National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Integrated Noise Model Accuracy for General Aviation Aircraft. Washington, DC: The National Academies Press. doi: 10.17226/22269.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Integrated Noise Model Accuracy for General Aviation Aircraft. Washington, DC: The National Academies Press. doi: 10.17226/22269.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Integrated Noise Model Accuracy for General Aviation Aircraft. Washington, DC: The National Academies Press. doi: 10.17226/22269.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Integrated Noise Model Accuracy for General Aviation Aircraft. Washington, DC: The National Academies Press. doi: 10.17226/22269.
×
Page R4

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. C. D. Mote, Jr., is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Victor J. Dzau is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. C. D. Mote, Jr., are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transporta- tion Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individu- als interested in the development of transportation. www.TRB.org www.national-academies.org

Contents 1 Study Overview and Conclusions ..................................................................................................... 1 Goals ..................................................................................................................................................................... 1 1.1 Approach ............................................................................................................................................................... 1 1.2 Results ................................................................................................................................................................... 1 1.3 2 State of the Practice: How are GA Aircraft Being Modeled? .......................................................... 5 Literature Review .................................................................................................................................................. 5 2.1 INM User Survey .................................................................................................................................................. 8 2.2 Recommendations ............................................................................................................................................... 14 2.3 3 GA Aircraft Types Selected for Evaluation .................................................................................... 16 Introduction ......................................................................................................................................................... 16 3.1 Sources Used for Operations and Noise Data ..................................................................................................... 16 3.2 Determination of Noise Contribution .................................................................................................................. 16 3.3 Selected GA Aircraft ........................................................................................................................................... 17 3.4 4 Detailed Analyses: Overall Description .......................................................................................... 21 Data Base of Measured Jet Aircraft .................................................................................................................... 21 4.1 Computing Discrepancies ................................................................................................................................... 22 4.2 Select Aircraft for Additional Analysis ............................................................................................................... 24 4.3 5 Detailed Analysis—Measured versus Modeled Discrepancies .................................................... 25 Departures ........................................................................................................................................................... 25 5.1 Arrivals ............................................................................................................................................................... 28 5.2 Observations ....................................................................................................................................................... 30 5.3 6 Detailed Analysis–Select Analysis Aircraft .................................................................................... 31 Effect of Correction on Total Sound Energy ...................................................................................................... 31 6.1 Departures ........................................................................................................................................................... 31 6.2 Arrivals ............................................................................................................................................................... 33 6.3 7 Detailed Analysis–Causes of Error: Test Examples ..................................................................... 34 Departures ........................................................................................................................................................... 34 7.1 Arrivals ............................................................................................................................................................... 44 7.2 8 Potential Solutions ........................................................................................................................... 51 Derated Thrust; Assumed Temperature Method ................................................................................................. 51 8.1 Methods for Applying Derated Thrust in INM to Provide Realistic Results ...................................................... 51 8.2 Noise Results for Assumed Temperature Method Profiles ................................................................................. 57 8.3 Similarity to Commercial Jet Operation .............................................................................................................. 59 8.4 9 Suggested Implementation Plan ..................................................................................................... 60 ATM Implementation Options ............................................................................................................................ 60 9.1 Implementation Process ...................................................................................................................................... 61 9.2 Implementation Costs ......................................................................................................................................... 66 9.3 i

Appendix A. Literature Review References ........................................................................................ A-1 Appendix B. INM Survey Questionnaire–U.S. .................................................................................... B-1 Appendix C. Summary of INM Users Surveyed.................................................................................. C-1 Appendix D. Propeller Aircraft Discrepancies ................................................................................... D-1 Appendix E. LJ35 Standard and Best Fit Departure Profiles ............................................................E-1 Appendix F. GLF4 Standard and Best Fit Departure Profiles ........................................................... F-1 Appendix G. EA50 Standard and Best Fit Departure Profiles ........................................................... G-1 Appendix H. GIV STANDARD and ATM1 Procedure Profiles ........................................................... H-1 Appendix I. ATM2 Profile Points Profiles ............................................................................................ I-1 ii

