National Academies Press: OpenBook

Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures (2017)

Chapter: Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data

« Previous: Appendix C User's Guide to Software for Modified Models
Page 164
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 164
Page 165
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 165
Page 166
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 166
Page 167
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 167
Page 168
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 168
Page 169
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 169
Page 170
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 170
Page 171
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 171
Page 172
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 172
Page 173
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 173
Page 174
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 174
Page 175
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 175
Page 176
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 176
Page 177
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 177
Page 178
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 178
Page 179
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 179
Page 180
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 180
Page 181
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 181
Page 182
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 182
Page 183
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 183
Page 184
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 184
Page 185
Suggested Citation:"Appendix D Analysis of Center and Edge Loaded Falling Weight Deflectometer Data." National Academies of Sciences, Engineering, and Medicine. 2017. Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures. Washington, DC: The National Academies Press. doi: 10.17226/24842.
×
Page 185

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

D-1 APPENDIX D. ANALYSIS OF CENTER AND EDGE LOADED FALLING WEIGHT DEFLECTOMETER DATA D.1 INTRODUCTION The deflection response of the pavement to an applied load is an important indicator of the structural capacity, material properties, and seasonal variations of the pavement. In the LTPP program, deflection testing is conducted periodically at General Pavement Study (GPS) and SPS sections using Falling Weight Deflectometer (FWD). Khazanovich et al. (2001) conducted backcalculation of layer material properties for rigid pavements using the deflection basins from the LTPP database collected between 1989 and 1997. An analysis of the reported backcalculated k-values from 331 pavement sections showed that although a significant portion of the sections had stabilized bases, only a small percentage of the sections exhibited very high k-values. Thsu, for these sections, the contribution of the base layer toward an increase in the effective coefficient of subgrade reaction is not as significant as it is assumed by the PCA (Packer, 1984) and AASHTO 1993 design procedures. A comprehensive evaluation of the combined effect of the base layer and climate on the deflections was conducted by Khazanovich et al (2001) for sections of the LTPP experiment designated for the Seasonal Monitoring Program (SMP). In the LTPP SMP, FWD testing is conducted more frequently, about 12 to 14 times per year. Using a large database of FWD data from the SMP, Khazanovich et al (2001) observed seasonal variation not only in the backcalculated subgrade k-value, but also in the backcalculated flexural stiffness of the constructed layer. This variation was pronounced in sections using cement-treated base. This study attributed the seasonal behavior to bond at the slab-base interface during the time of FWD testing. The research methodology accounted for the fact that studies such as Khazanovich et al (2001) considered interior load FWD data only, as conventional backcalculation methods assume interior (or center) loaded basins. Given the complex slab-base interaction at the slab edge, the exclusive use of interior-loaded basins may not be appropriate. While other studies discussed a difference in the binary bonded/unbonded characterization at the center and edge locations (Rufino et al, 2004), these studies did not examine effects due to location on a large scale. Thus, the research in this study included the development of a backcalculation procedure using edge- or center-loaded data, as backcalculated layer properties at both locations may reveal factors that impact both slab-base interaction and the likelihood of pavement distress. This appendix documents development of a procedure for backcalculation layer properties given either edge or center loading FWD data. The new backcalculation procedure was run for all SPS-2 sections in the LTPP database. Each LTPP project was subjected to multiple years of FWD visits for loading at edge and center locations, and most observation dates has as many as 12 FWD tests per date. Only data from Construction No. 1 visits were allowed for analysis – i.e. no rehabilitated LTPP projects were considered. Summary results of the center (J1 location) and edge (J3 location) backcalculation are provided in Table D-7 (SPS-2) at the end of this appendix. The following sections detail how this information was applied to FWD from JPCP projects in the LTPP database. As discussed above, many pavement design procedures, including AASHTO M-E, have accounted for the effect of base layer on pavement performance through adjusting the coefficient of subgrade reaction. Studies such as Khazanovich et al (2001) and Rufino et al (2004) pointed to the possibility that slab behavior may vary based on location. In a curled slab, slab-base

D-2 interaction may vary with contact conditions at a location (e.g., edge versus mid-panel). While conventional FWD backcalculation methods, which use mid-panel FWD data only, provide insight into slab behavior and possibly slab-base interaction, no similar backcalculation method exists for other locations (most notably the slab edge). Thus, the research approach included the development of a procedure to backcalulate layer properties from both edge- and center-loaded FWD basins and comparing the backcalculated k-values from the adjacent sections with different base types. D.2. DEVELOPMENT OF THE EDGE/CENTER-LOAD BACKCALCULATION PROCEDURE The developed modified backcalculation procedure extends the LTPP Best Fit backcalculation procedure for rigid pavements (Khazanovich et al., 2001). The Best Fit procedure is based on Westergaard’s solution for an infinite slab on a Winkler foundation, loaded by a uniform pressure distributed over a circular area. The backcalculation of layer properties given FWD basins at the slab edge is a more complex problem than the mid-panel method. Backcalculation procedures using edge basins must consider the influence of the shoulder joint, thus mid-panel assumptions are invalid. As a result, the developed backcalculation procedure for edge basins uses ISLAB2005 finite element simulations to generate a database of deflection basins for center- and edge-loaded slabs. The ISLAB2005 model consists of nine slabs. The slab of interest for this research is the middle slab in the outside lane where heavy truck traffic is usually present and where normal FWD testing is completed. Each driving lane is a standard twelve feet-wide and the shoulder is eight-feet wide. All of the transverse joints are assigned one LTE value, LTEy, and the all of the longitudinal joints are assigned one LTE value, LTEx, across the entire model. Note: The LTE parameter is a variable in each training case; therefore, selection of a constant value was not necessary for the base model. Refer to Figure D-1 below for an illustration of the base model configuration. Figure D-1. ISLAB2005 Base Model Plan Configuration

D-3 Figure D-2 shows a plan view of the edge loading configuration for with seven dots extending radially from the square loading area to represent the FWD, seven-sensor apparatus. Further descriptions of the node location of the simulated sensors is described next. Figure D-2. Central Slab Close-Up for Edge Loading Position and Deflection Sensor Offsets Using the similarity procedure utilized in the development of rapid solutions under the NCHRP 1-37A study (Khazanovich et al., 2001; ARA, 2004), the deflections of the pavement system shown in Figure D-3 can be presented in the following form: 𝑤(𝑟𝑖) = 𝑝 𝑘 𝑓𝑖 ( 𝑎 ℓ , 𝑟𝑖 ℓ , 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) ≡ 𝑝 𝑘 𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 1 where LTEx and LTEy are load transfer efficiency values for the of longitudinal (shoulder) and transverse joints, respectively. (a) (b) Figure D-3. Meshes and load locations for (a) center- and egde-loading simulations in the developed backcalculation procedure The developed modified backcalculation procedure extends the LTPP Best Fit backcalculation procedure for rigid pavements (Khazanovich et al., 2001). The Best Fit procedure is based on Westergaard’s solution for an infinite slab on a Winkler foundation, loaded by a uniform

D-4 pressure distributed over a circular area. This solution relates the deflections of FWD sensors with the applied FWD load and pavement system properties as follows: 𝑤(𝑟𝑖) = 𝑝 𝑘 𝑓𝑖 ( 𝑎 ℓ , 𝑟𝑖 ℓ ) 2 where 𝑤(𝑟𝑖) is the deflection of sensor i, k is the modulus of subgrade reaction; p is the applied pressure; and 𝑓𝑖 is a non-dimensional function relating ri, the distance from the center of loaded area to sensor i, and a, the radius of a FWD load plate, given ℓ, the radius of relative stiffness of the pavement. For a single layer system, the radius of relative stiffness is defined as follows: ℓ = √ 𝐸 ℎ3 12(1 − 𝜇2 )𝑘 4 3 where h is the slab thickness, E is the slab modulus of elasticity, and 𝜇 is the slab Poisson ratio. The Best Fit methods requires to find a set of a radius of relative stiffness and coefficient of subgrade reaction that minimize the discrepancy between the measured deflections Wi and computed deflections. If the error function is defined as 𝐸𝑟𝑟𝑜𝑟(ℓ, 𝑘) =∑( 𝑝 𝑘 𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) −𝑊𝑖) 2 𝑛 𝑖=1 4 then the radius of relative stiffness that minimizes the error function can be obtained by solving the following equations (Khazanovich et al 2001): ∑ 𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 𝜕𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 𝜕ℓ 𝑛 𝑖=1 ∑ (𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦))2 𝑛 𝑖=1 = ∑ 𝑊𝑖 𝜕𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 𝜕ℓ 𝑛 𝑖=1 ∑ 𝑊𝑖 𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 𝑛 𝑖=1 5 and the corresponding subgrade k-value can be computed form the following relationship: 𝑘 = 𝑝 ∑ 𝑎𝑖(𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦)) 2𝑛 𝑖=0 ∑ 𝑎𝑖 𝑛 𝑖=0 𝑊𝑖𝑓𝑖(ℓ, 𝐿𝑇𝐸𝑥, 𝐿𝑇𝐸𝑦) 6 To develop a computationally efficient backcalculation procedure, an efficient procedure for computing functions fi should be developed. ISLAB2005 was used to generate deflection for this purpose. The FWD load was modeled as a square shape of constant dimensions for all training cases. The side length of the load shape, a, was 10.47 inches (26.6 cm) which makes the loading surface area equal to 109.56 in.2 (706.64 cm2) which is equivalent to the 12-inch diameter FWD loading plate used in FWD field testing. ISLAB2005 requires users to set the square area by choosing a “tire” or contact pressure, and load magnitude. A load magnitude of 9,000 pounds was chosen because that is one of three standard load magnitudes used in FWD testing. The pavement was modeled as a single layer plate with thickness of 10 in and plate layer with the thickness and Poisson’s ratio of ten inches and 0.15, respectively. The plate modulus of

