National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R8
Page ix
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R9
Page x
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R10
Page xi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R11
Page xii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R12
Page xiii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page R13

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ACKNOWLEDGMENT This work was sponsored by the American Association of State Highway and Transportation Officials (AASHTO), in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program (NCHRP), which is administered by the Transportation Research Board (TRB) of the National Academies. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FTA, Transit Development Corporation, or AOC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors. The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. C. D. Mote, Jr., is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. C. D. Mote, Jr., are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transporta- tion Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individu- als interested in the development of transportation. www.TRB.org www.national-academies.org

TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................... x LIST OF TABLES .................................................................................................................... xiii ACKNOWLEDGMENTS ........................................................................................................... xv ABSTRACT ............................................................................................................................. xvi EXECUTIVE SUMMARY ............................................................................................................ 1 1 BACKGROUND AND RESEARCH APPROACH ................................................................ 3 1.1 Background ................................................................................................................... 3 1.2 Special Challenges Related to Service Limit States ................................................... 3 1.3 Problem Statement and Research Objective ............................................................... 4 1.4 Scope of the Study ........................................................................................................ 4 1.5 Relationship to Project SHRP R19B ............................................................................. 6 1.6 Research Approach ....................................................................................................... 6 2 SERVICE LIMIT STATES IN CURRENT PRACTICES AND AVAILABLE LITERATURE ... 7 2.1 State-of-the-Art Summary ............................................................................................. 7 2.1.1 Questionnaire of Bridge Owners .......................................................................... 7 2.1.2 Literature Review ................................................................................................. 9 2.1.3 Overarching Characteristics of Other Specifications ............................................ 9 2.1.3.1 Reversible versus Irreversible Limit States .......................................... 9 2.1.3.2 Load-Driven versus Non-Load-Driven Limit States ........................... 10 2.1.4 Lessons Learned from Review of Existing Design Specifications ....................... 10 2.1.5 Search for Concrete SLSs Not Yet Implemented ............................................... 10 2.1.6 SLSs to be Considered in this Report ................................................................ 11 3 OVERVIEW OF CALIBRATION PROCESS .......................................................................12 3.1 Introduction ................................................................................................................. 12 3.2 Calibration by Determination of Reliability Indices ................................................... 13 3.2.1 Basic Framework ............................................................................................... 13 3.2.2 Closed-form Solutions ........................................................................................ 18 3.2.3 Using Monte Carlo Simulation in the Calibration Process ................................... 19 3.2.4 Statistical Parameters for Resistance and Other Loads (Excerpted from Kulicki, et al. 2007) ......................................................................................................... 19 3.2.4.1 Resistance Models ............................................................................... 19 3.2.4.2 Statistics of Loads Other Than Live Load .......................................... 21 3.3 “Deemed to Satisfy” .................................................................................................... 21 iv

4 Live Load for Calibration ..................................................................................................22 4.1 Development of Live Load Models for Service Limit States ..................................... 22 4.1.1 Introduction ........................................................................................................ 22 4.1.2 WIM Database ................................................................................................... 23 4.1.3 WIM Data Filtering ............................................................................................. 25 4.2 Initial Data Analysis ..................................................................................................... 31 4.2.1 Gross Vehicle Weight (GVW) ............................................................................. 31 4.2.2 Moments from the WIM Data ............................................................................. 32 4.2.3 Filtering of Presumed Illegal Overloads and Special Permit Loads .................... 35 4.2.4 Multiple Presence Analysis ................................................................................ 37 4.2.5 Project Guidelines Regarding Live Load ............................................................ 40 4.3 Statistical Parameters for Service Limit States Other Than Fatigue ........................ 41 4.3.1 Maximum Moments for Different Time Periods .................................................. 41 4.3.2 Statistical Parameters of Live Load .................................................................... 45 4.3.3 Reactions ........................................................................................................... 46 4.3.4 Axle Loads ......................................................................................................... 47 4.4 Development of Statistical Parameters of Fatigue Load .......................................... 54 4.4.1 Objective ............................................................................................................ 54 4.4.2 WIM Data Used for Fatigue Calculation ............................................................. 55 4.4.3 Fatigue Limit State II – Finite Fatigue Life .......................................................... 56 4.4.4 Fatigue Limit State I – The Maximum Moment Range Ratio .............................. 56 4.4.5 Statistical Parameters of Fatigue Live Load ....................................................... 61 4.4.6 Recommendations ............................................................................................. 63 4.5 Development of Overload and Permit Load Parameters .......................................... 64 4.5.1 Based on WIM Data ........................................................................................... 64 4.5.1.1 Load Model ........................................................................................... 64 4.5.2 Based on Louisiana Permit Load Citations ......................................................... 70 4.5.3 Conclusions Regarding Overloads and Permit Loads ........................................ 82 5 CALIBRATION RESULTS ..................................................................................................83 5.1 Cracking of Reinforced Concrete Components Service I Limit State – Annual Probability .............................................................................................................. 83 5.1.1 Live Load Model ................................................................................................ 84 5.1.2 Target Reliability Index....................................................................................... 84 5.1.2.1 Limit State Function ............................................................................. 84 5.1.2.2 Statistical Parameters of Variables Included in the Design .............. 84 5.1.2.3 Database of Reinforced Concrete Decks ............................................ 85 5.1.2.4 Selection of the Target Reliability Index ............................................. 86 v

