National Academies Press: OpenBook
« Previous: 7 Additional Considerations
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

References

Atreya, S.K., Mahaffy, P.R., and Wong, A.-S. 2007. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planetary and Space Science 55(3):358-369.

Atreya, S.K., Wong, A.-S., Rennó, N.O., Farrell, W.M., Delory, G.T., Sentman, D.D., and Catling, D.C. 2006. Oxidant enhancement in martian dust devils and storms: Implications for life and habitability. Astrobiology 6(3):439-450.

Azúa-Bustos, A., Caro-Lara, L., and Vicuña, R. 2015. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environmental Microbiology Reports 7:338-394.

Barberàn, A., Henley, J., Fierer, N., and Casamayor, E.O. 2014. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Science of the Total Environment 487:187-195.

Bauermeister, A., Rettberg, P., Flemming, H.C. 2014. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions. Planetary and Space Science 98:205-215.

Beaty, D., Buxbaum, K., Meyer, M., Barlow, N., Boynton, W., Clark, B., Deming, J., et al. 2006. Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6:677-732.

Brusnikin, E.S., Kreslavsky, M.A., Karachevtseva, I.P., Zubarev, A.E., Patratiy, V.D., and Head, J.W. 2015. “Slope Streaks on Mars: Analysis of Geometric Parameters.” 46th Lunar and Planetary Science Conference. Abstract 1115. http://www.hou.usra.edu/meetings/lpsc2015/pdf/1115.pdf.

Burrows, S.M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl, U., and Lawrence, M.G. 2009. Bacteria in the global atmosphere. Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics 9(23):9281-9297.

Chassefière, E. 2009. Metastable methane clathrate particles as a source of methane to the martian atmosphere. Icarus 204:137-144.

Chuvochina, M.S., Marie, D., Chevaillier, S., Petit, J.-R., Normand, P., Alekhina, I.A., and Bulat, S.A. 2011. Community variability of bacteria in Alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential. Microbes and Environments 26(3):237-247.

COSPAR (Committee on Space Research). 2003. Planetary Protection Policy. COSPAR Information Bulletin 156:67-74.

COSPAR. 2015. COSPAR’s Planetary Protection Policy. Space Research Today 193:7-19.

Cull, S.C., Arvidson, R.E., Catalano, J.G., Ming, D.W., Morris, R.V., Mellon, M.T., and Lemmon, M. 2010. Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters 37:L22203.

Cushing, G. 2012. Candidate cave entrances on Mars. Journal of Cave and Karst Studies 74(1):33-47.

Cushing, G.E., Okubo, C.H., and Titus, T.N. 2015. Atypical pit craters on Mars: New insights from THEMIS, CTX and HiRISE observations. Journal of Geophysical Research, in press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

De los Ríos, A., Cary, C., and Cowan, D. 2014. The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology 37(12):1823-1833.

Delory, G.T., Farrell, W.M., Atreya, S.K., Rennó, N.O., Wong, A.-S., Cummer, S.A., Sentman, D.D., Marshall, J.R., Rafkin., S.C.R., and Catling, D.C. 2006. Oxidant enhancement in martian dust devils and storms: Storm electric fields and electron dissociative attachment. Astrobiology 6:451-462.

Després, V.R., Alex Huffman, J., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U., and Jaenicke, R. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus B 64(1).

Dickson, J.L., and Head, J.W. 2009. The formation and evolution of youthful gullies on Mars: Gullies as the late-stage phase of Mars’ most recent Ice Age. Icarus 204:63-86.

Dundas, C.M., McEwen, A.S., and Sutton, S. 2015. “New Constraints on the Locations, Timing and Conditions for Recurring Slope Lineae Activity on Mars.” 46th Lunar and Planetary Science Conference. Abstract 2327. http://www.hou.usra.edu/meetings/lpsc2015/pdf/2327.pdf.

Edwards, C.S., and S. Piqueux. 2015. “The Water Content of Recurring Slope Linea on Mars.” 46th Lunar and Planetary Science Conference. Abstract 2286. http://www.hou.usra.edu/meetings/lpsc2015/pdf/2286.pdf.

