fleming and Viot (1979). This is a generalization of the "usual" diffusions so prevalent in the classical theory of population genetics, described for example in Ewens (1979, 1990) and Tavaré (1984). A comprehensive discussion of the Fleming-Viot process appears in Ethier and Kurtz (1993), where the probabilistic structure of a broad range of examples, such as multiple loci with recombination, infinitely many alleles with selection, multigene families, and migration models, are discussed in some detail. Perhaps the most important aspect of the theory that has seen rather little theoretical treatment thus far is the area that might loosely be called variable population size processes, and their inference. These issues are becoming more important in the analysis and interpretation of human mitochondrial sequence data. Two recent articles in this area are Slatkin

Next: General-Purpose References »
Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology Get This Book
×
 Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology
Buy Paperback | $80.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As researchers have pursued biology's secrets to the molecular level, mathematical and computer sciences have played an increasingly important role—in genome mapping, population genetics, and even the controversial search for "Eve," hypothetical mother of the human race.

In this first-ever survey of the partnership between the two fields, leading experts look at how mathematical research and methods have made possible important discoveries in biology.

The volume explores how differential geometry, topology, and differential mechanics have allowed researchers to "wind" and "unwind" DNA's double helix to understand the phenomenon of supercoiling. It explains how mathematical tools are revealing the workings of enzymes and proteins. And it describes how mathematicians are detecting echoes from the origin of life by applying stochastic and statistical theory to the study of DNA sequences.

This informative and motivational book will be of interest to researchers, research administrators, and educators and students in mathematics, computer sciences, and biology.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!