National Academies Press: OpenBook

Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)

Chapter: Application of Geometry and Topology to Biology

« Previous: SOME UNSOLVED PROBLEMS
Suggested Citation:"Application of Geometry and Topology to Biology." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 232

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

LIFTING THE CURTAIN: USING TOPOLOGY TO PROBE THE HIDDEN ACTION OF ENZYMES 232 relaxed DNA knots is determined by crossing number; the larger the crossing number, the faster the migration. Perhaps this is because among knots of the same length with small crossing numbers, the average value of the radius of gyration (a measure of the average size) correlates strongly with crossing number. It is very curious that the crossing number, clearly an artifact of planar diagrammatic representation of knots, would have anything at all to do with the three-dimensional average knot conformation. What is the relationship (if any) between radius of gyration of DNA circles of fixed molecular weight and fixed knot type, crossing number, and the gel mobility of these knotted DNA circles? ANNOTATED BIBLIOGRAPHY Knot Theory Adams, C., 1994, The Knot Book: An Elementary Introduction to Mathematical Theory of Knots, New York: W.H. Freeman. Kauffman, L.H., 1987, On Knots, Princeton, N.J.: Princeton University Press. Livingston, C., 1994, Knot Theory, Carus Mathematical Monograph, Vol. 24, Washington, D.C.: Mathematical Association of America. Rolfsen, D., 1990, Knots and Links, Berkeley, Calif.: Publish or Perish, Inc. Each of these mathematics books has an easygoing, reader-friendly style and numerous pictures, a very important commodity when one is trying to understand knot theory. Application of Geometry and Topology to Biology Bauer, W.R., F.H.C. Crick, and J.H. White, 1980, "Supercoiled DNA," Scientific American 243, 100-113. This paper is a very nice introduction to the description and measurement of DNA supercoiling. Sumners, D.W., 1987, "The role of knot theory in DNA research," pp. 297-318 in Geometry and Topology, C. McCrory and T. Shifrin (eds.), New York: Marcel Dekker. Sumners, D.W., 1990, "Untangling DNA," The Mathematical Intelligencer 12, 71-80. These papers are expository articles written for a mathematical audience. The first gives an overview of knot theory and DNA, and the second describes the tangle model. Sumners, D.W. (ed.), 1994, New Scientific Applications of Geometry and Topology, Proceedings of Symposia in Applied Mathematics, Vol. 45, Providence, R.I.: American Mathematical Society.

Next: REFERENCES »
Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology Get This Book
×
 Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology
Buy Paperback | $80.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As researchers have pursued biology's secrets to the molecular level, mathematical and computer sciences have played an increasingly important role—in genome mapping, population genetics, and even the controversial search for "Eve," hypothetical mother of the human race.

In this first-ever survey of the partnership between the two fields, leading experts look at how mathematical research and methods have made possible important discoveries in biology.

The volume explores how differential geometry, topology, and differential mechanics have allowed researchers to "wind" and "unwind" DNA's double helix to understand the phenomenon of supercoiling. It explains how mathematical tools are revealing the workings of enzymes and proteins. And it describes how mathematicians are detecting echoes from the origin of life by applying stochastic and statistical theory to the study of DNA sequences.

This informative and motivational book will be of interest to researchers, research administrators, and educators and students in mathematics, computer sciences, and biology.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!