D-5 elasticity varied from 150,000 to 16,000,000 psi to produce a wide range of radii of relative stiffness (from 20 inches to 60 inches). The joints load transfer efficiencies varied from 10% to 90%. Table D-1 summarizes the values of the plate modulus of elasticity and joint load transfer efficiencies simulated in this study. The table also presents the radii of relative stiffness corresponding to the plate moduli of elasticity for the ISLAB2005 model used in this analysis. Two factorials of ISLAB2005 runs (one for edge loading case and another for an interior loading case) were performed. For each loading condition, 2511 ISLAB2005 runs were performed. For each ISLAB2005 simulation, the deflections FWD sensor locations at 0, 8, 12, 18, 36, and 60 inches from the center of the applied load were screened and rapid solutions for functions fi were developed. Those rapid solutions were used to develop an efficient procedure for backcalculation of layer properties given FWD basins collected at the slab edge and slab interior using Equations 5 and 6. A new backcalculation computer program is implemented into a FORTRAN program. The program accepts the input deflection basin and FWD load along with transverse joint LTE. The program then returns the resultant 𝑘e and 𝑙e values, the LTEx (shoulder load transfer efficiency), and the ratio of the measured deflection at each node versus the calculated deflection for the given outputs. An effective error value is also returned which is a measure of the difference between the measured deflections, as a whole, and the calculated deflections.

D-6 Table D-1. Factorial of ISLAB2005 input paramaters Elastic modulus, psi Radius of relative stiffness, in LTEx, Percent LTEy, percent 150,000 18.91 10 10 200,000 20.32 20 20 300,000 22.49 30 30 400,000 24.17 40 40 600,000 26.74 50 50 800,000 28.74 60 60 1,000,000 30.39 70 70 1,200,000 31.80 80 80 1,400,000 33.05 90 90 1,600,000 34.17 1,800,000 35.20 2,000,000 36.14 2,250,000 37.22 2,500,000 38.21 2,750,000 39.13 3,000,000 39.99 3,500,000 41.56 4,000,000 42.97 4,500,000 44.26 5,000,000 45.44 6,000,000 47.56 7,000,000 49.43 8,000,000 51.10 9,000,000 52.63 10,000,000 54.04 11,000,000 55.34 12,000,000 56.55 13,000,000 57.70 14,000,000 58.78 15,000,000 59.80 16,000,000 60.77 31 9 9 D.3. VERIFICATION OF THE BACKCALCULATION PROCEDURE The modified backcalculation procedure was verified using simulated deflection basins not used in the procedure development. An example of such verification is presented in this section. The plate thickness was set to be equal to 9 inches, while the plate thickness in the procedure development was equal to 10 inches. The load transfer efficient of the joints were set to be equal to 50% and 30% in the longitudinal and transverse directions, respectively. Two cases were considered:  Case 1. The plate modulus of elasticity was set to be equal to 4,000, 000 psi, while the coefficient of subgrade reaction was varied from 100 to 500 psi/in.  Case 2. The coefficients of subgrade reaction is equal to 100 psi/in and the plate modulus of elasticity varies from 185,000 psi to 15,480,000 psi.

D-7 For each case, 17 ISLAB2005 deflection basins were generated. Figure D-4 compares the ISLAB2005 inputs and backcalculated parameters. Excellent agreement is observed for all cases. Test Case 1a Test Case 1b Test Case 2a Test Case 2b Figure D-4. Verification Test Results by Test Case: a) Backcalculated Surface Layer Elastic Moduli; b) Backcalculated k-Values Another approach for the model validation was made by comparing the measured deflections with ISLAB2005 deflections computed using the backcalculated properties. Table D-2 presents a comparison for the measured and calculated deflections for Nevada section 32-0201 for an FWD measurement taken on June 3 1997. The transverse joint LTE was assumed to be equal to 84%. The results of backcalculation are summarized in Table D-3. Table D-2. Backcalculation Input for LTPP Test Section 32-0201 P LTEy Measured Deflections (in) (lbs) (%) D1 D2 D3 D4 D5 D6 D7 8835 84 0.0100 0.0093 0.0087 0.0078 0.0069 0.0049 0.00224

D-8 Table D-3. Backcalculation Output for LTPP Test Section 32-0201 Basin No. ℓ K LTEX Eff. Error *10^4 Dcalc/Dmeas (-) (in.) (psi/in.) (-) D1 D2 D3 D4 D5 D6 D7 1 25.5 236.1 90 2.73 1.01 0.99 0.99 1.00 1.01 0.99 1.02 It can be observed that the backcalculation resulted in a good correspondence between the measured deflections and deflections calculated using the rapid solutions implemented in the program. To verify this conclusion, an ISLAB2005 was performed with the backcalculated k- value and the plate thickness and elastic moduli equal to 10 inches and 1,170,994.1 psi, respectively. Figure D-5 illustrates a very good correspondence between the measured and ISLAB2005 deflection basins. Figure D-5. Measured Deflections vs. ISLAB2005 Deflections for LTPP Test Case D.3.1. Joint load transfer efficiency There must be an assumed or measured value for the transverse and longitudinal joints for each deflection basin that is evaluated in order to backcalculate the structural parameters of the pavement slab of interest. The longitudinal LTE value (LTEx) is then backcalculated by minimizing the difference between predicted and measured deflections with a set value of LTEy and iterative values of LTEx while k and ℓ are independently solved for simultaneously. Ideally, this measured value is assumed to be constant across the whole length of both transverse joints that surround the slab of interest. However, matching the correct LTEy value with the slab of interest is a tedious process for more than one pavement section’s batch of measured deflection basins.

D-9 It is proposed that the average of all measured LTEy values from the J4 and J5 testing positions across an entire LTPP pavement section, on a given date, is used as the input LTEy value for all deflection basins recorded across the same section on the same date. The proposed technique for establishing input LTEy values simplifies the time and detail required to assign the measured value of LTEy to the deflection basin measured on the adjacent slab for each basin. LTE sensitivity test cases with real LTPP data were set up to examine the effects of the aforementioned simplification and used to decide whether such a simplification is reasonable before the backcalculation results from hundreds of different sections are analyzed. The sections chosen for these tests are sections 04-0215 and 04-0219. Both sections are part of the SPS-2 program and are part of the same stretch of highway in Arizona. Both sections also have twelve-foot wide lanes with fifteen-foot contraction spacing and no skewed joints, and the FWD tests were conducted four days apart for each section, but the time of day during testing was generally the same. The main difference between the two sections is the constructed base type. The base type for section 04-0215 is granular and the base type for section 04-0219 is lean concrete. The purpose of testing two sections is to verify the results from two different base-type sections independently. LTE sensitivity cases for each section were conducted for one date of testing on each section. The backcalculated k- and ℓ-values are plotted against the station number associated with each FWD test to observe the variation in the backcalculated values based on varying values of the LTEy input. In particular, the minimum, maximum, average, and actual LTEy values are used as inputs and the backcalculated results from each input value represents four separate curves to clearly distinguish the results from each case. Each case is then compared to the average-LTEy-value case to evaluate the effect of the simplifying assumption mentioned at the beginning of this sub-section. The results from the LTE sensitivity analysis are located in the results section of this thesis as well as a discussion on whether or not the simplified LTEy input extraction and input technique used for this study is appropriate and reasonable. Four separate charts are introduced in this sub-section to illustrate the effects of the input LTEy value on the edge backcalculation parameters ℓ and k for two different test sections. Additional charts were developed to show the effect of the input LTE value on the backcalculated LTEx value, but the difference was negligible in almost all reasonable cases because the LTE output values are limited to a number between ten and ninety in increments of ten; therefore, those charts are not included in this thesis.

