National Academies Press: OpenBook
« Previous: 6 Summary of Key Points
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

References

Alcaide, F., P.-L. Cabot, and E. Brillas. 2006. Fuel cells for chemicals and energy cogeneration. Journal of Power Sources 153(1):47-60.

Almutairi, S. M. T., B. Mezari, P. C. M. M. Magusin, E. A. Pidko, and E. J. M. Hensen. 2012. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes. ACS Catalysis 2(1):71-83.

Alvarez-Galvan, M. C., N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, and J. L. G. Fierro. 2011. Direct methane conversion routes to chemicals and fuels. Catalysis Today 171(1):15-23.

American Chemistry Council (ACC). 2013. Shale gas, competitiveness, and new US chemical industry investment: An analysis based on announced projects. Washington, DC: American Chemistry Council.

———. 2014. American chemistry: Growing the U.S. economy, providing jobs, enhancing safety. Washington, DC: ACC. Available at https://blog.americanchemistry.com/2014/06/american-chemistry-growing-the-u-s-economy-providing-jobsenhancing-safety [accessed March 7, 2016].

———. 2015a. The rising competitive advantage of U.S. plastics. Washington, DC: ACC.

———. 2015b. Guide to the business of chemistry—2015. Washington, DC: ACC.

———. 2016. Shale gas and new U.S. chemical industry investment: $164 billion and counting. Washington, DC: American Chemistry Council. Available at https://www.americanchemistry.com/Policy/Energy/Shale-Gas/Slides-Shale-Gas-and-New-US-Chemical-Industry-Investment.pdf [accessed March 7, 2016].

ARPA-E (Advanced Research Projects Agency-Energy). 2012. Efficient natural gas-to-methanol conversion. Available at http://arpa-e.energy.gov/?q=slick-sheet-project/efficient-natural-gas-methanol-conversion [accessed April 13, 2016].

Ascoop, I., V. V. Galvita, K. Alexopoulos, M.-F. Reyniers, P. Van Der Voort, V. Bliznuk, and G. B. Marin. 2016. The role of CO2 in the dehydrogenation of propane over WOx–VOx/ SiO2. Journal of Catalysis 335:1-10.

Au, C.-T., T.-J. Jhou, W.-J. Lai, and C.-F. Ng. 1997. An ab initio study of methane activation on lanthanide oxide. Catalysis Letters 49(1-2):53-58.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Banerjee, R., Y. Proshlyakov, J. D. Lipscomb, and D. A. Proshlyakov. 2015. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518(7539):431-434.

Basset, J.M., C. Coperet, D. Soulivong, M.Taoufik, J. Thivolle Cazat. 2010. Metathesis of alkanes and related reactions. Accounts of Chemical Research 43:323-334.

Beck, B., V. Fleischer, S. Arndt, M. G. Hevia, A. Urakawa, P. Hugo, and R. Schomäcker. 2014. Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineering. Catalysis Today 228:212-218.

Bell, A. 2016. “Conversion of Methane and Light Alkanes to Chemicals over Hetergeneous Catalysts—Lessons Learned from Experinment and Theory.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Bodke, A. S., D. A. Olschki, L. D. Schmidt, and E. Ranzi. 1999. High selectivities to ethylene by partial oxidation of ethane. Science 285(5428):712-715.

Botella, P., E. García-González, A. Dejoz, J. M. López Nieto, M. I. Vázquez, and J. González-Calbet. 2004. Selective oxidative dehydrogenation of ethane on movtenbo mixed metal oxide catalysts. Journal of Catalysis 225(2):428-438.

Bricker, J. 2016. “History and State of the Art of Ethane/Propane Dehydrogenation Catalysis.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Brookhart, M., M. Findlater, D. Guironnet, and T. W. Lyons. 2012. Synthesis of p-xylene from ethylene. Journal of the American Chemical Society 134:15708-15711.

Brown, M. J., and N. D. Parkyns. 1991. Progress in the partial oxidation of methane to methanol and formaldehyde. Catalysis Today 8(3):305-335.

Cavani, F., N. Ballarini, and A. Cericola. 2007. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today 127(1-4):113-131.

Chan, S. I., and S. S. F. Yu. 2008. Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: The case for a tricopper cluster. Accounts of Chemical Research 41(8):969-979.

Chin, Y.-H., C. Buda, M. Neurock, and E. Iglesia. 2013. Consequences of metal–oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. Journal of the American Chemical Society 135(41):15425-15442.