5.1.3 Calibration Result............................................................................................... 88 5.1.3.1 Step 1: Formulate the Limit State Function and Identify Basic Variables ............................................................................................... 88 5.1.3.2 Step 2: Identify and Select Representative Structural Types and Design Cases ........................................................................................ 88 5.1.3.3 Step 3: Determine Load and Resistance Parameters for the Selected Design Cases ........................................................................ 88 5.1.3.4 Step 4: Develop Statistical Models for Load and Resistance ............ 88 5.1.3.5 Step 5: Develop the Reliability Analysis Procedure ........................... 88 5.1.3.6 Step 6: Calculate the Reliability Indices for Current Design Code and Current Practice ............................................................................ 89 5.1.3.7 Step 7: Review the Results and Select the Target Reliability Index, βT ................................................................................................ 89 5.1.3.8 Step 8: Select Potential Load and Resistance Factors for Service I, Crack Control through the Distribution of Reinforcement ............. 89 5.1.3.9 Step 9: Calculate Reliability Indices .................................................... 92 5.1.3.10 Summary and Recommendations for Service I Limit State, Crack Control through the Distribution of Reinforcement ........................... 92 5.1.4 Proposed AASHTO LRFD Revisions ................................................................. 92 5.2 Tension in Prestressed Concrete Beams Service III Limit State – Annual Probability .............................................................................................................. 92 5.2.1 History of Major Relevant Design Provisions and Revisions to AASHTO LRFD Specifications ..................................................................................................... 93 5.2.1.1 Load Factor for Live Load in Service III Load Combination .............. 93 5.2.1.2 Method of Calculating Prestressing Losses....................................... 94 5.2.2 Live Load Model ................................................................................................ 95 5.2.3 Methods of Analysis for Study Bridges ............................................................... 95 5.2.4 Target Reliability Index....................................................................................... 96 5.2.4.1 Limit State Functions Investigated ..................................................... 96 5.2.4.2 Statistical Parameters of Variables Included in the Design .............. 97 5.2.4.3 Database of Existing Bridges .............................................................. 99 5.2.4.4 Estimated Reliability Index of Existing Bridges ................................. 99 5.2.4.5 Database of Simulated Bridges ......................................................... 100 5.2.4.6 Selection of the Target Reliability Index ........................................... 104 5.2.5 Calibration Result............................................................................................. 104 5.2.5.1 Step 1: Formulate the Limit State Function and Identify Basic Variables ............................................................................................. 104 5.2.5.2 Step 2: Identify and Select Representative Structural Types and Design Cases ...................................................................................... 105 vi