Fischer, E., Martínez, G.M., Elliott, H.M., and Rennó, N.O. 2014. Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters 41(13):4456-4462.

Fonti, S., and Marzo, G.A. 2010. Mapping the methane on Mars. Astronomy and Astrophysics 512(8):A51.

Freissinet, C., Glavin, D.P., Mahaffy, P.R., Miller, K.E., Eigenbrode, J.L., Summons, R.E., Zorzano, M.-P., et al. 2015. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research: Planets 120(3):495-514.

Goordial, J., Lamarche-Gagnon, G., Lay, C.-Y., and Whyte, L.G. 2013. Left Out in the Cold: Life in Cryoenvironments. Pp. 335-363 in Polyextremophiles (J. Seckbach, A. Oren, and H. Stan-Lotter, eds.). Volume 27 of Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, The Netherlands.

Groemer, G., Foresta, L., Turetschek, T., Bothe, C., Boyd, A., Dinkelaker, A., Zanella-Kux, K., et al. 2014. A case for using ground-based thermal inertia measurements to detect martian caves. Astrobiology 14(5):431-437.

Herri, J.-M., and Chassefière, E. 2012. Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in martian atmospheric conditions and variability of methane trapping. Planetary and Space Science 73(1):376-386.

Higgins, C.G., and Coates, D.R., eds. 1990. “Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms.” Special Paper 252. Geological Society of America, Boulder, Colo.

Imshenetsky, A.A., Lysenko, S.V., and Kazakov, G.A. 1978. Upper boundary of the biosphere. Applied and Environmental Microbiology 35(1):1-5.

Ito, H., Watanabe, H., Takehisa, M., and Iizuka, H. 1983. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agricultural and Biological Chemistry 47:1239-1247.

Jacobson, K., van Diepeningen, A., Evans, S., Fritts, R., Gemmel, P., Marsho, C., Seely, M., Wenndt, A., Yang, X., and Jacobson, P. 2015. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS One 10(5):e0126977.

Jensen, H.B., Sklute, E.C., Rogers, A.D., and Reeder, R.J. 2014. “Synthesis Pathways and Spectral Discrimination of Amorphous Ferric Sulfates on Mars.” 45th Lunar and Planetary Science Conference. Abstract 2781. http://www.hou.usra.edu/meetings/lpsc2014/pdf/2781.pdf.

Jepsen, S.M., Priscu, J.C., Grimm, R.E., and Bullock, M.A. 2007. The potential for lithoautotrophic life on Mars: Application to shallow interfacial water environments. Astrobiology 7:342-354.

Jung, J., Yi, Y., and Kim, E. 2014. Identification of martian cave skylights using the temperature change during day and night. Journal of Astronomy and Space Sciences 31(2):141-144.

Kargel, J.S. 2004. Mars—A Warmer, Wetter Planet. Praxis-Springer, New York, N.Y.

Kereszturi, A., and Möhlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., and Horvath, A. 2009. Recent rheologic processes on dark polar dunes of Mars: Driven by interfacial water? Icarus 201:492-503.

Kereszturi, A., Möhlmann, D., Berczi, Sz., Ganti, T., Horvath, A., Kuti, A., Sik, A., and Szathmary, E. 2010. Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 207:149-164.

Kminek, G., Rummel. J.D., Cockell, C.S., Atlas, R., Barlow, N., Beaty, D., Boynton, W., et al. 2010. Report of the COSPAR Mars Special Regions Colloquium. Advances in Space Research 46:826.

Komatsu, G., Ori, G.G., Cardinale, M., Dohm, J.M., Baker, V.R., Vaz, D.A., Ishimaru, R., Namiki, N., and Matsui, T. 2011. Roles of methane and carbon dioxide in geological processes on Mars. Planetary and Space Science 59(2-3):169-181.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

Lefèvre, F., and Forget, F. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460(7256):720-723.