Cornils, B., W. A. Herrmann, and M. Rasch. 1994. Otto Roelen, pioneer in industrial homogeneous catalysis. Angewandte Chemie International Edition in English 33(21):2144-2163.

Cui, Y., X. Shao, M. Baldofski, J. Sauer, N. Nilius, and H. J. Freund. 2013. Adsorption, activation, and dissociation of oxygen on doped oxides. Angewandte Chemie, International Edition in English 52(43):11385-11387.

Czuprat, O., S. Werth, S. Schirrmeister, T. Schiestel, and J. Caro. 2009. Olefin production by a multistep oxidative dehydrogenation in a perovskite hollow-fiber membrane reactor. ChemCatChem 1(3):401-405.

DeRosa, S. E., and D. T. Allen. 2015. Impact of natural gas and natural gas liquids supplies on the United States chemical manufacturing industry: Production cost effects and identification of bottleneck intermediates. ACS Sustainable Chemistry & Engineering 3(3):451-459.

Dubois, J.-L., M. Bisiaux, H. Mimoun, and C. J. Cameron. 1990. X-ray photoelectron spectroscopic studies of lanthanum oxide based oxidative coupling of methane catalysts. Chemistry Letters 19(6):967-970.

Duff, B. 2012. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy presentation at the National Academies of Sciences, Engineering, and Medicine’s Board on Chemical Sciences and Technology’s Chemical Sciences Roundtable Workshop, May 31, 2012.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

EIA (U.S. Energy Information Administration). 2015. U.S. Crude Oil and Natural Gas Proved Reserves. Available at https://www.eia.gov/naturalgas/crudeoilreserves [accessed March 7, 2016].

———. 2016. Short-term outlook for hydrocarbon gas liquids. Washington, DC: U.S. Department of Energy.

Fan, Q. 2015. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production. Filed and issued.

Fang, X., S. Li, J. Gu, and D. Yang. 1992. Preparation and characterization of W-Mn catalyst for oxidative coupling of methane. Journal of Molecular Catalysis (China) 6:255-261.

Feng, X., J. Wu, A. T. Bell, and M. Salmeron. 2015. An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. The Journal of Physical Chemistry C 119(13):7124-7129.

Ferreira, V. J., P. Tavares, J. L. Figueiredo, and J. L. Faria. 2013. Ce-doped La2O3-based catalyst for the oxidative coupling of methane. Catalysis Communications 42:50-53.

Forde, M. M., R. D. Armstrong, C. Hammond, Q. He, R. L. Jenkins, S. A. Kondrat, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. Willock, C. J. Kiely, and G. J. Hutchings. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135(30):11087-11099.

Galvita, V., G. Siddiqi, P. Sun, and A. T. Bell. 2010. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. Journal of Catalysis 271(2):209-219.

Gao, J., Y. Zheng, G. B. Fitzgerald, J. de Joannis, Y. Tang, I. E. Wachs, and S. G. Podkolzin. 2014. Structure of Mo2Cx and Mo4Cx molybdenum carbide nanoparticles and their anchoring sites on ZSM-5 zeolites. The Journal of Physical Chemistry C 118(9):4670-4679.

Gao, J., Y. Zheng, J. M. Jehng, Y. Tang, I. E. Wachs, and S. G. Podkolzin. 2015. Catalysis. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348(6235):686-690.

Gärtner, C. A., A. C. van Veen, and J. A. Lercher. 2013. Oxidative dehydrogenation of ethane: Common principles and mechanistic aspects. ChemCatChem 5(11):3196-3217.

———. 2014. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts. Journal of the American Chemical Society 136(36):12691-12701.

Gaspar, N. J., I. S. Pasternak, and M. Vadekar. 1974. H2S promoted oxidative dehydrogenation of hydrocarbons in molten media. The Canadian Journal of Chemical Engineering 52(6):793-797.

Gerken, J. B., and S. S. Stahl. 2015. High-potential electrocatalytic O2 reduction with nitroxyl/NOx mediators: Implications for fuel cells and aerobic oxidation catalysis. ACS Central Science 1(5):234-243.

German, E. D., and M. Sheintuch. 2013. Predicting CH4 dissociation kinetics on metals: Trends, sticking coefficients, H tunneling, and kinetic isotope effect. The Journal of Physical Chemistry C 117(44):22811-22826.

