National Academies Press: OpenBook
« Previous: 5 Potential Next Steps in Using Genomics to Advance Drug Discovery
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

References

Blom, D. J., R. Dent, R. C. Castro, and P. P. Toth. 2016. PCSK9 inhibition in the management of hyperlipidemia: Focus on evolocumab. Vascular Health and Risk Management 12:185–197.

Bunnage, M. E. 2011. Getting pharmaceutical R&D back on target. Nature Chemical Biology 7(6):335–339.

Clark, K., K. F. MacKenzie, K. Petkevicius, Y. Kristariyanto, J. Zhang, H. G. Choi, M. Peggie, L. Plater, P. G. Pedrioli, E. McIver, N. S. Gray, J. S. Arthur, and P. Cohen. 2012. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proceedings of the National Academy of Sciences of the United States of America 109(42):16986–16991.

Collins, F. S., and H. Varmus. 2015. A new initiative on precision medicine. New England Journal of Medicine 372(9):793–795.

Dewey, F. E., V. Gusarova, C. O’Dushlaine, O. Gottesman, J. Trejos, C. Hunt, C. V. Van Hout, L. Habegger, D. Buckler, K. M. Lai, J. B. Leader, M. F. Murray, M. D. Ritchie, H. L. Kirchner, D. H. Ledbetter, J. Penn, A. Lopez, I. B. Borecki, J. D. Overton, J. G. Reid, D. J. Carey, A. J. Murphy, G. D. Yancopoulos, A. Baras, J. Gromada, and A. R. Shuldiner. 2016. Inactivating variants in ANGPTL4 and risk of coronary artery disease. New England Journal of Medicine 374(12):1123–1133.

DiMasi, J. A., H. G. Grabowski, and R. W. Hansen. 2016. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics 47:20–33.

Filippakopoulos, P., J. Qi, S. Picaud, Y. Shen, W. B. Smith, O. Fedorov, E. M. Morse, T. Keates, T. T. Hickman, I. Felletar, M. Philpott, S. Munro, M. R. McKeown, Y. Wang, A. L. Christie, N. West, M. J. Cameron, B. Schwartz, T. D. Heightman, N. La Thangue, C. A. French, O. Wiest, A. L. Kung, S. Knapp, and J. E. Bradner. 2010. Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073.

Flannick, J., et al. 2014. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics 46(4):357–363.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

Helgadottir, A., S. Gretarsdottir, G. Thorleifsson, E. Hjartarson, A. Sigurdsson, A. Magnusdottir, A. Jonasdottir, H. Kristjansson, P. Sulem, A. Oddsson, G. Sveinbjornsson, V. Steinthorsdottir, T. Rafnar, G. Masson, I. Jonsdottir, I. Olafsson, G. I. Eyjolfsson, O. Sigurdardottir, M. S. Daneshpour, D. Khalili, F. Azizi, D. W. Swinkels, L. Kiemeney, A. A. Quyyumi, A. I. Levey, R. S. Patel, S. S. Hayek, I. J. Gudmundsdottir, G. Thorgeirsson, U. Thorsteinsdottir, D. F. Gudbjartsson, H. Holm, and K. Stefánsson. 2016. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nature Genetics 48:634–639.

Hodes, R. J., and N. Buckholtz. 2016. Accelerating Medicines Partnership: Alzheimer’s Disease (AMP-AD) knowledge portal aids Alzheimer’s drug discovery through open data sharing. Expert Opinion on Therapeutic Targets 20(4):389–391.

HRSA (Health Resources and Services Administration). 2014. HRSA Health Center Program, Bureau of Primary Health Care. http://bphc.hrsa.gov/about/healthcenterfactsheet.pdf (accessed June 20, 2016).

Hu, Y., A. Shmygelska, D. Tran, N. Eriksson, J. Y. Tung, and D. A. Hinds. 2016. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nature Communications 7:10448.

Jonsson, T., J. K. Atwal, S. Steinberg, J. Snaedal, P. V. Jonsson, S. Bjornsson, H. Stefansson, P. Sulem, D. Gudbjartsson, J. Maloney, K. Hoyte, A. Gustafson, Y. Liu, Y. Lu, T. Bhangale, R. R. Graham, J. Huttenlocher, G. Bjornsdottir, O. A. Andreassen, E. G. Jonsson, A. Palotie, T. W. Behrens, O. T. Magnusson, A. Kong, U. Thorsteinsdottir, R. J. Watts, and K. Stefánsson. 2012. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488(7409):96–99.

Jonsson, T., H. Stefansson, S. Steinberg, I. Jonsdottir, P. V. Jonsson, J. Snaedal, S. Bjornsson, J. Huttenlocher, A. I. Levey, J. J. Lah, D. Rujescu, H. Hampel, I. Giegling, O. A. Andreassen, K. Engedal, I. Ulstein, S. Djurovic, C. Ibrahim-Verbaas, A. Hofman, M. A. Ikram, C. M. van Duijn, U. Thorsteinsdottir, A. Kong, and K. Stefánsson. 2013. Variant of TREM2 associated with the risk of Alzheimer’s disease. New England Journal of Medicine 368(2):107–116.