5.2.5.3 Step 3: Determine Load and Resistance Parameters for the Selected Design Cases ...................................................................... 105 5.2.5.4 Step 4: Develop Statistical Models for Load and Resistance .......... 105 5.2.5.5 Step 5: Develop the Reliability Analysis Procedure ......................... 105 5.2.5.6 Step 6: Calculate the Reliability Indices for Current Design Code and Current Practice .......................................................................... 106 5.2.5.7 Step 7: Review the Results and Select the Target Reliability Index βT ......................................................................................................... 106 5.2.5.8 Step 8: Select Potential Load and Resistance Factors for Service III .......................................................................................................... 106 5.2.5.8.1 Step 8a: Select Potential Load and Resistance Factors for Service III - Bridges Designed for Maximum Concrete Tensile Stress of ................................................................ 107 5.2.5.8.2 Step 8b: Select Potential Load and Resistance Factors for Service III - Bridges Designed for Maximum Concrete Tensile Stress of .................................................................... 113 5.2.5.8.3 Step 8c: Select Potential Load and Resistance Factors for Service III – Bridges Designed for Maximum Concrete Tensile Stress of ................................................................... 116 5.2.5.9 Step 9: Calculate Reliability Indices .................................................. 119 5.2.5.10 Summary of Target Reliability Indices for Different Design and Performance Levels ........................................................................... 119 5.2.5.11 Effect of Proposed Changes on Design ............................................ 120 5.2.5.12 Summary and Recommendations for Service III Limit State ........... 121 5.2.6 Results for Adjacent Box Beams, Spread Box Beams, and American Segmental Box Institute (ASBI) Boxes ............................................................................... 123 5.2.7 Sections Designed Using Other Methods of Determining Prestressing Time- Dependent Losses and/or Section Properties .................................................. 127 5.2.8 Proposed AASHTO LRFD Revisions ............................................................... 128 5.3 Fatigue Limit State – Lifetime ................................................................................... 128 5.3.1 Formulate the Limit State Function .................................................................. 128 5.3.1.1 Select Structural Types and Design Cases ...................................... 129 5.3.1.2 Determine Load and Resistance Parameters for Selected Design Cases .................................................................................................. 129 5.3.1.2.1 Steel Reinforcement in Tension .................................................. 129 5.3.1.2.2 Concrete in Compression ............................................................ 130 5.3.1.3 Develop Statistical Models for Loads and Resistances .................. 130 5.3.1.3.1 Load Uncertainties ....................................................................... 130 5.3.1.3.2 Resistance Uncertainties ............................................................. 131 0.0948t cf f ′= 0.19t cf f ′= 0.25t cf f ′= vii

5.3.1.4 Develop the Reliability Analysis Procedure ..................................... 133 5.3.1.4.1 General .......................................................................................... 133 5.3.1.4.2 Monte-Carlo simulation ................................................................ 133 5.3.1.5 Calculate the Reliability Indices for Current Design Code or Current Practice ................................................................................. 133 5.3.1.6 Select the Target Reliability Index, βT ............................................... 134 5.3.1.7 Select Potential Load and Resistance Factors ................................. 134 5.3.1.8 Calculate Reliability Indices .............................................................. 135 5.3.2 Proposed AASHTO LRFD Revisions ............................................................... 135 5.4 Service Design for Overload ..................................................................................... 136 6 PROPOSED CHANGES TO AASHTO LRFD ................................................................... 138 6.1 Cracking of Prestressed Concrete – Currently Service III ...................................... 138 6.1.1 Proposed Revisions to Section 5 ..................................................................... 138 6.2 Cracking of Prestressed Concrete ........................................................................... 139 6.2.1 Proposed Revisions to Section 3 ..................................................................... 139 6.3 Fatigue ....................................................................................................................... 142 6.3.1 Proposed Revisions to Section 3 ..................................................................... 142 6.3.2 Proposed Revisions to Section 5 ..................................................................... 143 7 CONCLUSIONS AND SUGGESTED FUTURE RESEARCH ............................................ 144 7.1 Conclusions ............................................................................................................... 144 7.1.1 General Conclusions Related to the Calibration of Service Limit States ........... 144 7.1.2 Conclusions Related to the Live Load Model for Service Limit States .............. 144 7.1.3 General Conclusions Related to the Specific Limit States Calibrated ............... 145 7.1.3.1 Cracking of Reinforced Concrete Decks through the Distribution of Reinforcement ................................................................................ 145 7.1.3.2 Tension in Prestressed Concrete Beams ......................................... 145 7.1.3.3 Fatigue of Steel Reinforcement in Tension and Concrete in Compression ...................................................................................... 146 7.2 Suggested Future Research ..................................................................................... 146 REFERENCES ...................................................................................................................... 148 LIST OF ACRONYMS ............................................................................................................ 151 Appendix A ............................................................................................................................ A-1 Appendix B ............................................................................................................................ B-1 Appendix C ............................................................................................................................ C-1 Appendix D ............................................................................................................................ D-1 Appendix E ............................................................................................................................ E-1 viii