Gesser, H. D., N. R. Hunter, and C. B. Prakash. 1985. The direct conversion of methane to methanol by controlled oxidation. Chemical Reviews 85(4):235-244.

Ghanta, M., T. Ruddy, D. Fahey, D. Busch, and B. Subramaniam. 2013. Is the liquid-phase H2O2-based ethylene oxide process more economical and greener than the gas-phase O2based silver-catalyzed process? Industrial & Engineering Chemistry Research 52(1):18-29.

Goldman, A. S., A. H. Roy, Z. Huang, R. Ahuja, W. Schinski, and M. Brookhart. 2006. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312(5771):257-261.

Groothaert, M. H., P. J. Smeets, B. F. Sels, P. A. Jacobs, and R. A. Schoonheydt. 2005. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Journal of the American Chemical Society 127(5):1394-1395.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Grundner, S., M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. M. Hensen, A. Jentys, M. Sanchez-Sanchez, and J. A. Lercher. 2015. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications 6:7546.

Guo, X., G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, and X. Bao. 2014. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184):616-619.

Hammond, C., M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, and G. J. Hutchings. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie, International Edition in English 51(21):5129-5133.

Hammond, C., N. Dimitratos, J. A. Lopez-Sanchez, R. L. Jenkins, G. Whiting, S. A. Kondrat, M. H. ab Rahim, M. M. Forde, A. Thetford, H. Hagen, E. E. Stangland, J. M. Moulijn, S. H. Taylor, D. J. Willock, and G. J. Hutchings. 2013. Aqueous-phase methane oxidation over FeMFI zeolites; promotion through isomorphous framework substitution. ACS Catalysis 3(8):1835-1844.

Hashiguchi, B. G., S. M. Bischof, M. M. Konnick, and R. A. Periana. 2012. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction. Accounts of Chemical Research 45(6):885-898.

Hinsen, W. W., and M. Baerns. 1983. Oxidative coupling of methane to C2 hydrocarbons in the presence of different catalysts. Chemiker-Zeitung 107:223-226.

Holmen, A. 2009. Direct conversion of methane to fuels and chemicals. Catalysis Today 142(1-2):2-8.

Hristov, I. H., and T. Ziegler. 2003. The possible role of SO3 as an oxidizing agent in methane functionalization by the catalytica process. A density functional theory study. Organometallics 22(8):1668-1674.

Huang, A., E. Rolfe, E. C. Carson, M. Brookhart, A. S. Goldman, S. H. El-Khalafy, and A. H. Roy MacArthur. 2010. Efficient heterogeneous dual catalyst systems for alkane metathesis. Advanced Synthesis and Catalysis 352:125-135.

Jira, R. 2009. Acetaldehyde from ethylene: A retrospective on the discovery of the Wacker process. Angewandte Chemie, International Edition in English 48(48):9034-9037.

Joglekar, M., V. Nguyen, S. Pylypenko, C. Ngo, Q. Li, M. E. O’Reilly, T. S. Gray, W. A. Hubbard, T. B. Gunnoe, A. M. Herring, and B. G. Trewyn. 2016. Organometallic complexes anchored to conductive carbon for electrocatalytic oxidation of methane at low temperature. Journal of the American Chemical Society 138(1):116-125.

Jones, C. A., J. J. Leonard, and J. A. Sofranko. 1984. Methane conversion. Filed and issued.

Jones, G., J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J. R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested, and J. K. Nørskov. 2008. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis 259(1):147-160.

Jones, M. 2016. “Overview of the Shale Gas Boom and its Impact on the Chemical Industry.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Kado, S., K. Urasaki, Y. Sekine, and K. Fujimoto. 2003. Direct conversion of methane to acetylene or syngas at room temperature using non-equilibrium pulsed discharge. Fuel 82(11):1377-1385.

Kalyuzhnaya, M. G., A. W. Puri, and M. E. Lidstrom. 2015. Metabolic engineering in methanotrophic bacteria. Metabolic Engineering 29:142-152.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Katsaounis, A. 2010. Recent developments and trends in the electrochemical promotion of catalysis (epoc). Journal of Applied Electrochemistry 40(5):885-902.

Keller, A. 2012. NGL 101—The Basics. Available at http://www.eia.gov/conference/ngl_virtual/eia-ngl_workshop-anne-keller.pdf [accessed June 1, 2016].