Lindsay, J., and Brasier, M. 2006. Impact craters as biospheric microenvironments, Lawn Hill Structure, Northern Australia. Astrobiology 6(2):348-363.

Lopez, T., Antoine, R., Baratoux, D., Rabinowicz, M., Kurita, K., and d’Uston, L. 2012. Thermal anomalies on pit craters and sinuous rilles of Arsia Mons: Possible signatures of atmospheric gas circulation in the volcano. Journal of Geophysical Research: Planets 117(E9):E09007.

Makhalanyane, T.P., Valverde, A., Birkeland, N.-K., Cary, S.C., Tuffin, I.M., and Cowan, D.A. 2013. Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal 7(11):2080-2090.

Malin, M.C., and Edgettl, K.S. 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288: 2330-2335.

Martínez, G.M., and Rennó, N.O. 2013. Water and brines on Mars: Current evidence and implications for MSL. Space Science Reviews 175(1):29-51.

Martinez, G., Rennó, N.O., and Elliott, H.M. 2012. The evolution of the albedo of dark spots observed on Mars polar region. Icarus 221:816-830.

Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Vaniman, D., et al. 2015. Transient liquid water and water activity at Gale Crater on Mars. Nature Geoscience 8: 357-361.

Marx, J.G., Carpenter, S.D., and Deming, J.W. 2009. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Canadian Journal of Microbiology 55(1):63-72.

McEwen, A.S., Ojha, L., Dundas, C.M., Mattson, S.S., Byrne, S., Wray, J.J., Cull, S.C., Murchie, S.L., Thomas, N., and Gulick, V.C. 2011. Seasonal flows on warm martian slopes. Science 333(6043):740-743.

McEwen, A.S., Dundas, C.M., Mattson, S.S., Toigo, A.D., Ojha, L., Wray, J.J., Chojnacki, M., Byrne, S., Murchie, S.L., and Thomas, N. 2014. Recurring slope lineae in equatorial regions of Mars. Nature Geoscience 7(1):53-58.

Mellon, M.T., and B.M. Jakosky. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research 98:3345-3364.

Meltzer, M. 2011. When Biospheres Collide: A History of NASA’s Planetary Protection Programs. NASA, Washington D.C.

Möhlmann, D.T.F. 2010. Temporary liquid water in upper snow/ice sub-surfaces on Mars? Icarus 207(1):140-148.

Möhlmann, D., and Kereszturi, A. 2010. Viscous liquid film flow on dune slopes of Mars. Icarus 207:654-658.

Moissl-Eichinger, C., Rettberg, P., and Pukall, R. 2012. The first collection of spacecraft-associated microorganisms: A public source for extremotolerant microorganisms from spacecraft assembly clean rooms. Astrobiology 12:1024-1034.

Moissl-Eichinger, C., Auerbach, A.K., Probst, A.J., Mahnert, A., Tom, L., Piceno, Y., Andersen, G.L., et al. 2015. “Quo Vadis? Microbial profiling revealed strong effects of clean room maintenance and routes of contamination in indoor environments. Scientific Reports 5:1-12.

Morozova, D., Möhlmann, D., and Wagner, D. 2007. Survival of methanogenic archaea from Siberian permafrost under simulated martian thermal conditions. Origins of Life and Evolution of the Biosphere 37(2):189-200.

Morozova, D., and Wagner, D. 2007. Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiology Ecology 61(1):16-25.

Moser, D.P., Onstott, T.C., Fredrickson, J.K., Brockman, F.J., Balkwill, D.L., Drake, G.R., Pfiffner, S.M., et al. 2003. Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiology Journal 20(6):517-548.

Mousis, O., Chassefière, E., Jérémie, J., Chevrier, V., Elwood Madden, M.E., Lakhlifi. A., Lunine, J.I., Montmessin, F., Franck, P., Sylvain, S., Schmidt, F., and Swindle, T.D. 2013. Volitile trapping in martian clathrates. Space Science Reviews 174:213-250.