D-10 Figure D-6. Backcalculated ke-Values for Section 04-0215 with Varying LTEy Values Figure D-6 shows backcalculated moduli of subgrade reaction for section 04-2015. The backcalculated values for the minimum and maximum LTEy input values represent the bounds of the effects of the LTEy input value on backcalculated results. The fluctuation of ke-values across the length of the pavement is considered a natural fluctuation due to varying characteristics inherent in pavement construction. There is only one station, between 40 and 60 m, with results that are not consistent with the rest of the section’s results. This station will not be considered for the discussion of the results as it is an anomaly. However, even without this station, the difference between the minimum and maximum bounds is noticeably less than the natural variation of the subgrade parameter along the length of the section meaning the LTEy approximation has a small effect, but not a significant effect at any particular point along the pavement. More importantly, when the actual LTEy-input results are compared to the average LTEy-input results, the variation between the two is negligible. This means that using the average measured LTEy value across the entire section on any given day is a reasonable simplification at the cost of negligible, to small errors.

D-11 Figure D-7. Backcalculated ke-values for Section 04-0219 with Varying LTEy Values Figure D-7 represents the same pavement section used for Figure D-6 except the backcalculated radii of relative stiffness are compared along the length of this section. The same result can be stated for this parameter as was stated for the k-values in previous figures. The variation caused by the input LTEy value is not nearly as significant as the variation caused by natural variance in the pavement structure along the length of the pavement section. Figure D-8. Backcalculated ℓe-values for Section 04-0215 with Varying LTEy Values This statement is even more valid for section 04-2019 as could be observed from Figure D-8. Again, the results here match well with the results from the proposed procedural results using the average LTEy value from across the section in place of the actual measured LTEy.

D-12 In conclusion, it is sufficient to use the average LTEy-value measured on any given date for the input LTEy-value on a given deflection basin measured on a slab within the same section on the same date. Figure D-9. Backcalculated ℓe-values for Section 04-0219 with Varying LTEy Values D.4. BACKCALCULATION USING SPS-2 EDGE- AND CENTER-LOADING FWD DATA Totals of 131,700 interior-loading FWD observations and 126,364 edge-loading FWD observations from the LTPP SPS-2 experiment (summarized by state and load location in Table D-4) were analyzed using the developed 1-51 backcalculation tool.

D-13 Table D-4. Summary of LTPP FWD data used for 1) modified backcalculation and 2) inferred slab-base friction coefficients Bound base Number of Test Locations State Code State Number of Sections J1 J3 Total 4 Arizona 14 157 151 308 5 Arkansas 9 131 131 262 6 California 18 149 154 303 8 Colorado 9 105 99 204 10 Delaware 8 81 71 152 12 Florida 3 59 48 107 13 Georgia 2 39 39 78 16 Idaho 1 19 14 33 18 Indiana 6 89 69 158 19 Iowa 12 127 117 244 20 Kansas 12 207 174 381 26 Michigan 8 79 72 151 27 Minnesota 3 57 45 102 28 Mississippi 2 40 40 80 31 Nebraska 2 37 26 63 32 Nevada 9 81 68 149 37 North Carolina 14 142 131 273 38 North Dakota 12 88 74 162 39 Ohio 14 142 134 276 40 Oklahoma 2 39 36 75 42 Pennsylvania 1 11 13 24 45 South Carolina 1 20 19 39 46 South Dakota 3 60 57 117 47 Tennessee 3 50 49 99 48 Texas 2 35 22 57 49 Utah 7 107 103 210 53 Washington 8 80 83 163 55 Wisconsin 12 143 130 273 89 Quebec 1 15 14 29 Total 29 198 2389 2183 4572 Unbound base Number of Test Locations State Code State Number of Sections J1 J3 Total 10 Delaware 4 43 44 308 12 Florida 1 20 20 262 20 Kansas 2 149 154 303 37 North Carolina 1 105 99 204 38 North Dakota 2 81 71 152 Total 5 10 398 388 1229 To facilitate interpretation of the results of backcalculation, the following summary tables were created: 1. For each FWD test location, the mean, standard deviation, and coefficient of variation of the backcalculated effective slab modili of elasticity, radii of relative stiffness, and coefficient of subgrade reaction were determined. 2. For each FWD visit (on a given date and section), the locations with the coefficient of variation for one of the parameters exceeding 5% were flagged. These locations were

D-14 excluded from the subsequent determination of the representative backcalculated parameters for the section. 3. For each FWD visit, the mean, standard deviation, and coefficient of variations were determined. Only visits with more than 5 locations with COV<5% were retained for subsequent analysis. One of the challenges in the evaluation of the FWD backcalculation data was the need to separate the effect of slab-base interaction from other effects, such as PCC thickness variation, seasonal effects, etc. To address this challenge, a decision was made to compare average backcalculated parameters for the same states (locations) with similar designs but different bases. As a part of the preliminary analysis, for each state that participated in SPS-2, the average of the interior and edge effective moduli of elasticity (Eeff) and k-values (k) were determined. These values are reported in Table D-5. Table D-6 shows the ratios between Eeff and k for sections with stabilized bases with the corresponding parameters for sections with an aggregate base. It is interesting to note that, for interior loading, an average elastic moduli ratio for sections with the LCB is approximately 1.6 and for PATB is approximately 1.2. For edge loading, those ratios are 1.2 for both base types. While this analysis is crude, and many factors are known to affect the results and are unaccounted for (especially deviation of as-constructed thickness from design thickness), it provides initial insights. For example, for an 8 inch thick PCC pavement and 6 inch thick base with EPCC/Ebase of 4, the ratio between Eeff and EPCC is 2.6 for the bonded interface and 1.1 for the unbonded case. If EPCC/Ebase is 20, then Eeff/EPCC is 1.35 for the bonded interface and 1.05 for the unbonded interface. This suggests that the interface between the PCC slab and the LCB layer is close to unbonded for the slab edge (where critical stresses occur) while exhibiting some degree of partial bond at the slab interior. For the PATB, the behavior is closer to bonded at the interface for both the interior and edge locations. It is also interesting to evaluate similar ratios for subgrade k-values. For interior loading, an average k-value ratio for sections is approximated 1.2 for both the LCB and PATB base types. For edge loading, those ratios are 1.4 for LCB and 1.3 for PATB. To evaluate this effect, two MEPDG simulations were performed for an 8 inch thick PCC pavement located in Phoenix, AZ. The slab was placed over a 6 inch thick LCB layer in one simulation and over a 6 inch thick aggregate layer in the other. The MEPDG predicted k-values for these projects were 190 and 160 psi/in, respectively. The ratio of these values is approximately 1.2, which suggests that MEPDG correctly captures the observed trend. D.5. CONCLUSIONS The new backcalculation procedure developed during the project, on its own, represents an improvement on its predecessors. Whereas those procedures accommodate only center-loading FWD data, the new procedure accommodates both center and edge-loading data. In addition, it is able to accept properly formatted input files to quickly process hundreds of thousands of observations. In addition, the developed backcalculation procedure was used to build a database of backcalcuated parameters from LTPP center and edge-loading LTPP data for SPS-2 projections.