Appendix F ............................................................................................................................ F-1 Appendix G ............................................................................................................................ G-1 ix

LIST OF FIGURES Figure 3-1 Basic calibration framework – flowchart. .................................................................. 16 Figure 3-2 Use of normal probability paper. .............................................................................. 17 Figure 4-1 Flowchart of the Filtering Process. ........................................................................... 26 Figure 4-2 CDF of GVW - FHWA Data and Ontario. ................................................................. 27 Figure 4-3 CDF of GVW – Oregon, Florida and Ontario. ........................................................... 28 Figure 4-4 CDF of GVW – Indiana, Mississippi and Ontario. ..................................................... 28 Figure 4-5 CDF of GVW – California, New York and Ontario. ................................................... 28 Figure 4-6 Legend for All Graphs. ............................................................................................. 31 Figure 4-7 CDF of Gross Vehicle Weight (GVW). ...................................................................... 32 Figure 4-8 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 30 ft. ............................... 33 Figure 4-9 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 60 ft. ............................... 33 Figure 4-10 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 90 ft. ............................. 34 Figure 4-11 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 120 ft. ........................... 34 Figure 4-12 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 200 Ft. .......................... 34 Figure 4-13 Configuration of Extremely Loaded Truck. ............................................................. 35 Figure 4-14 Data Removal New York 0580 and 2680. .............................................................. 36 Figure 4-15 Data Removal New York 8280 and 8382. .............................................................. 36 Figure 4-16 Data Removal New York 9121 and Mississippi I-10. .............................................. 37 Figure 4-17 Two Cases of The Simultaneous Occurrence. ....................................................... 38 Figure 4-18 Histogram – Trucks Side by Side – Florida I-10 and New York 8382. .................... 38 Figure 4-19 Comparison of the Mean GVW and GVW of the Whole Population – Florida and New York. ................................................................................................................................. 39 Figure 4-20 Histogram – Trucks One After Another – Florida I-10 and New York 8382. ............ 39 Figure 4-21 Comparison of the Mean GVW and GVW of the Whole Population – Florida and New York. ................................................................................................................................. 40 Figure 4-22 Vertical Coordinates for Different Time Periods, ADTT = 1000 and Span = 120 ft. ........................................................................................................................... 44 Figure 4-23 CDFs of Mean Maximum Moment Ratios for ADTT = 1000 and Span Length 120 ft. ............................................................................................................................ 45 Figure 4-24 Determination of Mean Values at 1.5 σ. ................................................................. 46 Figure 4-25 Fatigue Failure on S-N Curve. ................................................................................ 54 Figure 4-26 The Threshold Stress on S-N Curve. ........................................................ 56 Figure 4-27 Moment Corresponding to the Upper 0.01%, Span = 120 ft. .................................. 57 Figure 4-28 The Maximum Moment Range Ratio (Fatigue LS I) for Simple Supported Bridges at the Mid-Span. ........................................................................................................................... 61 Figure 4-29 The Maximum Moment Range Ratio (Fatigue LS I) for Continuous Bridges at the Middle Support. ......................................................................................................................... 61 Figure 4-30 The Maximum Moment Range Ratio (Fatigue LS I) for Continuous Bridges at 0.4 of the Span Length. ....................................................................................................................... 62 Figure 4-31 Probability Density Function of the National Fatigue Load. .................................... 63 Figure 4-32 Annual Average Exceedances Versus Span. ......................................................... 67 Figure 4-33 Annual Average Exceedances Versus Ratio Truck/HL-93. ..................................... 67 ( )THF∆ x