Keller, G. E., and M. M. Bhasin. 1982. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. Journal of Catalysis 73(1):9-19.

Kiatkittipong, W., T. Tagawa, S. Goto, S. Assabumrungrat, and P. Praserthdam. 2004. Oxidative coupling of methane in the LSM/YSZ/LaAIO SOFC reactor. Journal of Chemical Engineering of Japan 37(12):1461-1470.

Koirala, R., R. Buechel, F. Krumeich, S. E. Pratsinis, and A. Baiker. 2015. Oxidative dehydrogenation of ethane with CO2 over flame-made Ga-loaded TiO2. ACS Catalysis 5(2):690-702.

Kumar, C. P., S. Gaab, T. E. Muller, and J. A. Lercher. 2008. Oxidative dehydrogenation of light alkanes on supported molten alkali metal chloride catalysts. Topics in Catalysis 50(1):156-167.

Kwapien, K., J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke, and R. Schlogl. 2014. Sites for methane activation on lithium-doped magnesium oxide surfaces. Angewandte Chemie, International Edition in English 53(33):8774-8778.

Labinger, J. A., and J. E. Bercaw. 2002. Understanding and exploiting C–H bond activation. Nature 417(6888):507-514.

———. 2015. Mechanistic studies on the Shilov system: A retrospective. Journal of Organometallic Chemistry 793:47-53.

Lee, B., and T. Hibino. 2011. Efficient and selective formation of methanol from methane in a fuel cell-type reactor. Journal of Catalysis 279(2):233-240.

Lercher, J. 2016. “Lighter Feedstocks—Implications and Chances for Catalysis.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Levan, T., M. Che, J. M. Tatibouet, and M. Kermarec. 1993. Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3. Journal of Catalysis 142(1):18-26.

Lieberman, R. L., and A. C. Rosenzweig. 2005. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434(7030):177-182.

Lin, C. H., K. D. Campbell, J. X. Wang, and J. H. Lunsford. 1986. Oxidative dimerization of methane over lanthanum oxide. Journal of Physical Chemistry 90(4):534-537.

Liu, S., L. Wang, R. Ohnishi, and M. Ichikawa. 1999. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects. Journal of Catalysis 181(2):175-188.

Liu, S., K. T. Chuang, and J.-L. Luo. 2016. Double-layered perovskite anode with in situ ex-solution of a Co–Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell. ACS Catalysis 6(2):760-768.

Lorkovic, I. M., A. Yilmaz, G. A. Yilmaz, X.-P. Zhou, L. E. Laverman, S. Sun, D. J. Schaefer, M. Weiss, M. L. Noy, C. I. Cutler, J. H. Sherman, E. W. McFarland, G. D. Stucky, and P. C. Ford. 2004. A novel integrated process for the functionalization of methane and ethane: Bromine as mediator. Catalysis Today 98(1–2):317-322.

Louis, C., T. L. Chang, M. Kermarec, T. L. Van, J. M. Tatibuët, and M. Che. 1993. EPR study of the stability of the O2 species on La2O3 and of their role in the oxidative coupling of methane. Colloids and Surfaces A: Physicochemical and Engineering Aspects 72:217-228.

Lunsford, J. H. 1995. The catalytic oxidative coupling of methane. Angewandte Chemie, International Edition in English 34(9):970-980.

———. 2000. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century. Catalysis Today 63(2–4):165-174.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Lyons, T. W., D. Guironnet, M. Findlater, and M. Brookhart. 2012. Synthesis of p-xylene from ethylene. Journal of the American Chemical Society 134(38):15708-15711.

Marafee, A., C. Liu, G. Xu, R. Mallinson, and L. Lobban. 1997. An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La2O3 catalyst. Industrial & Engineering Chemistry Research 36(3):632-637.

Maughon, B. 2016. “Methane to Ethylene: Drivers, History, Challenges, and Current Developments.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

McFarland, E. 2016. “Activation of Natural Gas Using Nontraditional Oxidants.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Melzer, D., P. Xu, D. Hartmann, Y. Zhu, N. D. Browning, M. Sanchez-Sanchez, and J. A. Lercher. 2016. Atomic-scale determination of active facets on the MoVTeNb oxide M1 phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation. Angewandte Chemie, International Edition in English 55(31):8873.

Mukhopadhyay, S., M. Zerella, and A. T. Bell. 2005. A high-yield, liquid-phase approach for the partial oxidation of methane to methanol using SO3 as the oxidant. Advanced Synthesis & Catalysis 347(9):1203-1206.