D-15 Table D-5. Mean backcalculated effective pavement moduli and coefficient of subgrade reaction for SPS-2 sections. STATE CODE PCC THICK NESS LANE WIDTH LCB PATB AGG Interior Edge Interior Edge Interior Edge Subgrade k-value Eeff (10^6 psi) Subgrade k-value Eeff (10^6 psi) Subgrade k-value Eeff (10^6 psi) Subgrade k-value Eeff (10^6 psi) Subgrade k-value Eeff (10^6 psi) Subgrade k-value Eeff (10^6 psi) 4 8 12 403.41 19.63 564.71 16.43 425.07 16.76 454.32 13.21 230.62 9.98 393.00 7.54 4 11 12 482.81 17.93 854.88 13.55 327.00 16.92 286.10 13.24 282.55 11.10 396.89 6.40 5 8 12 533.00 14.59 963.17 14.93 186.14 36.25 269.86 30.75 330.88 17.19 486.42 10.36 5 11 12 265.51 23.37 414.86 18.61 424.61 12.96 603.91 12.95 309.39 16.13 535.10 14.12 6 8 12 209.86 16.10 248.97 15.02 292.49 15.56 396.21 14.57 190.93 11.44 360.12 8.18 6 11 12 226.77 20.83 267.72 17.26 415.02 10.52 646.41 12.23 267.51 10.60 403.59 9.35 8 8 12 185.93 11.23 317.46 13.00 278.10 18.74 347.78 12.77 177.04 9.19 316.34 7.89 8 11 12 216.60 16.45 300.86 11.73 244.93 11.91 340.51 9.95 323.25 10.62 316.84 6.64 10 8 12 308.16 31.45 391.36 16.19 283.85 19.75 390.35 19.63 291.45 15.87 278.58 10.16 10 11 12 282.38 15.15 390.31 10.07 358.47 14.49 444.82 9.92 286.79 10.81 281.55 6.61 19 8 12 303.44 22.19 381.14 9.55 256.30 12.72 285.22 9.61 276.44 10.17 278.97 7.04 19 11 12 232.97 11.79 308.33 10.06 309.98 11.90 436.13 8.37 202.28 9.75 300.11 9.73 20 8 12 300.37 12.18 353.89 12.32 241.85 17.00 268.53 10.80 257.58 10.45 261.18 7.22 20 11 12 358.21 13.02 423.40 11.47 275.62 12.03 262.11 9.40 238.33 12.67 285.40 9.02 26 8 12 572.92 14.18 604.03 11.03 353.49 15.90 310.73 12.41 279.70 10.60 197.41 7.75 26 11 12 487.67 12.21 457.15 7.80 457.51 13.10 507.68 10.50 314.53 11.46 204.82 8.63 32 8 12 556.25 12.10 567.70 9.39 259.87 13.92 651.48 14.66 415.05 9.53 445.97 5.81 32 11 12 333.19 38.19 415.46 27.69 389.65 6.14 641.18 5.45 408.50 22.29 699.20 26.50 37 8 12 180.39 42.10 211.86 20.42 307.97 17.84 402.85 20.19 280.45 20.03 315.37 11.39 37 11 12 217.69 23.30 143.30 16.41 275.90 16.65 313.35 13.24 145.16 14.03 189.66 11.67 38 8 12 146.96 23.05 207.67 12.50 209.57 20.30 208.17 9.87 120.18 17.00 154.03 10.67 38 11 12 266.26 32.00 316.29 14.01 183.01 13.45 218.16 11.76 154.35 13.32 178.38 10.84 39 8 12 282.29 14.54 396.90 11.67 310.90 13.51 278.33 9.93 300.59 11.74 136.75 9.79 39 11 12 266.79 12.20 339.27 11.33 330.38 14.41 322.83 9.11 324.58 10.71 238.73 6.27 53 8 12 406.45 6.74 609.80 7.42 268.92 7.50 616.54 9.53 370.05 8.11 429.01 5.89 53 11 12 395.34 6.02 383.40 4.78 266.01 8.86 379.61 9.91 371.98 10.88 308.30 6.35 55 8 12 339.93 51.19 515.01 29.31 356.35 20.59 492.06 13.72 299.84 22.84 412.76 15.14 55 11 12 320.00 23.48 468.03 16.50 320.72 12.21 472.46 10.28 350.01 11.59 415.09 11.82

D-16 Table D-6. SPS-2 backcalculated parameter ratios for center and edge locations STATE CODE PCC THICKNESS LANE WIDTH Interior Edge Eeff Subgrade k-value Eeff Subgrade k-value LCB/AGG PATB/AGG LCB/AGG PATB/AGG LCB/AGG PATB/AGG LCB/AGG PATB/AGG 4 8 12 1.97 1.68 1.75 1.84 2.18 1.75 1.44 1.16 4 11 12 1.62 1.52 1.71 1.16 2.12 2.07 2.15 0.72 5 8 12 0.85 2.11 1.61 0.56 1.44 2.97 1.98 0.55 5 11 12 1.45 0.80 0.86 1.37 1.32 0.92 0.78 1.13 6 8 12 1.41 1.36 1.10 1.53 1.84 1.78 0.69 1.10 6 11 12 1.97 0.99 0.85 1.55 1.85 1.31 0.66 1.60 8 8 12 1.22 2.04 1.05 1.57 1.65 1.62 1.00 1.10 8 11 12 1.55 1.12 0.67 0.76 1.77 1.50 0.95 1.07 10 8 12 1.98 1.24 1.06 0.97 1.59 1.93 1.40 1.40 10 11 12 1.40 1.34 0.98 1.25 1.52 1.50 1.39 1.58 19 8 12 2.18 1.25 1.10 0.93 1.36 1.37 1.37 1.02 19 11 12 1.21 1.22 1.15 1.53 1.03 0.86 1.03 1.45 20 8 12 1.17 1.63 1.17 0.94 1.71 1.50 1.35 1.03 20 11 12 1.03 0.95 1.50 1.16 1.27 1.04 1.48 0.92 26 8 12 1.34 1.50 2.05 1.26 1.42 1.60 3.06 1.57 26 11 12 1.07 1.14 1.55 1.45 0.90 1.22 2.23 2.48 32 8 12 1.27 1.46 1.34 0.63 1.62 2.52 1.27 1.46 32 11 12 1.71 0.28 0.82 0.95 1.04 0.21 0.59 0.92 37 8 12 2.10 0.89 0.64 1.10 1.79 1.77 0.67 1.28 37 11 12 1.66 1.19 1.50 1.90 1.41 1.13 0.76 1.65 38 8 12 1.36 1.19 1.22 1.74 1.17 0.92 1.35 1.35 38 11 12 2.40 1.01 1.73 1.19 1.29 1.09 1.77 1.22 39 8 12 1.24 1.15 0.94 1.03 1.19 1.01 2.90 2.04 39 11 12 1.14 1.35 0.82 1.02 1.81 1.45 1.42 1.35 53 8 12 0.83 0.93 1.10 0.73 1.26 1.62 1.42 1.44 53 11 12 0.55 0.81 1.06 0.72 0.75 1.56 1.24 1.23 55 8 12 2.24 0.90 1.13 1.19 1.94 0.91 1.25 1.19 55 11 12 2.03 1.05 0.91 0.92 1.40 0.87 1.13 1.14 Average 1.50 1.22 1.19 1.18 1.49 1.43 1.38 1.29

