National Academies Press: OpenBook

Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary (2016)

Chapter: Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle

« Previous: Appendix A Forum Agenda
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

Appendix B
Criteria for Accrediting Engineering Programs
Effective for Reviews during the 2016–2017 Accreditation Cycle

Definitions

While ABET recognizes and supports the prerogative of institutions to adopt and use the terminology of their choice, it is necessary for ABET volunteers and staff to have a consistent understanding of terminology. With that purpose in mind, the Commissions will use the following basic definitions:

Program Educational Objectives ‐ Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies.

Student Outcomes ‐ Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Assessment ‐ Assessment is one or more processes that identify, collect, and prepare data to evaluate the attainment of student outcomes. Effective assessment uses relevant direct, indirect, quantitative and qualitative measures as appropriate to the outcome being measured. Appropriate sampling methods may be used as part of an assessment process.

Evaluation ‐ Evaluation is one or more processes for interpreting the data and evidence accumulated through assessment processes. Evaluation determines the extent to which student outcomes are being attained. Evaluation results in decisions and actions regarding program improvement.


This document contains three sections:

The first section includes important definitions used by all ABET commissions.

The second section contains the General Criteria for Baccalaureate Level Programs that must be satisfied by all programs accredited by the Engineering Accreditation Commission of ABET and the General Criteria for Masters Level Programs that must be satisfied by those programs seeking advanced level accreditation.

The third section contains the Program Criteria that must be satisfied by certain programs. The applicable Program Criteria are determined by the technical specialties indicated by the title of the program. Overlapping requirements need to be satisfied only once.

These criteria are intended to assure quality and to foster the systematic pursuit of improvement in the quality of engineering education that satisfies the needs of constituencies in a dynamic and competitive environment. It is the responsibility of the institution seeking accreditation of an engineering program to demonstrate clearly that the program meets the following criteria.

I. General Criteria For Baccalaureate Level Programs

All programs seeking accreditation from the Engineering Accreditation Commission of ABET must demonstrate that they satisfy all of the following General Criteria for Baccalaureate Level Programs.

Criterion 1. Students

Student performance must be evaluated. Student progress must be monitored to foster success in attaining student outcomes, thereby enabling graduates to attain program educational objectives. Students must be advised regarding curriculum and career matters.

The program must have and enforce policies for accepting both new and transfer students, awarding appropriate academic credit for courses taken at other institutions, and awarding appropriate academic credit for work in lieu of courses taken at the institution. The program must have and enforce procedures to ensure and document that students who graduate meet all graduation requirements.

Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

General Criterion 2. Program Educational Objectives

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program’s various constituencies, and these criteria. There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program’s constituents’ needs, and these criteria.

General Criterion 3. Student Outcomes

The program must have documented student outcomes that prepare graduates to attain the program educational objectives.

Student outcomes are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

  1. an ability to apply knowledge of mathematics, science, and engineering
  2. an ability to design and conduct experiments, as well as to analyze and interpret data
  3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  4. an ability to function on multidisciplinary teams
  5. an ability to identify, formulate, and solve engineering problems
  6. an understanding of professional and ethical responsibility
  7. an ability to communicate effectively
  8. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  9. a recognition of the need for, and an ability to engage in life‐long learning
  10. a knowledge of contemporary issues
  11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

General Criterion 4. Continuous Improvement

The program must regularly use appropriate, documented processes for assessing and evaluating the extent to which the student outcomes are being attained. The results of these evaluations must be systematically utilized as input for the continuous improvement of the program. Other available information may also be used to assist in the continuous improvement of the program.

General Criterion 5. Curriculum

The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses. The faculty must ensure that the program curriculum devotes adequate attention and time to each component, consistent with the outcomes and objectives of the program and institution. The professional component must include:

  1. one year of a combination of college level mathematics and basic sciences (some with experimental experience) appropriate to the discipline. Basic sciences are defined as biological, chemical, and physical sciences.
  2. one and one‐half years of engineering topics, consisting of engineering sciences and engineering design appropriate to the student’s field of study. The engineering sciences have their roots in mathematics and basic sciences but carry knowledge further toward creative application. These studies provide a bridge between mathematics and basic sciences on the one hand and engineering practice on the other. Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision‐making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs.
  3. a general education component that complements the technical content of the curriculum and is consistent with the program and institution objectives.
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

Students must be prepared for engineering practice through a curriculum culminating in a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints.

One year is the lesser of 32 semester hours (or equivalent) or one‐fourth of the total credits required for graduation.

General Criterion 6. Faculty

The program must demonstrate that the faculty members are of sufficient number and they have the competencies to cover all of the curricular areas of the program. There must be sufficient faculty to accommodate adequate levels of student‐faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

The program faculty must have appropriate qualifications and must have and demonstrate sufficient authority to ensure the proper guidance of the program and to develop and implement processes for the evaluation, assessment, and continuing improvement of the program. The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, enthusiasm for developing more effective programs, level of scholarship, participation in professional societies, and licensure as Professional Engineers.

General Criterion 7. Facilities

Classrooms, offices, laboratories, and associated equipment must be adequate to support attainment of the student outcomes and to provide an atmosphere conducive to learning. Modern tools, equipment, computing resources, and laboratories appropriate to the program must be available, accessible, and systematically maintained and upgraded to enable students to attain the student outcomes and to support program needs. Students must be provided appropriate guidance regarding the use of the tools, equipment, computing resources, and laboratories available to the program.

