National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation). Washington, DC: The National Academies Press. doi: 10.17226/22308.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation). Washington, DC: The National Academies Press. doi: 10.17226/22308.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation). Washington, DC: The National Academies Press. doi: 10.17226/22308.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation). Washington, DC: The National Academies Press. doi: 10.17226/22308.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation). Washington, DC: The National Academies Press. doi: 10.17226/22308.
×
Page R5

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SHRP 2 Renewal Project R06B Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV—Implementation) Maria Chrysochoou, Chad Johnston, and Iliya Yut Department of Civil and Environmental Engineering University of Connecticut, Storrs TRANSPORTATION RESEARCH BOARD Washington, D.C. 2015 www.TRB.org

© 2015 National Academy of Sciences. All rights reserved. ACKNOWLEDGMENTS This work was sponsored by the Federal Highway Administration in cooperation with the American Association of State Highway and Transportation Officials. It was conducted in the second Strategic Highway Research Program, which is administered by the Transportation Research Board of the National Academies.The implementation phase of this project was managed by Monica Starnes and James Bryant, Senior Program Officers for SHRP 2, Renewal, and Matthew Miller, SHRP 2 Program Officer. The research described in this report was performed by the University of Connecticut (UConn) in collaboration with the Connecticut and Maine Departments of Transportation. Maria Chrysochoou, Associate Professor, UConn Department of Civil and Environmental Engineering, was the principal investigator. Iliya Yut and Chad Johnston served as lead researchers, performing laboratory and field experiments with spectroscopic instruments and contributing to this report. Master students Hanyi Yang and Jacqueline Oakes and undergraduate student Lucia Petriccione assisted with laboratory testing. The authors are grateful to Robert Lauzon and Nelio Rodriguez from the Connecticut Department of Transportation, Richard Bradbury and Derek Nener-Plante from the Maine Department of Transportation, and Joseph Marrone from Tilcon Connecticut, Inc., for their cooperation and support. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. The second Strategic Highway Research Program grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, or FHWA endorsement of a particular product, method, or practice. It is expected that those reproducing material in this document for educational and not-for-profit purposes will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from SHRP 2.

NOTICE The project that is the subject of this document was a part of the second Strategic Highway Research Program, conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council. The Transportation Research Board of the National Academies, the National Research Council, and the sponsors of the second Strategic Highway Research Program do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of the report. DISCLAIMER The opinions and conclusions expressed or implied in this document are those of the researchers who performed the research. They are not necessarily those of the second Strategic Highway Research Program, the Transportation Research Board, the National Research Council, or the program sponsors. The information contained in this document was taken directly from the submission of the authors. This material has not been edited by the Transportation Research Board. SPECIAL NOTE: This document IS NOT an official publication of the second Strategic Highway Research Program, the Transportation Research Board, the National Research Council, or the National Academies.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. C. D. (Dan) Mote, Jr., is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Victor J. Dzau is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. C.D. (Dan) Mote, Jr., are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transportation Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. www.TRB.org www.national-academies.org

Contents 1 CHAPTER 1 Background 1 Problem Statement 1 Research Objectives 3 CHAPTER 2 Methodology 3 Tasks 4 Project Deliverables 6 CHAPTER 3 Findings and Applications 6 Identification of Participating Agencies 8 Revision of Proposed AASHTO Standards 9 Determination of Signature Spectra of State-Approved Materials 16 Pilot Field-Test Results 21 CHAPTER 4 Conclusions and Recommendations 21 Summary 22 R06B Deliverables 23 Recommendations for Implementation 24 Reference A-1 APPENDIX A Revised Draft AASHTO Methods B-1 APPENDIX B Equipment and Testing Protocols C-1 APPENDIX C Lab and Field-Test Results D-1 APPENDIX D Generic Implementation Plan

Next: CHAPTER 1: Background »
Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation) Get This Book
×
 Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IV–Implementation)
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s second Strategic Highway Research Program (SHRP 2) Renewal Project R06B has released a pre-publication, non-edited version of a report that documents the preliminary implementation activities to achieve integration of advanced testing methods into routine quality assurance/quality control processes.

This report builds upon the research reported in SHRP 2 Report S2-R06B-RW-1: Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials, which documents evaluation results of practical, portable spectroscopic equipment for in-situ analysis of a wide range of commonly used construction materials.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!