D-17 Table D-7. Summary of backcalculated properties for J1 and J3 locations on SPS-2 sections STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 4 213 08-Feb-94 289.3444 34.2815 9.114801 446.8413 31.58667 10.23593 15-Dec-04 164.0082 42.976 12.65642 356.2388 33.98242 10.91528 8 1.25 14 AGG 4 214 31-Jan-94 202.0303 41.57396 13.66286 173.3 36.75542 7.166687 21-Feb-12 57.06893 50.57071 7.360292 202.5089 31.74815 4.760877 8 1.25 12 AGG 4 215 03-Feb-94 219.8964 46.71156 9.219313 92.32948 54.16146 6.960221 11-Feb-11 132.1975 52.30767 8.671666 282.9435 39.18537 5.878747 11 1.5 12 AGG 4 216 02-Feb-94 238.0523 45.48469 8.977679 355.8134 41.58042 9.397322 11-Feb-11 252.8218 45.41258 9.266907 425.2419 39.75867 9.27323 11 1.5 14 AGG 4 217 07-Feb-94 242.2113 48.01741 29.30142 235.6556 40.37821 14.3385 18-Dec-03 637.1217 30.60444 13.85954 998.7247 28.2345 15.43272 8 1.25 14 LCB 4 219 06-Mar-95 375.7853 45.02204 13.00574 561.3011 36.80025 8.500511 14-Feb-11 277.3601 45.94292 10.84268 482.4372 43.1535 14.65851 11 1.5 12 LCB 4 221 08-Feb-94 263.4422 38.1425 12.71216 405.8858 35.51458 14.7934 18-Dec-03 181.6939 45.85769 18.32103 229.1947 43.21242 17.45367 8 1.25 14 PATB 4 222 31-Jan-94 308.8667 35.1505 10.77823 427.1993 31.57475 9.854197 09-Feb-11 167.2192 42.17875 12.08811 350.3287 33.37067 9.593849 8 1.25 12 PATB 4 223 03-Feb-94 297.5409 44.50657 10.16296 360.0765 40.31775 8.377149 14-Feb-11 234.8707 51.2994 14.01824 119.6029 55.45767 9.924961 11 1.5 12 PATB 4 224 02-Feb-94 253.3942 46.8055 10.64711 377.4284 45.43258 14.15503 10-Feb-11 150.8485 52.6745 10.30758 336.1796 45.817 13.07643 11 1.5 14 PATB 4 262 07-Nov-97 215.5799 40.32583 12.72649 388.3189 32.00367 9.334195 15-Dec-04 77.50952 47.08381 8.561871 212.8628 37.7145 9.785072 8 0 14 AGG 4 264 02-Feb-94 243.4973 47.82345 11.16025 287.9774 47.64741 13.01335 17-Feb-11 169.8075 60.35655 19.86121 135.2244 60.67842 16.12392 11 0 12 PATB 4 265 03-Mar-95 152.9419 54.16274 11.51981 239.5218 39.83917 5.323502 17-Feb-11 135.1684 51.24991 8.165747 273.6946 38.2205 5.171446 11 0 12 AGG 4 266 03-Feb-94 235.1367 56.2975 20.80126 457.7806 51.28021 27.95685 18-Feb-11 221.0481 57.531 20.96895 332.5038 53.52225 22.86445 11 1.5 14 PATB 4 267 10-Nov-97 302.716 46.52102 12.38883 415.0932 46.105 16.34803 17-Dec-04 292.9489 51.48885 17.1729 514.7669 45.734 19.0067 11 1.5 14 PATB 4 268 10-Nov-97 402.636 35.81102 15.09332 581.178 33.7413 17.21654 22-Feb-11 95.88574 52.91824 17.16249 342.0377 40.16758 20.33141 8 1.25 14 PATB 5 214 08-Nov-96 193.1765 38.35694 9.606603 329.909 31.95028 8.037577 08-Nov-96 193.1765 38.35694 9.606603 329.909 31.95028 8.037577 8 1.25 12 AGG 5 219 13-Nov-96 201.7617 55.4538 16.64168 361.6578 42.87213 11.33214 13-Nov-96 201.7617 55.4538 16.64168 361.6578 42.87213 11.33214 11 1.5 12 LCB 5 221 20-Nov-96 218.8599 40.75817 13.73519 383.8483 36.13458 14.90236 20-Nov-96 218.8599 40.75817 13.73519 383.8483 36.13458 14.90236 8 1.25 14 PATB 5 222 12-Nov-96 154.5971 49.34233 20.89642 163.9948 49.60708 22.24493 12-Nov-96 154.5971 49.34233 20.89642 163.9948 49.60708 22.24493 8 1.25 12 PATB 5 223 06-Nov-96 326.968 41.4512 8.523705 483.4332 37.1763 8.163269 06-Nov-96 326.968 41.4512 8.523705 483.4332 37.1763 8.163269 11 1.5 12 PATB 6 202 31-May-00 159.9369 48.04958 19.4582 187.1082 45.98313 18.29344 31-May-00 159.9369 48.04958 19.4582 187.1082 45.98313 18.29344 8 1.25 13 AGG 6 203 16-Sep-00 219.7643 52.31762 14.40794 271.3995 48.7199 13.36749 16-Sep-00 219.7643 52.31762 14.40794 271.3995 48.7199 13.36749 11 1.5 13 AGG 6 204 31-May-00 132.2232 55.90935 11.45838 226.1317 47.65119 10.37391 31-May-00 132.2232 55.90935 11.45838 226.1317 47.65119 10.37391 11 1.25 12 AGG 6 205 31-May-00 138.5138 57.84933 36.04437 190.6216 42.69242 16.44944 31-May-00 138.5138 57.84933 36.04437 190.6216 42.69242 16.44944 8 1.5 12 LCB 6 206 30-May-00 195.6819 43.32677 15.80681 314.8033 43.5625 26.0781 13-Nov-02 180.0817 46.39917 19.10496 347.1238 39.27817 19.88162 8 1.25 13 LCB 6 208 31-May-00 154.6473 60.48155 18.25862 175.3452 58.18479 17.99941 31-May-00 154.6473 60.48155 18.25862 175.3452 58.18479 17.99941 11 1.25 12 LCB 6 209 31-May-00 118.6633 50.18367 17.02764 178.8303 43.55806 15.29981 31-May-00 118.6633 50.18367 17.02764 178.8303 43.55806 15.29981 8 1.5 12 PATB 6 210 31-May-00 167.8941 47.18843 19.15598 274.4985 43.18917 22.0193 13-Nov-02 141.32 51.01183 21.72804 255.7632 45.75102 25.78607 8 1.25 13 PATB 6 211 16-Sep-00 195.954 50.91933 11.47827 364.131 44.86204 13.02489 16-Sep-00 195.954 50.91933 11.47827 364.131 44.86204 13.02489 11 1.5 13 PATB 6 212 31-May-00 134.5213 56.72176 12.23783 245.8539 49.95677 13.52215 14-Nov-02 129.3204 60.75104 15.52257 119.3633 58.39692 12.17767 11 1.25 12 PATB

D-18 STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 8 214 30-Mar-94 152.0943 35.60317 5.541962 230.9182 31.64917 5.294658 05-Oct-10 184.1695 42.06333 13.20869 139.8767 42.48056 9.876605 8 1.25 12 AGG 8 215 01-Apr-94 280.572 40.83333 6.752727 274.396 35.05229 3.554691 09-Jun-03 173.8864 52.94514 11.68488 155.9036 47.86296 7.29679 11 1.5 12 AGG 8 216 30-Mar-94 158.3438 52.48025 10.48151 179.9616 51.73933 10.92159 04-Jun-03 103.4982 59.46667 11.62958 162.7576 59.23167 17.8144 11 1.5 14 AGG 8 217 31-Mar-94 156.1086 40.51367 11.51345 261.922 39.84028 19.01474 10-Jun-03 114.8 49.69767 16.17493 238.8326 44.07472 20.75315 8 1.25 14 LCB 8 218 31-Mar-94 156.149 38.97192 8.534079 202.0317 36.87843 8.422525 11-Jul-02 103.8013 52.26611 17.43936 191.4772 40.7565 12.33404 8 1.25 12 LCB 8 219 31-Mar-94 170.7938 55.02048 14.34185 312.7672 48.173 15.12372 06-Oct-10 127.7434 60.19608 14.78443 164.1018 48.27825 7.918002 11 1.5 12 LCB 8 220 28-Mar-94 244.211 41.62183 6.285174 374.9353 41.01083 8.944112 11-Jun-03 139.4343 60.73865 16.72196 209.2104 57.49361 19.41345 11 1.5 14 LCB 8 222 29-Mar-94 163.6956 40.12758 9.640618 220.3504 34.98458 7.587137 13-Aug-98 224.7498 40.15733 13.31106 249.3814 34.28 7.679304 8 1.25 12 PATB 8 224 25-Mar-94 146.3193 48.93325 7.262577 272.7366 47.61542 12.27082 11-Jun-03 104.2508 59.85958 11.62606 185.434 56.97073 17.27274 11 1.5 14 PATB 8 259 01-Apr-94 172.895 44.43733 5.914804 289.6195 41.441 7.507811 22-Sep-11 162.0971 52.86625 11.14129 239.3167 49.79975 12.95645 11 1.5 12 SUBGR 10 201 07-May-96 186.0003 39.10242 9.934503 243.2921 34.73115 8.136416 17-Jun-99 210.524 40.18972 12.33814 138.0052 38.60857 6.924333 8 1.25 12 AGG 10 204 05-May-96 189.2768 44.82778 6.759084 241.8485 39.08333 5.006863 10-Jun-99 150.9083 55.5555 12.6528 83.379 56.23525 6.916959 11 1.5 12 AGG 10 205 07-May-96 219.3837 47.09452 26.49389 283.1613 37.581 14.05721 17-Jun-99 226.4127 45.75146 23.41047 230.536 36.94429 10.0301 8 1.25 12 LCB 10 208 05-May-96 187.702 56.12135 16.69179 243.6562 46.95517 10.53613 14-Jun-99 183.3003 53.03183 12.98769 263.9853 40.96875 6.539564 11 1.5 12 LCB 10 212 05-May-96 233.0895 47.52417 10.49102 296.2638 40.48073 7.021572 14-Jun-99 267.677 45.04417 9.713169 322.8278 38.6565 6.366858 11 1.5 12 PATB 10 259 05-May-96 221.0159 44.20722 7.423092 219.2166 39.74963 4.855764 10-Jun-99 129.8846 58.0278 12.93599 56.36318 59.50545 6.181777 11 1.5 12 AGG 10 260 07-May-96 207.664 47.88594 9.520453 219.864 40.59933 5.267257 17-Mar-11 138.0816 50.84983 8.02766 173.1653 44.49167 5.981021 11 1.25 12 AGG 19 213 19-Oct-94 128.8056 43.12795 10.22277 199.866 39.38573 11.04375 31-Mar-11 101.2755 46.67383 10.94994 150.8648 40.41342 9.201427 8 1.25 14 AGG 19 214 19-Oct-94 174.9706 36.7335 7.291119 172.7644 33.25781 4.84309 04-Apr-11 123.1667 46.22125 12.31197 67.17217 45.87308 7.146914 8 1.25 12 AGG 19 215 21-Oct-94 109.7141 54.08583 8.144612 171.4817 45.47615 6.41823 01-Apr-11 127.6211 53.38031 9.104878 112.3358 47.98583 5.24484 11 1.5 12 AGG 19 216 18-Oct-94 109.217 55.30563 8.821206 191.7568 50.79438 11.03532 31-Mar-11 123.6555 58.02881 12.33047 188.2188 52.35108 12.41618 11 1.5 12 AGG 19 217 17-Oct-94 134.2072 55.65917 29.43661 235.9232 41.17602 15.41091 16-May-05 128.6094 44.70542 11.84379 182.2521 38.40025 9.355476 8 1.25 14 LCB 19 218 17-Oct-94 225.3701 45.5951 22.1132 308.1651 31.5715 6.988314 30-Mar-11 135.3278 46.57575 14.59634 115.989 39.20183 6.287897 8 1.25 12 LCB 19 219 18-Oct-94 184.5549 54.92954 14.91903 309.8458 39.97642 6.997001 30-Mar-11 147.8668 52.49608 9.966324 152.9386 44.77667 5.406857 11 1.5 14 LCB 19 220 18-Oct-94 230.9902 53.39875 16.6182 408.5534 44.53005 14.16809 01-Apr-11 181.9999 53.55806 13.15795 257.8573 48.12583 12.15576 11 1.5 14 LCB 19 221 20-Oct-94 210.1816 36.61758 8.617128 347.9255 33.64767 10.17438 05-Apr-11 149.312 40.23556 9.218145 169.8933 38.66796 8.527903 8 1.25 14 PATB 19 222 20-Oct-94 157.1432 38.437 8.067272 192.5089 34.99403 6.58418 06-Apr-11 135.2576 46.42656 14.32675 84.78323 49.18375 11.32405 8 1.25 12 PATB 19 223 20-Oct-94 164.6455 48.98525 8.332208 217.9035 44.10271 7.110669 06-Apr-11 156.8194 54.37774 12.10363 166.8538 50.82242 9.862509 11 1.5 12 PATB 19 224 21-Oct-94 208.5138 47.09408 8.972043 368.0872 41.40658 9.47133 06-Apr-11 172.3903 53.37639 12.29002 247.4519 49.61935 13.19624 11 1.5 14 PATB 19 259 19-Oct-94 164.9067 44.36525 14.62169 312.6365 40.3615 19.01067 05-Apr-11 133.7496 53.22533 24.55718 189.7853 51.64283 30.9215 8 0 14 AGG 20 201 05-Aug-92 129.1653 39.15792 6.554032 185.4064 35.71583 6.946074 24-Jul-95 144.2247 38.9365 7.461758 154.017 34.67688 5.226786 8 1.25 12 AGG 20 202 05-Aug-92 102.4443 42.40963 7.479335 205.8904 36.12389 7.989851 14-Aug-01 119.5278 45.90927 11.91721 200.0755 40.13758 11.65693 8 1.25 14 AGG