Kalow, W., and B. K. Tang. 1993. The use of caffeine for enzyme assays: A critical appraisal. Clinical Pharmacology & Therapeutics 53(5):503–514.

Karczewski, K. J., R. Daneshjou, and R. B. Altman. 2012. Chapter 7: Pharmacogenomics. PLOS Computational Biology 8(12):e1002817.

Liu, T., and R. B. Altman. 2011. Using multiple microenvironments to find similar ligand-binding sites: Application to kinase inhibitor binding. PLOS Computational Biology 7(12):e1002326.

Liu, J. Z., et al. 2013. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nature Genetics 45(6):670–675.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

McClellan, J., and M. C. King. 2010. Genetic Heterogeneity in Human Disease. Cell 141(2):210–217.

The Michael J. Fox Foundation. 2015. Parkinson’s Biomarker Initiative expands genetic study. https://www.michaeljfox.org/foundation/publicationdetail.html?id=578&category=7 (accessed June 6, 2016).

Nelson, M. R., H. Tipney, J. L. Painter, J. Shen, P. Nicoletti, Y. Shen, A. Floratos, P. C. Sham, M. J. Li, J. Wang, L. R. Cardon, J. C. Whittaker, and P. Sanseau. 2015. The support of human genetic evidence for approved drug indications. Nature Genetics 47(8):856–860.

NIH (National Institutes of Health). 2014. Physician-scientist workforce (PSW) report 2014. Rockville, MD: National Institutes of Health. https://report.nih.gov/workforce/psw/index.aspx (accessed July 3, 2016).

Nioi, P., et al. 2016. Variant ASGR1 associated with a reduced risk of coronary artery disease. New England Journal of Medicine 374(22):2131–2141.

NLM (National Library of Medicine). 2016. Pulmonary arterial hypertension. https://ghr.nlm.nih.gov/condition/pulmonary-arterial-hypertension#resources (accessed May 25, 2016).

Ono, M., T. Shimizugawa, M. Shimamura, K. Yoshida, C. Noji-Sakikawa, Y. Ando, R. Koishi, and H. Furukawa. 2003. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. Journal of Biological Chemistry 278(43):41804–41809.

Pasche, B., and D. Absher. 2011. Whole-genome sequencing: A step closer to personalized medicine. JAMA 305(15):1596–1597.

Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427.

Scott, R. A., et al. 2016. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Science Translational Medicine 8(341):341ra376.

Smith, C. 2003. Drug target validation: Hitting the target. Nature 422(6929):341, 343, 345.

Stacey, S. N., H. Helgason, S. A. Gudjonsson, G. Thorleifsson, F. Zink, A. Sigurdsson, B. Kehr, J. Gudmundsson, P. Sulem, B. Sigurgeirsson, K. R. Benediktsdottir, K. Thorisdottir, R. Ragnarsson, V. Fuentelsaz, C. Corredera, Y. Gilaberte, M. Grasa, D. Planelles, O. Sanmartin, P. Rudnai, E. Gurzau, K. Koppova, B. A. Nexo, A. Tjonneland, K. Overvad, J. G. Jonasson, L. Tryggvadottir, H. Johannsdottir, A. M. Kristinsdottir, H. Stefansson, G. Masson, O. T. Magnusson, B. V. Halldorsson, A. Kong, T. Rafnar, U. Thorsteinsdottir, U. Vogel, R. Kumar, E. Nagore, J. I. Mayordomo, D. F. Gudbjartsson, J. H. Olafsson, and K. Stefánsson. 2015. New basal cell carcinoma susceptibility loci. Nature Communications 6:6825.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

Steinberg, S., H. Stefansson, T. Jonsson, H. Johannsdottir, A. Ingason, H. Helgason, P. Sulem, O. T. Magnusson, S. A. Gudjonsson, U. Unnsteinsdottir, A. Kong, S. Helisalmi, H. Soininen, J. J. Lah, DemGene, D. Aarsland, T. Fladby, I. D. Ulstein, S. Djurovic, S. B. Sando, L. R. White, G. P. Knudsen, L. T. Westlye, G. Selbaek, I. Giegling, H. Hampel, M. Hiltunen, A. I. Levey, O. A. Andreassen, D. Rujescu, P. V. Jonsson, S. Bjornsson, J. Snaedal, and K. Stefánsson. 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature Genetics 47(5):445–447.

