National Academies Press: OpenBook
« Previous: Front Matter
Page 1
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 1
Page 2
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 2
Page 3
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 3
Page 4
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 4
Page 5
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 5
Page 6
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 6
Page 7
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 7
Page 8
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 8
Page 9
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 9
Page 10
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 10
Page 11
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 11
Page 12
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 12
Page 13
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 13
Page 14
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 14
Page 15
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 15
Page 16
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 16
Page 17
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 17
Page 18
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 18
Page 19
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 19
Page 20
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 20
Page 21
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 21
Page 22
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 22
Page 23
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 23
Page 24
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 24
Page 25
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 25
Page 26
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 26
Page 27
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 27
Page 28
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 28
Page 29
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 29
Page 30
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 30
Page 31
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 31
Page 32
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 32
Page 33
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 33
Page 34
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 34
Page 35
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 35
Page 36
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 36
Page 37
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 37
Page 38
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 38
Page 39
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 39
Page 40
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 40
Page 41
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 41
Page 42
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 42
Page 43
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 43
Page 44
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 44
Page 45
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 45
Page 46
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 46
Page 47
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 47
Page 48
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 48
Page 49
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 49
Page 50
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 50
Page 51
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 51
Page 52
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 52
Page 53
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 53
Page 54
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 54
Page 55
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 55
Page 56
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 56
Page 57
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 57
Page 58
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 58
Page 59
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 59
Page 60
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 60
Page 61
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 61
Page 62
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 62
Page 63
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 63
Page 64
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 64
Page 65
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 65
Page 66
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 66
Page 67
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 67
Page 68
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 68
Page 69
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 69
Page 70
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 70
Page 71
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 71
Page 72
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 72
Page 73
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 73
Page 74
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 74
Page 75
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 75
Page 76
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 76
Page 77
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 77
Page 78
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 78
Page 79
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 79
Page 80
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 80
Page 81
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 81
Page 82
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 82
Page 83
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 83
Page 84
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 84
Page 85
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 85
Page 86
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 86
Page 87
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 87
Page 88
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 88
Page 89
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 89
Page 90
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 90
Page 91
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 91
Page 92
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 92
Page 93
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 93
Page 94
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 94
Page 95
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 95
Page 96
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 96
Page 97
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 97
Page 98
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 98
Page 99
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 99
Page 100
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 100
Page 101
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 101
Page 102
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 102
Page 103
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 103
Page 104
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 104
Page 105
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 105
Page 106
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 106
Page 107
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 107
Page 108
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 108
Page 109
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 109
Page 110
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 110
Page 111
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 111
Page 112
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 112
Page 113
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 113
Page 114
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 114
Page 115
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 115
Page 116
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 116
Page 117
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 117
Page 118
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 118
Page 119
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 119
Page 120
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 120
Page 121
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 121
Page 122
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 122
Page 123
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 123
Page 124
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 124
Page 125
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 125
Page 126
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 126
Page 127
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 127
Page 128
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 128
Page 129
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 129
Page 130
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 130
Page 131
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 131
Page 132
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 132
Page 133
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 133
Page 134
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 134
Page 135
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 135
Page 136
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 136
Page 137
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 137
Page 138
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 138
Page 139
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 139
Page 140
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 140
Page 141
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 141
Page 142
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 142
Page 143
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 143
Page 144
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 144
Page 145
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 145
Page 146
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 146
Page 147
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 147
Page 148
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 148
Page 149
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 149
Page 150
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 150
Page 151
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 151
Page 152
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 152
Page 153
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 153
Page 154
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 154
Page 155
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 155
Page 156
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 156
Page 157
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 157
Page 158
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 158
Page 159
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 159
Page 160
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 160
Page 161
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 161
Page 162
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 162
Page 163
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 163
Page 164
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 164
Page 165
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 165
Page 166
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 166
Page 167
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 167
Page 168
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 168
Page 169
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 169
Page 170
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 170
Page 171
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 171
Page 172
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 172
Page 173
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 173
Page 174
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 174
Page 175
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 175
Page 176
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 176
Page 177
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 177
Page 178
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 178
Page 179
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 179
Page 180
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 180
Page 181
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 181
Page 182
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 182
Page 183
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 183
Page 184
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 184
Page 185
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 185
Page 186
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 186
Page 187
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 187
Page 188
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 188
Page 189
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 189
Page 190
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 190
Page 191
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 191
Page 192
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 192
Page 193
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 193
Page 194
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 194
Page 195
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 195
Page 196
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 196
Page 197
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 197
Page 198
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 198
Page 199
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 199
Page 200
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 200
Page 201
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 201
Page 202
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 202
Page 203
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 203
Page 204
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 204
Page 205
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 205
Page 206
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 206
Page 207
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 207
Page 208
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 208
Page 209
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 209
Page 210
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 210
Page 211
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 211
Page 212
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 212
Page 213
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 213
Page 214
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 214
Page 215
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 215
Page 216
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 216
Page 217
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 217
Page 218
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 218
Page 219
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 219
Page 220
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 220
Page 221
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 221
Page 222
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 222
Page 223
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 223
Page 224
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 224
Page 225
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 225
Page 226
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 226
Page 227
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 227
Page 228
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 228
Page 229
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 229
Page 230
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 230
Page 231
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 231
Page 232
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 232
Page 233
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 233
Page 234
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 234
Page 235
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 235
Page 236
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 236
Page 237
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 237
Page 238
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 238
Page 239
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 239
Page 240
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 240
Page 241
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 241
Page 242
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 242
Page 243
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 243
Page 244
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 244
Page 245
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 245
Page 246
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 246
Page 247
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 247
Page 248
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 248
Page 249
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 249
Page 250
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 250
Page 251
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 251
Page 252
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 252
Page 253
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 253
Page 254
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 254
Page 255
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 255
Page 256
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 256
Page 257
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 257
Page 258
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 258
Page 259
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 259
Page 260
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 260
Page 261
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 261
Page 262
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 262
Page 263
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 263
Page 264
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 264
Page 265
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 265
Page 266
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 266
Page 267
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 267
Page 268
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 268
Page 269
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 269
Page 270
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 270
Page 271
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 271
Page 272
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 272
Page 273
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 273
Page 274
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 274
Page 275
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 275
Page 276
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 276
Page 277
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 277
Page 278
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 278
Page 279
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 279
Page 280
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 280
Page 281
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 281
Page 282
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 282
Page 283
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 283
Page 284
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 284
Page 285
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 285
Page 286
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 286
Page 287
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 287
Page 288
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 288
Page 289
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 289
Page 290
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 290
Page 291
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 291
Page 292
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 292
Page 293
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 293
Page 294
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 294
Page 295
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 295
Page 296
Suggested Citation:"Appendix A: Literature Review." National Academies of Sciences, Engineering, and Medicine. 2017. Improving the Resilience of Transit Systems Threatened by Natural Disasters, Volume 3: Literature Review and Case Studies. Washington, DC: The National Academies Press. doi: 10.17226/24972.
×
Page 296