Figure 4-34 Annual Average Events Scaled to ADTT = 2500 Versus Span. .............................. 69 Figure 4-35 Annual Average Events Scaled to ADTT = 2500 Versus Ratio Truck/HL-93. ......... 69 Figure 4-36 Gross Vehicle Weight of Louisiana Permit and WIM Trucks ................................... 76 Figure 4-37 Ratio of Axle Group Scale Weight and Permitted Axle Set Weight for Axle Sets with Different Number of Axles ......................................................................................................... 77 Figure 4-38 Ratio of GVW and Permitted GVW for Permit Vehicles .......................................... 78 Figure 4-39 Correlation of GVW to Ratio of GVW and Permitted GVW ..................................... 79 Figure 4-40 Correlation of GVW and Lane Moment for Various Span Lengths. (Laman 1993) .. 80 Figure 4-41 Histograms for NJ Permit Data and Louisiana Violation Records ........................... 82 Figure 5-1 Reliability Indices of Various Bridge Decks Designed Using a 1.0 Live Load Factor Over A 1 Year Return Period (ADTT=5000), Positive Moment Region, Class 1 Exposure ........ 90 Figure 5-2 Reliability Indices Of Various Bridge Decks Designed Using A 1.0 Live Load Factor Over A 1 Year Return Period (ADTT=5000), Negative Moment Region, Class 1 Exposure ....... 90 Figure 5-3 Reliability Indices Of Various Bridge Decks Designed Using A 1.0 Live Load Factor Over A 1 Year Return Period (ADTT=5000), Positive Moment Region, Class 2 Exposure ........ 91 Figure 5-4 Reliability Indices Of Various Bridge Decks Designed Using A 1.0 Live Load Factor Over A 1 Year Return Period (ADTT=5000), Negative Moment Region, Class 2 Exposure ....... 91 Figure 5-5 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=0.8, ( )........................................................................................................................ 109 Figure 5-6 Reliability indices for bridges at maximum allowable tensile stress limit state (ADTT=5000), γLL=0.8, ( ). ................................................................................ 109 Figure 5-7 Reliability Indices for bridges at maximum allowable crack width limit state (ADTT=5000), γLL=0.8, ( ). ................................................................................ 110 Figure 5-8 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ........................................................................................................................ 112 Figure 5-9 Reliability indices for bridges at maximum allowable tensile stress limit state (ADTT=5000), γLL=1.0 ( ). ................................................................................... 112 Figure 5-10 Reliability indices for bridges at maximum allowable crack width limit state (ADTT=5000), γLL=1.0 ( ).................................................................................... 113 Figure 5-11 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=0.8 ( )............................................................................................................................ 113 Figure 5-12 Reliability indices for bridges at maximum allowable tensile stress limit state (ADTT=5000), γLL=0.8 ( ). ..................................................................................... 114 Figure 5-13 Reliability indices for bridges at maximum allowable crack width limit state (ADTT=5000), γLL=0.8 ( ). ..................................................................................... 114 Figure 5-14 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( )............................................................................................................................ 115 0.0948t cf f ′= 0.0948t cf f ′= 0.0948t cf f ′= 0.0948t cf f ′= 0.0948t cf f ′= 0.0948t cf f ′= 0.19t cf f ′= 0.19t cf f ′= 0.19t cf f ′= 0.19t cf f ′= xi