Steinthorsdottir, V., G. Thorleifsson, P. Sulem, H. Helgason, N. Grarup, A. Sigurdsson, H. T. Helgadottir, H. Johannsdottir, O. T. Magnusson, S. A. Gudjonsson, J. M. Justesen, M. N. Harder, M. E. Jorgensen, C. Christensen, I. Brandslund, A. Sandbaek, T. Lauritzen, H. Vestergaard, A. Linneberg, T. Jorgensen, T. Hansen, M. S. Daneshpour, M. S. Fallah, A. B. Hreidarsson, G. Sigurdsson, F. Azizi, R. Benediktsson, G. Masson, A. Helgason, A. Kong, D. F. Gudbjartsson, O. Pedersen, U. Thorsteinsdottir, and K. Stefánsson. 2014. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nature Genetics 46(3):294–298.

Styrkarsdottir, U., G. Thorleifsson, S. A. Gudjonsson, A. Sigurdsson, J. R. Center, S. H. Lee, T. V. Nguyen, T. C. Kwok, J. S. Lee, S. C. Ho, J. Woo, P. C. Leung, B. J. Kim, T. Rafnar, L. A. Kiemeney, T. Ingvarsson, J. M. Koh, N. L. Tang, J. A. Eisman, C. Christiansen, G. Sigurdsson, U. Thorsteinsdottir, and K. Stefánsson. 2016. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nature Communications 7:10129.

Sukonina, V., A. Lookene, T. Olivecrona, and G. Olivecrona. 2006. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America 103(46):17450–17455.

Tatonetti, N. P., J. C. Denny, S. N. Murphy, G. H. Fernald, G. Krishnan, V. Castro, P. Yue, P. S. Tsao, I. Kohane, D. M. Roden, and R. B. Altman. 2011. Detecting drug interactions from adverse-event reports: Interaction between paroxetine and pravastatin increases blood glucose levels. Clinical Pharmacology and Therapeutics 90(1):133–142.

Tufts Center for the Study of Drug Development. 2014. How the Tufts Center for the Study of Drug Development pegged the cost of a new drug at $2.6 billion. http://csdd.tufts.edu/files/uploads/cost_study_backgrounder.pdf (accessed July 3, 2016).

Tung, J. Y., C. B. Do, D. A. Hinds, A. K. Kiefer, J. M. Macpherson, A. B. Chowdry, U. Francke, B. T. Naughton, J. L. Mountain, A. Wojcicki, and N. Eriksson. 2011. Efficient replication of over 180 genetic associations with self-reported medical data. PLoS ONE 6(8):e23473.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

Wang, G., M. L. McCain, L. Yang, A. He, F. S. Pasqualini, A. Agarwal, H. Yuan, D. Jiang, D. Zhang, L. Zangi, J. Geva, A. E. Roberts, Q. Ma, J. Ding, J. Chen, D. Z. Wang, K. Li, J. Wang, R. J. Wanders, W. Kulik, F. M. Vaz, M. A. Laflamme, C. E. Murry, K. R. Chien, R. I. Kelley, G. M. Church, K. K. Parker, and W. T. Pu. 2014. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine 20(6):616–623.

Whirl-Carrillo, M., E. M. McDonagh, J. M. Hebert, L. Gong, K. Sangkuhl, C. F. Thorn, R. B. Altman, and T. E. Klein. 2012. Pharmacogenomics knowledge for personalized medicine. Clinical Pharmacololgy & Therapeutics 92(4):414–417.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 59
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 60
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 61
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 62
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 63
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2016. Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/23601.
×
Page 64
Next: Appendix A: Workshop Agenda »
Deriving Drug Discovery Value from Large-Scale Genetic Bioresources: Proceedings of a Workshop Get This Book
×
Buy Paperback | $45.00 Buy Ebook | $35.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The process of discovering and developing a new drug or therapy is extremely costly and time consuming, and recently, it has been estimated that the creation of a new medicine costs on average more than $2 billion and takes 10 years to reach patients. The challenges associated with bringing new medicines to market have led many pharmaceutical companies to seek out innovative methods for streamlining their drug discovery research.

One way to increase the odds of success for compounds in the drug development pipeline is to adopt genetically guided strategies for drug discovery, and recognizing the potential benefits of collecting genetic and phenotypic information across specific populations, pharmaceutical companies have started collaborating with healthcare systems and private companies that have curated genetic bioresources, or large databases of genomic information. Large-scale cohort studies offer an effective way to collect and store information that can be used to assess gene–environment interactions, identify new potential drug targets, understand the role of certain genetic variants in the drug response, and further elucidate the underlying mechanisms of disease onset and progression.

To examine how genetic bioresources could be used to improve drug discovery and target validation, the National Academies of Sciences, Engineering, and Medicine hosted a workshop in March 2016. Participants at the workshop explored the current landscape of genomics-enabled drug discovery activities in industry, academia, and government; examined enabling partnerships and business models; and considered gaps and best practices for collecting population data for the purpose of improving the drug discovery process. This publication summarizes the presentations and discussions from the workshop.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!