Oshima, K., T. Shinagawa, M. Haraguchi, and Y. Sekine. 2013. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field. International Journal of Hydrogen Energy 38(7):3003-3011.

Palkovits, R., M. Antonietti, P. Kuhn, A. Thomas, and F. Schüth. 2009. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angewandte Chemie International Edition in English 48(37):6909-6912.

Palmer, M. S., M. Neurock, and M. M. Olken. 2002. Periodic density functional theory study of methane activation over La2O3: Activity of O2–, O, O22–, oxygen point defect, and Sr2+-doped surface sites. Journal of the American Chemical Society 124(28):8452-8461.

Peng, Z., F. Somodi, S. Helveg, C. Kisielowski, P. Specht, and A. T. Bell. 2012. High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. Journal of Catalysis 286:22-29.

Periana, R. A., D. J. Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G. Voss, and T. Masuda. 1993. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259(5093):340-343.

Periana, R. A., D. J. Taube, S. Gamble, H. Taube, T. Satoh, and H. Fujii. 1998. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280(5363):560-564.

Periana, R. A., O. Mironov, D. Taube, G. Bhalla, and C. Jones. 2003. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science 301(5634):814-818.

Porosoff, M. D., M. N. Myint, S. Kattel, Z. Xie, E. Gomez, P. Liu, and J. G. Chen. 2015. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation. Angewandte Chemie, International Edition in English 54(51):15501-15505.

Quddus, M. R., Y. Zhang, and A. K. Ray. 2010. Multi-objective optimization in solid oxide fuel cell for oxidative coupling of methane. Chemical Engineering Journal 165(2):639-648.

Ramos, R., M. Menéndez, and J. Santamaría. 2000. Oxidative dehydrogenation of propane in an inert membrane reactor. Catalysis Today 56(1-3):239-245.

Rebeilleau-Dassonneville, M., S. Rosini, A. C. v. Veen, D. Farrusseng, and C. Mirodatos. 2005. Oxidative activation of ethane on catalytic modified dense ionic oxygen conducting membranes. Catalysis Today 104(2-4):131-137.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Rust, F. F., and W. E. Vaughan. 1949. Oxidation of hydrocarbons catalyzed by hydrogen bromide - Summary. Industrial & Engineering Chemistry 41(11):2595-2597.

Saadi, S., F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C. C. Appel, and J. K. Nørskov. 2010. On the role of metal step-edges in graphene growth. The Journal of Physical Chemistry C 114(25):11221-11227.

Sadow, A. D., and T. D. Tilley. 2003. Homogeneous catalysis with methane. A strategy for the hydromethylation of olefins based on the nondegenerate exchange of alkyl groups and sigma-bond metathesis at scandium. Journal of the American Chemical Society 125(26):7971-7977.

Salehi, M.-S., M. Askarishahi, H. R. Godini, O. Görke, and G. Wozny. 2016. Sustainable process design for oxidative coupling of methane (OCM): Comprehensive reactor engineering via computational fluid dynamics (CFD) analysis of OCM packed-bed membrane reactors. Industrial & Engineering Chemistry Research 55(12):3287-3299.

Sanborn, C. E., E. A. Anderson, and H. H. Engel. 1968. Iodinative dehydrogenation and iodine recovery. US3405195 A, filed October 8, 1968, and issued.

Schäfer, R., M. Noack, P. Kölsch, M. Stöhr, and J. Caro. 2003. Comparison of different catalysts in the membrane-supported dehydrogenation of propane. Catalysis Today 82(1-4):15-23.

Schwach, P., M. G. Willinger, A. Trunschke, and R. Schlögl. 2013. Methane coupling over magnesium oxide: How doping can work. Angewandte Chemie, International Edition in English 52(43):11381-11384.

Schwach, P., W. Frandsen, M.-G. Willinger, R. Schlögl, and A. Trunschke. 2015. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: I. Kinetic study. Journal of Catalysis 329:560-573.

Sehested, J. 2006. Four challenges for nickel steam-reforming catalysts. Catalysis Today 111(1-2):103-110.

Sekine, Y., K. Tanaka, M. Matsukata, and E. Kikuchi. 2009. Oxidative coupling of methane on Fe-doped La2O3 catalyst. Energy & Fuels 23(2):613-616.