Figure 5-15 Reliability indices for bridges at maximum tensile stress limit state (ADTT=5000), γLL=1.0 ( ). ............................................................................................................. 115 Figure 5-16 Reliability indices for bridges at maximum crack width limit state (ADTT=5000), γLL=1.0 ( ). ............................................................................................................. 116 Figure 5-17 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=0.8 ( ). ........................................................................................................................ 116 Figure 5-18 Reliability indices for bridges at maximum allowable tensile stress limit state (ADTT=5000), γLL=0.8 ( ). .................................................................................... 117 Figure 5-19 Reliability indices for bridges at maximum allowable crack width limit state (ADTT=5000), γLL=0.8 ( ). .................................................................................... 117 Figure 5-20 Reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ........................................................................................................................ 118 Figure 5-21 Reliability indices for bridges at maximum tensile stress limit state (ADTT=5000), γLL=1.0 ( ). ........................................................................................................... 118 Figure 5-22 Reliability indices for bridges at maximum crack width limit state (ADTT=5000), γLL=1.0 ( ). ........................................................................................................... 119 Figure 5-23- Adjacent box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ............................................................................... 124 Figure 5-24 Adjacent box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ................................................................................... 124 Figure 5-25 Spread box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ............................................................................... 125 Figure 5-26 Spread box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ................................................................................... 125 Figure 5-27 ASBI box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ............................................................................... 126 Figure 5-28 ASBI box beams, reliability indices for bridges at decompression limit state (ADTT=5000), γLL=1.0 ( ). ................................................................................... 126 Figure 5-29 Normal Probability Plot of Fatigue Resistance Data for Steel Reinforcement in Tension ................................................................................................................................... 132 Figure 5-30 Normal Probability Plot of Truncated Fatigue Resistance Data with Best-Fit Line for Steel Reinforcement in Tension .............................................................................................. 132 0.19t cf f ′= 0.19t cf f ′= 0.25t cf f ′= 0.25t cf f ′= 0.25t cf f ′= 0.25t cf f ′= 0.25t cf f ′= 0.25t cf f ′= 0.0948t cf f ′= 0.19t cf f ′= 0.0948t cf f ′= 0.19t cf f ′= 0.0948t cf f ′= 0.19t cf f ′= xii

LIST OF TABLES Table 2-1 SLSs Identified for Development ...............................................................................11 Table 3-1 Statistical Parameters of Component Resistance (Used with permission of the Transportation Research Board of the National Academies) ..................................................... 20 Table 3-2 Statistical Parameters of Dead Load ......................................................................... 21 Table 4-1 Summary of State Sites and Their Traffic Data for Figure 4-2 Through Figure 4-5 .... 27 Table 4-2 WIM Locations and Number of Recorded Vehicles ................................................... 30 Table 4-3 Removal of the Heaviest Vehicles for 90 ft Spans ..................................................... 36 Table 4-4 Vertical Coordinates for the Mean Maximum Moment. .............................................. 43 Table 4-5 Statistical Parameters of Live Load Moments for ADTT 250,  λ = μ + 1.5σ .............. 48 Table 4-6 Statistical Parameters of Live Load Moments for ADTT 1,000,  λ = μ + 1.5σ ........... 48 Table 4-7 Statistical Parameters of Live Load Moments for ADTT 2,500,  λ = μ + 1.5σ ........... 49 Table 4-8 Statistical Parameters of Live Load Moments for ADTT 5,000,  λ = μ + 1.5σ ........... 49 Table 4-9 Statistical Parameters of Live Load Moments for ADTT 10,000,  λ = μ + 1.5σ ......... 50 Table 4-10 Statistical Parameters of Live Load Reactions for ADTT 250, λ = μ + 1.5σ ............. 50 Table 4-11 Statistical Parameters of Live Load Reactions for ADTT 1,000,  λ = μ + 1.5σ ....... 51 Table 4-12 Statistical Parameters of Live Load Reactions for ADTT 2,500,  λ = μ + 1.5σ ........ 51 Table 4-13 Statistical Parameters of Live Load Reactions for ADTT 5,000,  λ = μ + 1.5σ ..... 52 Table 4-14 Statistical Parameters of Live Load Reactions for ADTT 10,000,  λ = μ + 1.5σ ...... 52 Table 4-15 Statistical Parameters for Axle Loads, λ = μ + 1.5σ ................................................. 53 Table 4-16 WIM Locations and Number of Vehicles Used for Fatigue Analysis......................... 55 Table 4-17 The Maximum Moment Range for Simply Supported Bridges at the Mid-Span ....... 58 Table 4-18 The Maximum Moment Range for Continuous Bridges at the Middle Support ......... 59 Table 4-19 The Maximum Moment Range for Continuous Bridges at 0.4 of the Span Length ... 60 Table 4-20 The Maximum Moment Range Ratio for Fatigue I LS .............................................. 63 Table 4-21 Number of Times WIM Moments Exceeded a Factored HL-93 Loadings ................ 65 Table 4-22 Exceedances Per Year ............................................................................................ 66 Table 4-23 Events Per Year Scaled to ADTT = 2500 ................................................................ 68 Table 4-24 Statistics of Cited Vehicles When All Permit Vehicles are Considered .................... 71 Table 4-25 Statistics of Cited Permit Vehicles When Only Vehicles with GVW Greater Than 80,000 lbs are Considered ........................................................................................................ 72 Table 4-26 Number of GVW Violations Per Weight Class for Louisiana Permit Vehicles ........... 75 Table 4-27 Statistics for Different GVW Categories ................................................................... 81 Table 5-1 Summary of Statistical Information for Variables used in the Calibration of Service I Limit State for Crack Control ..................................................................................................... 85 Table 5-2 Summary Information of 15 Bridge Decks Designed using AASHTO LRFD Conventional Deck Design Method ........................................................................................... 86 Table 5-3 Summary of Reliability Indices for Concrete Decks Designed According to AASHTO LRFD (2012) ............................................................................................................................. 87 Table 5-4 Reliability Indices of Existing Bridges based on 1-year Return Period ....................... 88 Table 5-5 Relation Between Limiting Criteria and Reliability Index for a Given Girder ............... 97 Table 5-6 Random Variables and the Value of Their Statistical Parameters .............................. 98 Table 5-7 Summary of Reliability Indices for Existing I- and Bulb T Girder Bridges with One Lane Loaded and Return Period of 1 Year .............................................................................. 100 Table 5-8 Summary of the Reliability Indices of Simulated Bridges Designed Using AASHTO Girders with ADTT=5000 and .......................................................................... 102 Table 5-9 Summary of the Reliability Indices of Simulated Bridges Designed Using AASHTO Girders with ADTT=5000 and .............................................................................. 103 0.0948t cf f ′= 0.19t cf f ′= xiii