D-19 STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 20 203 06-Aug-92 196.1006 46.13393 7.49438 404.1138 39.725 8.670284 01-Oct-03 211.1555 49.90365 11.21165 343.5642 44.93967 12.06022 11 1.5 14 AGG 20 204 04-Aug-92 165.083 47.12667 7.147314 261.6004 43.37071 8.028649 06-Apr-93 226.4519 45.60125 8.598006 291.0225 39.53617 6.40021 11 1.5 12 AGG 20 205 06-Aug-92 146.0094 55.62042 31.96135 260.4558 48.10597 33.95644 02-Oct-03 168.3693 37.50517 7.669471 274.3251 37.41717 12.37061 8 1.25 12 LCB 20 206 05-Aug-92 147.1182 49.59067 22.11054 283.3048 39.98146 16.97275 02-Oct-03 151.7574 49.81542 21.22076 289.5543 40.31567 17.69203 8 1.25 14 LCB 20 208 31-Jul-92 185.47 59.99833 21.16347 251.8121 54.81333 21.48629 02-Oct-03 187.3583 50.11094 10.44515 208.5131 48.15667 9.943138 11 1.5 12 LCB 20 209 03-Aug-92 107.9754 48.78317 13.82766 169.6274 39.13442 9.104546 11-Dec-03 148.1699 49.566 20.40714 128.1395 42.12821 9.44785 8 1.25 12 PATB 20 210 04-Aug-92 148.8482 45.13742 14.15502 294.2692 40.18403 17.54797 11-Dec-03 176.681 48.00983 21.30841 321.212 42.89958 24.79667 8 1.25 14 PATB 20 211 03-Aug-92 131.3513 51.7585 8.324628 252.6053 45.83467 9.961896 03-Oct-03 155.1704 54.06517 11.64469 288.2841 47.79633 13.2865 11 1.5 14 PATB 20 212 31-Jul-92 145.8831 49.34083 7.626403 192.5896 43.56104 6.186701 03-Oct-03 144.525 60.408 16.94665 79.93556 60.76796 9.606439 11 1.5 12 PATB 20 259 10-Dec-92 163.0817 60.66833 19.46842 421.765 45.65 16.13849 12-Dec-03 209.0458 59.21806 22.71513 363.8797 52.69324 24.7021 11 1.5 12 LCB 26 213 15-Nov-93 279.8333 34.23767 8.770334 416.1163 31.62733 9.534798 03-Nov-98 189.1148 33.89758 6.348328 314.4732 29.86952 7.35511 8 1.25 14 AGG 26 214 19-Nov-93 386.7185 32.04358 9.340543 254.2338 32.14167 6.226951 13-Nov-98 212.8076 36.02792 8.191269 66.45917 46.78083 7.30566 8 1.25 12 AGG 26 215 16-Nov-93 299.868 40.84298 7.32625 246.3136 38.69139 4.949221 10-Nov-98 225.2743 44.41108 7.654093 111.4304 48.7331 5.562857 11 1.5 12 AGG 26 216 17-Nov-93 329.9363 40.56042 7.808718 466.3414 37.73933 8.309575 03-Oct-01 196.1909 52.06659 12.68562 270.7838 49.02097 13.63017 11 1.5 14 AGG 26 217 15-Nov-93 345.0057 43.18133 27.54624 674.8408 35.63033 25.18853 21-May-97 203.8475 37.61417 9.268682 290.7281 33.44833 8.336096 8 1.25 14 LCB 26 218 19-Nov-93 614.0837 29.31908 10.55639 781.4284 28.09958 11.17109 07-Jun-95 228.6531 36.48575 8.932382 178.504 30.17528 3.335582 8 1.25 12 LCB 26 219 05-Dec-94 425.788 40.80065 10.40144 428.8543 37.28567 7.307322 21-Aug-02 120.8903 52 7.811412 148.6587 45.2025 5.501849 11 1.5 12 LCB 26 220 17-Nov-93 488.314 35.62854 6.953087 747.4748 35.88533 10.90986 03-Oct-01 118.4901 56.76722 10.51345 241.6181 50.31042 13.39811 11 1.5 14 LCB 26 221 16-Nov-93 262.3913 36.3595 10.41075 424.3827 33.35533 12.04525 02-Oct-01 179.429 43.41244 14.58167 322.8695 38.55625 16.3789 8 1.25 14 PATB 26 223 18-Nov-93 260.5418 46.19028 10.43706 361.7548 39.23325 7.585663 04-Oct-01 171.8449 54.8319 13.67312 143.133 56.32475 13.0137 11 1.5 12 PATB 26 224 16-Nov-93 255.5878 43.73417 8.258085 458.8113 39.78275 10.14378 02-Oct-01 144.7386 56.70153 13.2191 308.2735 49.27988 16.00516 11 1.5 14 PATB 26 259 18-Nov-93 288.1361 42.84389 8.548613 519.5983 37.93907 9.480327 12-Nov-98 460.2124 37.4069 7.91365 557.4695 33.89358 6.505033 11 1.25 12 PATB 32 201 25-Mar-96 319.639 32.78625 8.456738 399.3206 27.6385 5.26462 25-Mar-96 319.639 32.78625 8.456738 399.3206 27.6385 5.26462 8 1.25 12 AGG 32 202 01-Apr-96 128.6067 47.08786 14.45265 449.3981 27.22375 11.20514 01-Apr-96 128.6067 47.08786 14.45265 449.3981 27.22375 11.20514 8 1.25 14 AGG 32 206 02-Apr-96 196.2857 39.96667 12.01758 499.2738 25.48992 6.666628 02-Apr-96 196.2857 39.96667 12.01758 499.2738 25.48992 6.666628 8 1.25 14 LCB 32 207 27-Mar-96 243.3899 59.51017 26.86826 314.6409 51.31892 18.85748 27-Mar-96 243.3899 59.51017 26.86826 314.6409 51.31892 18.85748 11 1.5 14 LCB 32 209 26-Mar-96 313.1174 33.23844 8.489748 501.5778 31.25633 10.87434 24-Jun-02 340.837 33.34875 9.615144 369.4748 29.53292 6.521756 8 1.25 12 PATB 32 210 27-Mar-96 321.6694 32.68869 3.139833 499.643 31.65525 4.525024 04-Jun-97 276.0883 38.42347 5.407973 407.8169 32.01875 4.516996 11 1.25 14 PATB 32 259 26-Mar-96 316.4203 49.94833 17.24638 510.5902 45.4363 19.19404 27-Oct-03 227.0005 58.46259 23.27682 417.2744 53.96017 31.08095 11 1.25 12 PATB 37 201 10-May-94 238.4676 39.25192 12.59811 328.5552 33.83442 10.02024 15-Dec-03 185.1954 46.661 18.48521 193.448 38.68056 9.940941 8 1.5 12 AGG 37 202 10-May-94 177.29 42.35653 13.05576 190.7799 41.46625 12.75326 04-Nov-03 94.49958 52.94342 17.12231 197.6079 45.80125 20.26068 8 1.5 14 AGG 37 203 12-May-94 135.8828 54.12771 10.30852 202.6845 51.43157 12.51106 19-Apr-10 110.4332 60.52104 13.04894 93.34233 57.24417 8.786046 11 1.5 14 AGG