Sekine, Y., M. Haraguchi, M. Matsukata, and E. Kikuchi. 2011. Low temperature steam reforming of methane over metal catalyst supported on CexZr1−XO2 in an electric field. Catalysis Today 171(1):116-125.

Shah, N. N., M. L. Hanna, and R. T. Taylor. 1996. Batch cultivation of methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnology and Bioengineering 49:161-171.

Shalygin, A., E. Paukshtis, E. Kovalyov, and B. Bal’zhinimaev. 2013. Light olefins synthesis from C1-C2 paraffins via oxychlorination processes. Frontiers of Chemical Science and Engineering 7(3):279-288.

Shilov, A. E., and G. B. Shul’pin. 1997. Activation of C-H bonds by metal complexes. Chemical Reviews 97(8): 2879-2932.

Silberova, B., M. Fathi, and A. Holmen. 2004. Oxidative dehydrogenation of ethane and propane at short contact time. Applied Catalysis A: General 276(1-2):17-28.

Simon, U., O. Görke, A. Berthold, S. Arndt, R. Schomäcker, and H. Schubert. 2011. Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane. Chemical Engineering Journal 168(3):1352-1359.

Somodi, F., Z. Peng, A. B. Getsoian, and A. T. Bell. 2011. Effects of the synthesis parameters on the size and composition of Pt–Sn nanoparticles prepared by the polyalcohol reduction method. The Journal of Physical Chemistry C 115(39):19084-19090.

Somodi, F., S. Werner, Z. Peng, A. B. Getsoian, A. N. Mlinar, B. S. Yeo, and A. T. Bell. 2012. Size and composition control of Pt-In nanoparticles prepared by seed-mediated growth using bimetallic seeds. Langmuir 28(7):3345-3349.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Soorholtz, M., R. J. White, T. Zimmermann, M.-M. Titirici, M. Antonietti, R. Palkovits, and F. Schuth. 2013. Direct methane oxidation over Pt-modified nitrogen-doped carbons. Chemical Communications 49(3):240-242.

Soulivong, D., C. Copéret, J. Thivolle-Cazat, J.-M. Basset, B. M. Maunders, R. B. A. Pardy, and G. J. Sunley. 2004. Cross-metathesis of propane and methane: A catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angewandte Chemie International Edition in English 43(40):5366-5369.

Spinner, N., and W. E. Mustain. 2013. Electrochemical methane activation and conversion to oxygenates at room temperature. Journal of the Electrochemical Society 160(11): F1275-F1281.

Stahl, S. 2016. “Homogeneous Catalysis for C-H Activation and Other Approaches to Shale Gas Utilization.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Stansch, Z., L. Mleczko, and M. Baerns. 1997. Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst. Industrial & Engineering Chemistry Research 36(7):2568-2579.

Strong, P. J., S. Xie, and W. P. Clarke. 2015. Methane as a resource: Can the methanotrophs add value? Environmental Science & Technology 49(7):4001-4018.

Subramaniam, B. 2016. “Environmental Impacts.” Presented at the Board on Chemical Sciences and Technology Workshop on The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis, Washington, DC, March 7–9, 2016.

Sun, P., G. Siddiqi, W. C. Vining, M. Chi, and A. T. Bell. 2011. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. Journal of Catalysis 282(1):165-174.

Tabata, K., Y. Teng, T. Takemoto, E. Suzuki, M. A. Bañares, M. A. Peña, and J. L. G. Fierro. 2002. Activation of methane by oxygen and nitrogen oxides. Catalysis Reviews 44(1):1-58.

Tomás, R. A., J. C. M. Bordado, and J. F. P. Gomes. 2013. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chemical Reviews 113(10):7421-7469.

Upham, D. C., M. J. Gordon, H. Metiu, and E. W. McFarland. 2016. Halogen-mediated oxidative dehydrogenation of propane using iodine or molten lithium iodide. Catalysis Letters 146(4):744-754.

U.S. International Energy Agency, International Council of Chemical Associations, and DECHEMA. 2013. Technology Roadmap—Energy and GHG Reductions in the Chemical Industry via Catalytics Processes. Available at www.iea.org/publications/freepublications/publication/Chemical_Roadmap_2013_Final_WEB.pdf [accessed March 7, 2016].