List of Figures Figure 1 Measured and modeled departure SEL values for the evaluated aircraft ..................................... 27 Figure 2 Altitude corrected departure discrepancies for the evaluated aircraft .......................................... 27 Figure 3 Measured and modeled arrival SEL values for the evaluated aircraft .......................................... 29 Figure 4 Altitude corrected arrival discrepancies for the evaluated aircraft ............................................... 29 Figure 5 Effect on total departure fleet sound energy of sequentially correcting each aircraft type, from highest contributor of energy to lowest contributor; the selection criterion is shown ................................ 32 Figure 6 Effect on total arrival sound energy of sequentially correcting each aircraft type, from highest contributor of energy to lowest contributor, and associated selection criterion .......................................... 33 Figure 7 LJ35 measured and modeled departure SEL ................................................................................ 36 Figure 8 LJ35 measured minus modeled departure SEL ............................................................................ 36 Figure 9 LJ35 measured and modeled departure altitude profiles .............................................................. 37 Figure 10 LJ35 departure altitudes: all radar data, INM, best fit, and polynomial fit................................. 38 Figure 11 GLF4 measured and modeled departure SEL ............................................................................. 39 Figure 12 GLF4 measured minus modeled departure SEL ......................................................................... 40 Figure 13 GLF4 measured and modeled departure altitude profiles ........................................................... 40 Figure 14 GLF4 departure altitudes: all radar data, INM, best fit, and polynomial fit ............................... 41 Figure 15 EA50 measured and modeled SEL ............................................................................................. 42 Figure 16 EA50 measured minus modeled departure SEL ......................................................................... 43 Figure 17 EA50 measured and modeled departure altitude profiles ........................................................... 43 Figure 18 EA50 departure altitudes: all radar data, INM, best fit, and polynomial fit ............................... 44 Figure 19 C56X measured and modeled arrival SEL ................................................................................. 45 Figure 20 D56X measured minus modeled arrival SEL ............................................................................. 46 Figure 21 C56X measured and modeled arrival altitude profiles ............................................................... 46 Figure 22 GLF5 measured and modeled arrival SEL ................................................................................. 47 Figure 23 GLF5 measured minus modeled arrival SEL ............................................................................. 48 Figure 24 GLF5 measured and modeled arrival altitude profiles ............................................................... 48 Figure 25 F900 measured and modeled arrival SEL ................................................................................... 49 Figure 26 F900 measured minus modeled arrival SEL ............................................................................... 50 Figure 27 F900 measured and modeled arrival altitude profiles ................................................................. 50 Figure 28 GIV departure altitudes: all radar data, ATM profiles and polynomial fit ................................. 52 Figure 29 Lear35 departure altitudes: all radar data, ATM profiles and polynomial fit ............................. 52 Figure 30 CNA560E departure altitudes: all radar data, ATM2 profile and polynomial fit ....................... 53 Figure 31 LJ35 INM standard profile variables ........................................................................................ E-1 Figure 32 LJ35 best fit profile variables ................................................................................................... E-1 Figure 33 GLF4 INM standard profile variables ...................................................................................... F-1 Figure 34 GLF4 best fit profile variables .................................................................................................. F-1 Figure 35 EA50 INM standard profile variables....................................................................................... G-1 Figure 36 EA50 best fit profile variables .................................................................................................. G-1 List of Tables Table 1 List of GA jet aircraft for evaluation ............................................................................................. 18 Table 2 List of GA propeller aircraft for evaluation ................................................................................... 19 Table 3 Airports providing flight tracking and noise monitoring data ....................................................... 21 Table 4 Aircraft types evaluated and numbers of useful associated flight track / SEL data points ............ 22 Table 5 Departure discrepancies computed for all aircraft types ................................................................ 26 Table 6 Arrival discrepancies computed for all aircraft types .................................................................... 28 iii

Next: Report Contents »
Integrated Noise Model Accuracy for General Aviation Aircraft Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s Airport Cooperative Research Program (ACRP) Web-Only Document 19: Integrated Noise Model Accuracy for General Aviation Aircraft assesses the predictive accuracy of the Integrated Noise Model, identifies causes for deviations between actual and predicted values, identifies potential solutions to improve the model’s accuracy, and describes the steps needed for implementation

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!