D-20 STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 37 204 15-May-94 107.0355 60.5955 12.73072 74.17 58.53333 7.86589 13-Nov-03 89.19233 60.77 10.72024 113.391 55.93483 9.658353 11 1.5 12 AGG 37 205 09-May-94 152.7748 58.0495 40.22153 235.71 45.0265 22.70294 12-Dec-03 114.0951 53.71417 23.02337 140.1194 43.6513 13.92693 8 1.5 12 LCB 37 206 12-May-94 157.5335 55.74762 35.00642 251.2949 48.60185 33.10233 04-Nov-03 114.7777 60.54573 35.27182 230.2237 51.40658 37.26565 8 1.5 14 LCB 37 207 13-May-94 201.1043 60.77 24.1712 215.2676 60.43917 25.4102 19-Apr-10 118.9403 60.73514 14.26979 144.3874 60.57833 17.18073 11 1.5 14 LCB 37 208 14-May-94 201.3762 59.4115 21.40634 259.7985 53.15042 16.56889 21-Apr-10 144.3195 53.56633 10.74355 62.95865 60.57385 7.473165 11 1.5 12 LCB 37 209 11-May-94 259.3204 37.86269 12.15744 302.587 35.8062 11.50896 15-Dec-03 166.2804 46.74679 18.18699 252.5066 41.96258 18.08663 8 1.5 12 PATB 37 211 14-May-94 130.7838 54.99 10.5376 206.457 52.74642 14.03492 20-Apr-10 114.2757 60.76602 13.73089 91.60407 59.77926 10.1578 11 1.5 14 PATB 37 212 14-May-94 225.9657 48.40935 10.53914 275.0813 44.65308 9.382868 20-Apr-10 155.3535 56.08342 13.18693 287.7464 46.3826 11.05342 11 1.5 12 PATB 37 260 13-May-94 207.5875 60.77 24.95043 284.6633 59.90903 32.24085 05-Nov-03 227.5827 60.77 27.35371 429.5547 60.77 51.62919 11 1.5 14 PATB 38 213 03-Nov-94 110.125 48.90926 14.38033 180.3926 43.82608 15.2756 08-Sep-95 98.02636 47.01053 10.93421 171.5923 41.04324 11.27261 8 1.25 14 AGG 38 214 01-Nov-94 98.51269 51.50278 15.86133 142.1149 41.18217 9.458408 07-Sep-95 91.39708 45.555 9.048464 124.7583 35.3625 4.472987 8 1.25 12 AGG 38 215 02-Nov-94 122.5986 54.13905 9.269651 170.026 43.86861 5.569809 07-Sep-95 112.497 53.64594 8.181592 180.645 47.08167 7.818084 11 1.5 12 AGG 38 216 02-Nov-94 114.5507 58.8974 12.15845 216.0929 52.52842 14.62859 07-Sep-95 123.6592 54.1225 9.355672 233.5738 49.77292 12.55919 11 1.5 14 AGG 38 217 04-Nov-94 153.2711 60.74907 47.83445 206.0336 54.5163 43.75812 12-Sep-95 92.76194 54.74028 19.06228 190.5978 44.92259 17.80728 8 1.25 14 LCB 38 218 01-Nov-94 98.21575 56.98008 23.61597 168.6663 37.54683 7.759175 12-Sep-95 109.6554 47.8862 13.20203 178.0154 39.92806 10.65115 8 1.25 12 LCB 38 219 01-Nov-94 189.0343 60.77 22.72048 233.1369 46.44508 9.602517 13-Sep-95 116.6854 60.28083 13.58344 159.324 48.95917 8.086063 11 1.5 12 LCB 38 221 04-Nov-94 140.7195 46.09052 14.51432 238.6544 41.67867 16.48091 14-Sep-95 122.8187 45.49824 12.0482 187.7076 41.82407 13.16401 8 1.25 14 PATB 38 222 03-Nov-94 165.4161 45.16722 15.69522 191.1311 34.32158 6.065721 14-Sep-95 130.81 45.71143 12.99825 103.1122 42.66 7.884568 8 1.25 12 PATB 38 223 03-Nov-94 130.4961 55.72153 11.09391 198.4503 43.70783 6.377516 13-Sep-95 123.1224 54.20036 9.363471 131.3253 49.3035 6.87228 11 1.5 12 PATB 38 224 31-Oct-94 153.4929 54.3025 11.75772 254.3175 50.19133 14.22463 14-Sep-95 130.7156 55.65396 11.04063 207.1242 50.49583 11.91286 11 1.5 14 PATB 38 259 27-Oct-94 168.5513 50.17542 9.393715 285.0598 45.20593 10.46292 02-Aug-01 115.7902 57.51927 11.15204 195.2666 50.21315 10.96687 11 1.25 12 PATB 38 260 26-Oct-94 117.1535 56.95426 10.79429 151.4598 54.07037 11.2897 24-Jul-01 92.84017 60.77 11.15868 104.4831 59.31458 11.53389 11 1.5 12 AGG 38 261 02-Nov-94 121.5965 56.53954 10.83208 188.1342 42.87341 5.60518 06-Sep-95 113.4625 54.884 9.048575 119.7303 48.35861 5.784217 11 0 12 AGG 38 262 05-Nov-94 198.4297 60.77 23.84974 244.0291 55.86213 21.10561 05-Nov-94 198.4297 60.77 23.84974 244.0291 55.86213 21.10561 11 0 14 PATB 38 263 05-Nov-94 153.2156 52.35893 10.14311 213.1065 41.42117 5.531378 15-Sep-95 142.6206 51.11407 8.451925 119.7257 49.1344 6.158842 11 0 12 PATB 38 264 26-Oct-94 155.7336 52.20595 10.19783 237.091 48.88383 11.9615 04-Oct-10 148.0686 54.52458 11.62021 117.5903 59.65417 12.93931 11 0 12 PATB 39 201 31-Dec-96 227.5264 35.22867 7.95127 142.6864 34.75 4.904037 09-Sep-04 139.0694 44.17758 12.21355 99.49717 40.38692 6.090974 8 1.25 12 AGG 39 202 15-Dec-96 162.1127 40.24009 9.647918 292.6294 37.48528 13.33563 10-Sep-04 131.3478 47.78427 15.29682 212.2419 42.66222 16.07435 8 1.25 14 AGG 39 203 03-Jan-97 228.1049 43.09775 6.928112 315.464 40.71717 7.67979 18-Nov-10 156.3727 52.37425 10.3393 197.2161 51.67167 12.41783 11 1.5 14 AGG 39 205 30-Dec-96 301.4068 35.39083 10.84961 396.9741 32.24492 10.33131 09-Sep-04 115.0457 49.83481 16.54787 184.4894 40.00537 8.917759 8 1.25 12 LCB 39 206 30-Dec-96 216.739 40.11508 13.14425 360.9604 36.43892 15.44389 09-Sep-04 120.5341 50.80479 18.21303 252.1324 39.54602 14.10135 8 1.25 14 LCB 39 207 04-Jan-97 287.7708 40.66775 6.850782 486.6171 39.971 10.827 08-Aug-12 144.7852 55.75917 12.28427 225.8529 52.9185 15.25664 11 1.5 14 LCB