Wang, S.-G., X.-Y. Liao, J. Hu, D.-B. Cao, Y.-W. Li, J. Wang, and H. Jiao. 2007. Kinetic aspect of CO2 reforming of CH4 on Ni(111): A density functional theory calculation. Surface Science 601(5):1271-1284.

Wang, W., A. D. Liang, and S. J. Lippard. 2015. Coupling oxygen consumption with hydrocarbon oxidation in bacterial multicomponent monooxygenases. Accounts of Chemical Research 48(9):2632-2639.

Wang, Y., Y. Takahashi, and Y. Ohtsuka. 1999. Carbon dioxide as oxidant for the conversion of methane to ethane and ethylene using modified CeO2 catalysts. Journal of Catalysis 186(1):160-168.

Wei, J., and E. Iglesia. 2004. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis 224(2):370-383.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

Woertink, J. S., P. J. Smeets, M. H. Groothaert, M. A. Vance, B. F. Sels, R. A. Schoonheydt, and E. I. Solomon. 2009. A [Cu2O]2+ core in CuZSM-5, the active site in the oxidation of methane to methanol. Proceedings of the National Academy of Sciences of the United States of America 106(45):18908-18913.

Wood, B. R., J. A. Reimer, M. T. Janicke, and K. C. Ott, and A. T. Bell. 2004. Methanol formation of Fe/Al-MFI via the oxidation of methane by nitrous oxide. Journal of Catalysis 225:300-306.

Wu, J., Z. Peng, and A. T. Bell. 2014a. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100−x/Mg(Al)O (70 ≤ × ≤ 100). Journal of Catalysis 311:161-168.

Wu, J., Z. Peng, P. Sun, and A. T. Bell. 2014b. N-butane dehydrogenation over Pt/Mg(In)(Al) O. Applied Catalysis A: General 470:208-214.

Wu, J., S. Mallikarjun Sharada, C. Ho, A. W. Hauser, M. Head-Gordon, and A. T. Bell. 2015. Ethane and propane dehydrogenation over Pt/Mg(In)(Al)O. Applied Catalysis A: General 506:25-32.

Wu, J., S. Helveg, S. Ullman, Z. Peng, and A. T. Bell. 2016. Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. Journal of Catalysis 338:295-304.

Yildiz, M., Y. Aksu, U. Simon, K. Kailasam, O. Goerke, F. Rosowski, R. Schomäcker, A. Thomas, and S. Arndt. 2014a. Enhanced catalytic performance of MnxOy-Na2WO4/ SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chemical Communications (Cambridge) 50(92):14440-14442.

Yildiz, M., U. Simon, T. Otremba, Y. Aksu, K. Kailasam, A. Thomas, R. Schomäcker, and S. Arndt. 2014b. Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catalysis Today 228:5-14.

Zavala-Araiza, D., D. R. Lyon, R. A. Alvarez, K. J. Davis, R. Harriss, S. C. Herndon, A. Karion, E. A. Kort, B. K. Lamb, X. Lan, A. J. Marchese, S. W. Pacala, A. L. Robinson, P. B. Shepson, C. Sweeney, R. Talbot, A. Townsend-Small, T. I. Yacovitch, D. J. Zimmerle, and S. P. Hamburg. 2015. Reconciling divergent estimates of oil and gas methane emissions. Proceedings of the National Academy of Sciences of the United States of America 112(51):15597-15602.

Zavyalova, U., M. Holena, R. Schlogl, and M. Baerns. 2011. Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High-Performance Catalysts. ChemCatChem. 3(12):1935-1947.

Zboray, M., A. T. Bell, and E. Iglesia. 2009. Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. The Journal of Physical Chemistry C 113(28):12380-12386.

Zhang, A., S. Sun, Z. J. A. Komon, N. Osterwalder, S. Gadewar, P. Stoimenov, D. J. Auerbach, G. D. Stucky, and E. W. McFarland. 2011. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves. Physical Chemistry Chemical Physics 13(7):2550-2555.

Zhu, Q., S. L. Wegener, C. Xie, O. Uche, M. Neurock, and T. J. Marks. 2013. Sulfur as a selective “soft” oxidant for catalytic methane conversion probed by experiment and theory. Nature Chemistry 5(2):104-109.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 83
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 84
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 85
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 86
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 87
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 88
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 89
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 90
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 91
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23555.
×
Page 92
Next: Appendix A: Workshop Agenda »
The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop Get This Book
×
Buy Paperback | $50.00 Buy Ebook | $39.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today.

The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel.

To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!