Mueller, D.R., Vincent, W.F., Bonilla, S., and Laurion, I. 2005. Extremotrophs, extremophiles and broadband pigmentation strategies in a high Arctic ice shelf ecosystem. FEMS Microbiology Ecology 53:73-87.

Mushkin, A., Gillespie, A.R., Montogomery, D.R., Hibbitts, C.A., and Schreiber, B.C. 2014a. A brine extrusion model for recurring slope lineae. P. 1342 in Eighth International Conference on Mars.

Mushkin, A., Stillman, D.E., Gillespie, A.R., Montgomery, D.R., Schreiber, B.C., and Hibbitts, C.A. 2014b. New constraint on the recurrence, growth and fading characteristics of low-albedo streaks on martian slopes and their possible hydrologic implications. Geological Society of America Abstracts with Programs 46(6):792.

NRC (National Research Council). 2006. Preventing the Forward Contamination of Mars. The National Academies Press, Washington, D.C.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

Neubeck, A., Duc, N.T., Hellevang, H., Oze, C., Bastviken, D., Bacsik, Z., and Holm, N.G. 2014. Olivine alteration and H2 production in carbonate-rich, low temperature aqueous environments. Planetary and Space Science 96:51-61.

Neumann, G.A., D.D. Rowlands, F.G. Lemoine, D.E. Smith, and M.T. Zuber. 2001. Crossover analysis of Mars Orbiter Laser Altimeter data. Journal of Geophysical Research 106(E10):23753-23768.

Nunoura, T., Takaki, Y., Hirai, M., Shimamura, S., Makabe, A., Koide, O., Kikuchi, T., et al. 2015. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America. 112(11):E1230-1236.

Ojha, L., McEwen, A., Dundas, C., Byrne, S., Mattson, S., Wray, J., Masse, M., and Schaefer, E. 2014. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus 231:365-376.

Osinski, G.R., Tornabene, L.L., Banerjee, N.R., Cockell, C.S., Flemming, R., Izawa, M.R.M., McCutcheon J., et al. 2013. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224(2):347-363.

Oze, C., and Sharma, M. 2005. Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters 32(10):L10203.

Parkes, R.J., Linnane, C.D., Webster, G., Sass, H., Weightman, A.J., Hornibrook, E.R.C., and Horsfield, B. 2011. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology 39(3):219-222.

Pearce, D.A., Bridge, P.D., Hughes, K.A., Sattler, B., Psenner, R., and Russell, N.J. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology 69(2):143-157.

Priscu J.C., Adams E.E., Lyons W.B., Voytek M.A., Mogk D.W., Brown R.L., McKay, C.P., et al. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286(5447):2141-2144.

Rennó, N.O., Abreu, V.J., Koch, J., Smith, P.H., Hartogensis, O.K., De Bruin, H.A.R., Burose, D., et al. 2004. MATADOR 2002: A pilot field experiment on convective plumes and dust devils. Journal of Geophysical Research 109(E7):E07001.

Rennó, N.O., Bos, B.J., Catling, D., Clark, B.C., Drube, L., Fisher, D., Goetz, W., et al. 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research 114:E00E03.

Rettberg, P., Fritze, D., Verbarg, S., Nellen, J., Horneck, G., Stackebrandt, E., and Kminek, G. 2006. Determination of the microbial diversity of spacecraft assembly, testing and launch facilities: First results of the ESA Project MiDiv. Advances in Space Research 38:1260-1265.

Rodríguez, J.A.P., Sasaki, S., Dohm, J.M., Tanaka, K.L., Strom, B., Kargel, J., Kuzmin, R., et al. 2005. Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars. Journal of Geophysical Research 110(E6):E06003.

Rodriguez, J.A.P., Bourke, M., Tanaka, K.L., Miyamoto, H., Kargel, J., Baker, V., Fairèn, A.G., et al. 2012. Infiltration of martian outflow channel floodwaters into lowland cavernous systems. Geophysical Research Letters 39(22).