D-21 STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 39 208 04-Jan-97 233.6147 44.22983 7.844116 339.0681 42.7505 9.95932 21-Sep-04 124.8553 57.53025 12.05907 141.9814 49.02593 7.313828 11 1.5 12 LCB 39 209 31-Dec-96 267.503 36.10833 10.22672 150.6479 36.73381 6.294805 22-Sep-04 140.0943 45.53259 13.08387 170.3621 38.62407 8.530245 8 1.25 12 PATB 39 210 14-Dec-96 300.4988 33.97292 9.172558 472.0978 30.91733 9.906288 10-Sep-04 202.1276 40.92685 13.18113 312.2928 38.46198 15.43008 8 1.25 14 PATB 39 211 02-Jan-97 233.8878 45.62308 8.926096 386.4994 41.04602 9.699231 18-Nov-10 167.5667 55.08375 13.6073 176.6177 59.83167 20.04538 11 1.5 14 PATB 39 212 14-Dec-96 263.0904 45.21142 9.574139 259.1769 40.2563 5.981475 09-Apr-03 182.1236 54.07119 13.58692 152.9362 48.3525 7.314267 11 1.5 12 PATB 39 259 13-Dec-96 267.7809 41.34008 6.858238 185.6507 41.2226 4.723437 08-Apr-03 169.8204 50.96967 10.08444 131.0906 49.32204 6.818048 11 1.5 12 AGG 39 260 15-Dec-96 270.7798 43.23217 8.28665 320.2248 36.04509 4.715402 07-Aug-12 199.1664 52.2194 12.93363 77.37861 58.95065 8.177919 11 1.5 12 PATB 39 261 02-Jan-97 248.4521 49.18283 12.80203 314.9739 45.73483 12.08232 07-Aug-12 163.5656 60.5638 19.3827 185.1372 60.75833 22.23623 11 1.5 14 PATB 39 262 05-Jan-97 226.3269 51.82042 14.36825 161.3189 48.48135 7.78468 18-Nov-10 167.7258 60.58444 19.91289 110.9531 60.05611 12.80015 11 1.5 12 PATB 39 263 05-Jan-97 218.1213 45.89704 8.505902 232.4363 45.95 8.998172 08-Aug-12 120.9635 58.47558 12.48995 122.2113 60.73407 14.65345 11 1.5 14 AGG 39 265 03-Jan-97 255.399 44.93492 9.1198 288.6266 37.7825 5.190334 18-Nov-10 165.5491 55.40367 13.7974 115.5931 56.43643 9.727964 11 1.5 12 PATB 53 201 17-Nov-95 285.6188 34.30479 9.071545 319.8135 30.32083 6.261666 22-May-13 192.8063 38.22844 9.231821 150.2453 35.80667 5.597612 8 1.25 12 AGG 53 204 17-Nov-95 304.1167 40.90403 7.534822 266.7302 37.94833 4.871094 22-May-13 184.4975 49.9625 10.14688 67.91 57.58292 6.430263 11 1.5 12 AGG 53 205 17-Nov-95 328.8567 42.21917 23.91107 432.8728 37.11472 19.18823 23-May-13 281.51 39.1625 15.17174 358.5363 30.93083 7.449966 8 1.25 12 LCB 53 206 19-Nov-95 413.7897 37.00833 16.57927 584.631 32.59323 14.69859 23-May-13 154.835 41.12633 9.946923 405.5971 28.7025 6.247955 8 1.25 14 LCB 53 208 18-Nov-95 622.6627 34.22292 7.256741 957.2408 28.80806 5.761266 23-May-13 152.8977 48.0163 7.163439 296.2192 35.89271 4.541135 11 1.5 12 LCB 53 209 22-May-97 271.6383 33.3775 7.72304 384.4058 28.20167 5.575891 18-May-11 102.8801 44.85158 9.489888 236.4015 34.48842 7.664784 8 1.25 12 PATB 55 213 27-Apr-98 168.1495 36.97333 7.185293 350.9791 31.97741 8.390021 06-May-10 185.9446 41.53528 12.58785 263.9317 32.43467 6.640891 8 1.25 14 AGG 55 214 28-Apr-98 270.6929 39.6399 15.2205 287.8846 32.65722 7.434729 12-May-10 133.6206 49.14967 17.62755 256.9356 34.75283 8.600565 8 1.25 12 AGG 55 215 28-Apr-98 206.7688 43.4149 6.385569 274.8279 37.30357 4.741852 12-May-10 124.5036 51.4595 7.444395 161.1018 43.46125 5.068928 11 1.5 12 AGG 55 216 24-Apr-98 248.353 44.535 8.514162 322.1294 42.52481 9.268823 05-May-10 190.344 51.2299 11.28797 263.3577 45.33278 9.705647 11 1.5 14 AGG 55 218 28-Apr-98 280.0331 49.95857 39.73645 425.0507 39.56177 23.87699 12-May-10 154.7744 57.20492 37.88568 233.4557 47.22742 27.69746 8 1.25 12 LCB 55 219 28-Apr-98 221.0961 56.50774 19.61675 337.9911 48.30952 16.04289 12-May-10 104.9253 54.01992 7.847044 175.7085 43.11906 5.346268 11 1.5 12 LCB 55 220 27-Apr-98 261.835 60.64083 31.21004 291.3914 58.62778 30.37718 05-May-10 167.604 60.77 20.14472 236.5626 55.2531 19.37458 11 1.5 14 LCB 55 221 21-Apr-98 211.8803 37.93389 10.13884 430.917 33.00769 11.74753 04-May-10 44.77183 59.26883 12.6409 215.1175 42.94574 16.42139 8 1.25 14 PATB 55 222 28-Apr-98 306.0288 38.50508 15.33044 371.8939 32.60508 9.616942 06-May-10 160.2042 40.21917 9.295472 312.457 35.4013 11.5569 8 1.25 12 PATB 55 223 27-Apr-98 207.3832 44.07944 6.910534 388.8319 37.52952 6.779471 06-May-10 107.2396 56.63111 9.736825 241.2778 44.25067 8.046709 11 1.5 12 PATB 55 224 24-Apr-98 338.8388 43.79569 10.8775 441.1081 41.25567 11.18371 05-May-10 278.7525 52.31308 17.92779 142.2526 53.55283 10.11007 11 1.5 14 PATB 55 259 20-Apr-98 210.1659 46.33667 8.507205 317.0771 42.09983 8.66045 04-May-10 86.69271 60.60052 10.29445 142.9959 49.31925 7.238678 11 1.5 12 AGG 55 260 20-Apr-98 252.8945 44.47858 8.722104 382.7344 39.45842 8.212478 04-May-10 183.6215 54.72225 14.48702 167.9733 46.78633 7.072942 11 1.5 12 AGG 55 261 27-Apr-98 176.2784 45.02448 16.60226 290.5011 40.1144 17.42421 06-May-10 158.3545 55.64546 34.79715 177.1767 45.47398 17.5568 8 1.25 12 AGG 55 262 28-Apr-98 239.2352 33.21625 6.544563 415.8466 28.92389 6.653397 30-Sep-04 210.0381 41.12463 13.61423 343.9981 33.99333 10.56625 8 1.25 12 AGG

D-22 STATE CODE ID First Test Date k1_1 rad1_1 E1_1 k3_1 rad3_1 E3_1 Last Test Date k1_L rad1_L E1_L k3_L rad3_L E3_L H_PCC DOWEL LANE WIDTH BASE TYPE 55 263 21-Apr-98 146.3848 46.67808 6.010392 298.9409 42.42787 8.530723 04-May-10 166.9999 53.55092 11.88488 245.2245 47.29725 10.71385 11 1.25 12 AGG 55 264 29-Apr-98 290.1896 43.92762 9.400822 252.9461 44.40242 8.597854 13-May-10 228.9784 51.38192 13.67837 203.5295 43.05508 6.062156 11 1.5 12 AGG 55 265 29-Apr-98 377.0821 40.21565 8.696737 211.3879 46.90435 8.899536 29-Apr-98 377.0821 40.21565 8.696737 211.3879 46.90435 8.899536 11 1.5 12 AGG 55 266 04-Oct-04 136.1614 57.01424 12.51611 300.2338 49.35683 15.4579 13-May-10 162.4726 54.84208 13.00614 188.2278 45.9355 7.34216 11 0 12 AGG

Next: Appendix E Analysis of Profile Data Using Empirical Mode Decomposition »
Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures Get This Book
×
 Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB's National Cooperative Highway Research Program (NCHRP) Web-Only Document 236: Incorporating Slab/Underlying Layer Interaction into the Concrete Pavement Analysis Procedures develops mechanistic-empirical (M-E) models (and software) to consider the interaction between the concrete slab and base layer and its effect on pavement performance. The current American Association of State Highway and Transportation Officials (AASHTO) M-E design procedure incorporates a slab-base interface model that allows either a fully bonded or fully unbonded interface condition.

The Software for Modified Models can be used to analyze existing AASHTO M-E projects to determine the effect of slab-base interaction on pavement performance.

This software is offered as is, without warranty or promise of support of any kind either expressed or implied. Under no circumstance will the National Academy of Sciences, Engineering, and Medicine or the Transportation Research Board (collectively "TRB") be liable for any loss or damage caused by the installation or operation of this product. TRB makes no representation or warranty of any kind, expressed or implied, in fact or in law, including without limitation, the warranty of merchantability or the warranty of fitness for a particular purpose, and shall not in any case be liable for any consequential or special damages.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!