Table 5-10 Reliability Indices for Existing and Simulated Bridges (Return Period of 1 Year and ADTT 5000) ............................................................................................................................ 104 Table 5-11 Summary Information of Bridges Designed with γLL=0.8, ( ) ............. 108 Table 5-12 Summary Information of Bridges Designed with γLL=1.0, ( ) ............ 111 Table 5-13 Summary of Reliability Indices for Simulated Bridges Designed for . 119 Table 5-14 Summary of Reliability Indices for Simulated Bridges Designed for .... 120 Table 5-15 Summary of Reliability Indices for Simulated Bridges Designed for ... 120 Table 5-16 Comparison of number of strands required for different design assumptions ........ 122 Table 5-17 Average Reliability Indices for Different Types of Girders ...................................... 127 Table 5-18 Current Fatigue Load Factors ................................................................................ 129 Table 5-19 Load Uncertainties ................................................................................................ 131 Table 5-20 Resistance Uncertainties ....................................................................................... 133 Table 5-21 Current Reliability Indices for the AASHTO LRFD Fatigue I Limit States ............... 134 Table 5-22 Current Reliability Indices for Steel Members Using AASHTO Fatigue I and Fatigue II Limit States .......................................................................................................................... 134 Table 5-23 Proposed Fatigue I Limit-State Resistance Factors ............................................... 135 Table 5-24 Summary of Relevant Articles in AASHTO LRFD for Foundation Deformations .... 136 0.0948t cf f ′= 0.0948t cf f ′= 0.0948t cf f ′= 0.19t cf f ′= 0.25t cf f ′= xiv

Next: Acknowledgements »
Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability Get This Book
×
 Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s National Cooperative Highway Research Program (NCHRP) Web-Only Document 201: Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability explores calibrating the service limit states related to concrete bridges in the American Association of State Highway and Transportation Officials’ Load Resistance Factor Design Bridge Design Specifications (AASHTO LRFD).

A limit state is defined as the boundary between acceptable and unacceptable performance of the structure or its component.

According to the report, the limit states amenable to statistical calibration using the information currently available are cracking of reinforced concrete components, tensile stresses in concrete in prestressed concrete components, and fatigue of concrete and reinforcement

The results of the work indicated that the main problem in calibrating the service limit states is the lack of clear consequences to exceeding the limit state and the ability to define more than one limit state function to address the same phenomenon.

In the absence of reasons to increase or decrease the reliability inherent in the designs performed using the current specifications, the goal of the calibration was to help achieve uniform reliability with an average reliability similar to that inherent in current designs.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!