Rummel, J.D., COSPAR Planetary Protection Panel, COSPAR, International Astronomical Union, and International Council for Science. 2002. Report of the Workshop on Planetary Protection held under the auspices of the Committee on Space Research and the International Astronomical Union of the International Council for Science at Williamsburg, Virginia, USA on 2-4 April 2002. COSPAR, Paris, France.

Rummel, J.D., Beaty, D.W., Jones, M.A., Bakermans, C., Barlow, N.G., Boston, P.J., and Chevrier, V.F. 2014. A new analysis of Mars “Special Regions”: Findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14(11):887-968.

Satomi, M., La Duc, M.T., and Venkateswaran, K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology 56:1735-1740.

Scanlon, K.E., Head, J.W., and Marchant, D.R. 2015. Remnant buried ice in the equatorial regions of Mars: Morphological indicators associated with the Arsia Mons tropical mountain glacier deposits. Planetary and Space Science 111:144-154.

Schirmack, J., Alawi, M., and Wagner, D. 2015. Influence of martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Frontiers in Microbiology 6:210.

Schrenk M.O., Huber J.A., and Edwards K.J. 2010. Microbial provinces in the subseafloor. Annual Review of Maine Science 2:279-304.

Siefert, J.L., Souza, V., Eguiarte, L., and Olmedo-Alvarez, G. 2012. Microbial stowaways: Inimitable survivors or hopeless pioneers? Astrobiology 12(7):710-715.

Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., and Bird, D.K. 2004. H2-rich fluids from serpentinization: Geochemical and biotic implications. Proceedings of the National Academy of Sciences of the U.S.A. 101(35):12818-12823.

Smith, D.J., Jaffe, D.A., Birmele, M.N., Griffin, D.W., Schuerger, A.C., Hee, J., and Roberts, M.S. 2012. Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology 64(4):973-985.

Vincendon, M., Mustard, J., Forget, F., Kreslavsky, M., Spiga, A., Murchie, S., and Bibring, J.-P. 2010. Near-tropical subsurface ice on Mars. Geophysical Research Letters 37(1):L01202.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

Wagner, D., Schirmack, J., Ganzert, L., Morozova, D., and Mangelsdorf, K. 2013. Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. International Journal of Systematic and Evolutionary Microbiology 63(Pt 8):2986-2991.

Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., et al. 2015. Mars atmosphere. Mars methane detection and variability at Gale Crater. Science 347(6220):415-417.

Wong, A.S., Atreya, S.K., and Encrenaz, T. 2003. Chemical markers of possible hot spots on Mars. Journal of Geophysical Research E: Planets 108(E4).

Wray, J.J., and Ehlmann, B.L. 2011. Geology of possible martian methane source regions. Planetary and Space Science 59(2-3):196-202.

Zahnle, K. 2015. Planetary science. Play it again, SAM. Science 347(6220):370-371.

Zahnle, K., Freedman, R.S., and Catling, D.C. 2011. Is there methane on Mars? Icarus 212(2):493-503.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 37
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 38
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 39
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 40
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 41
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2015. Review of the MEPAG Report on Mars Special Regions. Washington, DC: The National Academies Press. doi: 10.17226/21816.
×
Page 42
Next: Appendixes »
Review of the MEPAG Report on Mars Special Regions Get This Book
×
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth. The protection of high-priority science goals, the search for life and the understanding of the Martian organic environment may be compromised if Earth microbes carried by spacecraft are grown and spread on Mars. This has led to the definition of Special Regions on Mars where strict planetary protection measures have to be applied before a spacecraft can enter these areas.

At NASA's request, the community-based Mars Exploration Program Analysis Group (MEPAG) established the Special Regions Science Analysis Group (SR-SAG2) in October 2013 to examine the quantitative definition of a Special Region and proposed modifications to it, as necessary, based upon the latest scientific results. Review of the MEPAG Report on Mars Special Regions reviews the conclusions and recommendations contained in MEPAG's SR-SAG2 report and assesses their consistency with current understanding of both the Martian environment and the physical and chemical limits for the survival and propagation of microbial and other life on Earth. This report provides recommendations for an update of the planetary protection requirements for Mars Special Regions.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!