The library services and the computing and information infrastructure must be adequate to support the scholarly and professional activities of the students and faculty.

General Criterion 8. Institutional Support

Institutional support and leadership must be adequate to ensure the quality and continuity of the program.

Resources including institutional services, financial support, and staff (both administrative and technical) provided to the program must be adequate to meet program needs. The resources available to the program must be sufficient to attract, retain, and provide for the continued professional development of a qualified faculty. The resources available to the program must be sufficient to acquire, maintain, and operate infrastructures, facilities, and equipment appropriate for the program, and to provide an environment in which student outcomes can be attained.

Ii. General Criteria For Master's Level And Integrated Baccalaureate‐Master's Level Engineering Programs

Programs seeking accreditation at the master’s level from the Engineering Accreditation Commission of ABET must demonstrate that they satisfy the following criteria, including all of the aspects relevant to integrated baccalaureate-master’s programs or stand‐alone master’s programs, as appropriate.

Criteria Applicable to Integrated Baccalaureate‐Master’s Level Engineering Programs

Engineering programs that offer integrated baccalaureate‐master’s programs must meet all of the General Criteria for Baccalaureate Level Programs and the Program Criteria applicable to the program name, regardless of whether students in these programs receive both baccalaureate and master’s degrees or only master’s degrees during their programs of study. In addition, these programs must meet all of the following criteria. If any students are admitted into the master’s portion of the combined program without having completed the integrated baccalaureate portion, they must meet the criteria given below.

Criteria Applicable to all Engineering Programs Awarding Degrees at the Master’s Level Students and Curriculum

The master’s program must have and enforce procedures for verifying that each student has completed a set of post-secondary educational and professional experiences that:

Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
  1. Supports the attainment of student outcomes of Criterion 3 of the general criteria for baccalaureate level engineering programs, and
  2. Includes at least one year of math and basic science (basic science includes the biological, chemical, and physical sciences), as well as at least one‐and‐one‐half years of engineering topics and a major design experience that meets the requirements of Criterion 5 of the general criteria for baccalaureate level engineering programs.

If the student has graduated from an EAC of ABET accredited baccalaureate program, the presumption is that items (a) and (b) above have been satisfied.

The master’s level engineering program must have and enforce policies and procedures ensuring that a program of study with specific educational goals is developed for each student. Student performance and progress toward completion of their programs of study must be monitored and evaluated. The program must have and enforce procedures to ensure and document that students who graduate meet all graduation requirements.

The master’s level engineering program must require each student to demonstrate a mastery of a specific field of study or area of professional practice consistent with the master’s program name and at a level beyond the minimum requirements of baccalaureate level programs.

The master’s level engineering program of study must require the completion of at least 30 semester hours (or equivalent) beyond the baccalaureate program.

Each student’s overall program of post‐secondary study must satisfy the curricular components of the baccalaureate level program criteria relevant to the master’s level program name.

Program Quality

The master’s level engineering program must have a documented and operational process for assessing, maintaining and enhancing the quality of the program.

Faculty

The master’s level engineering program must demonstrate that the faculty members are of sufficient number and that they have the competencies to cover all of the curricular areas of the program. Faculty teaching graduate level courses must have appropriate educational qualifications by education or experience. The program must have sufficient faculty to accommodate adequate levels of student‐faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

The master’s level engineering program faculty must have appropriate qualifications and must have and demonstrate sufficient authority to ensure the proper guidance of the program. The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, level of scholarship, participation in professional societies, and licensure.

Facilities

Means of communication with students, and student access to laboratory and other facilities, must be adequate to support student success in the program, and to provide an atmosphere conducive to learning. These resources and facilities must be representative of current professional practice in the discipline. Students must have access to appropriate training regarding the use of the resources available to them.

The library and information services, computing and laboratory infrastructure, and equipment and supplies must be available and adequate to support the education of the students and the scholarly and professional activities of the faculty.

Remote or virtual access to laboratories and other resources may be employed in place of physical access when such access enables accomplishment of the program’s educational activities.

Institutional Support

Institutional support and leadership must be adequate to ensure the quality and continuity of the program. Resources including institutional services, financial support, and staff (both administrative and technical) provided to the program must be adequate to meet program needs. The resources available to the program must be sufficient to

Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

attract, retain, and provide for the continued professional development of a qualified faculty. The resources available to the program must be sufficient to acquire, maintain, and operate infrastructure, facilities, and equipment appropriate for the program, and to provide an environment in which student learning outcomes.

Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

This page intentionally left blank.

Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 23
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 24
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 25
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 26
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 27
Suggested Citation:"Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 28
Next: Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes »
Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary Get This Book
×
 Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary
Buy Ebook | $9.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

On February 16, 2016, the National Academy of Engineering held a forum to discuss proposed changes to criteria used by ABET (formerly the Accreditation Board for Engineering and Technology) to accredit engineering programs in colleges and universities around the world. The Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5) convened a variety of stakeholders in the education of engineers, including representatives of universities, industry, and professional organizations. The presenters and attendees discussed the proposed changes and related issues such as a perceived lack of communication surrounding the development of the proposed changes and the degree to which the criteria prepare engineering students for jobs after graduation. This report summarizes the presentations and discussions from this forum.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!