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

IMPROVING THE RESILIENCY OF TRANSIT SYSTEMS THREATENED BY NATURAL DISASTERS VOLUME 3: LITERATURE REVIEW AND CASE STUDY SUMMARIES APPENDIX A. LITERATURE REVIEW A-1

REFERENCE DOCUMENTS CITED IN THE LITERATURE REVIEW SYNTHESIS REPORT (Chronological Order as Cited in the Synthesis) A-2

TCRP A-41: Literature Review A-3 Citation  Committee on Climate Change and U.S. Transportation, Transportation Research Board, Division  on Earth and Life Studies. 2008. Transportation Research Board Special Report 290: Potential  Impacts of Climate Change on U.S. Transportation. National Research Council of the National  Academies, Washington, D.C.  Website/Source   onlinepubs.trb.org/onlinepubs/sr/sr290.pdf   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Research Report  Intended  Audience  Planners, engineers, decision makers, federal, state, private and public transportation agencies,  local and state government  Abstract  Funded by various organizations, the report intends to highlight the potential impacts of climate  change on transportation, as of 2008, in the face of differing opinions on the actual occurrence of  climate change.  The report details the relevance climate change has on transportation, and  suggests the organizational and adaptation actions agencies should be considering in advance of  the changing environment.  Populations  Referenced  Planners, engineers, decision makers  Topics Covered   Climate change overview;  Role of design standards;  Emergency response;  Transportation impacts from climate change;  Barriers to responding to climate change; and  Adaptation strategies. Type of  Sponsoring  Agency or  Organization   TRB, NCHRP, USDOT, TCRP, USEPA, USACE  Geographic  Distribution   National  Type of Transit  Mode(s)  Marine, air, and land including rail and roadway.  Type of  Vulnerability  Heat, Sea‐level rise, Precipitation, Coastal storms  Goals and  Motivations  See Abstract  Context  N/A  Tools   Outlines a decision framework to address climate change:  1. Assess how climate is changing in your region; 2. Inventory infrastructure to determine the vulnerability and impact climate change will have on it; 3. Analyze adaptation strategies to address potential impacts; 4. Prioritize investments;

TCRP A-41: Literature Review A-4 5. Establish a program for implementing near and long‐term adaptation strategies; 6. Assess the framework and repeat as part of an ongoing process. Noteworthy  Aspects  Potential Impacts:   HEAT ‐ Limits on constructions due to health and safety concerns; o Reduction of impacts from cold‐related maintenance restrictions  HEAT – Rail‐track deformities and failures;  HEAT – Bridge expansion;  HEAT – Bus overheating and deterioration;  HEAT – Increased energy consumption;  HEAT – Reduction in snow and ice removal costs and impacts (Not all regions); o Reduction in ice jams and ice on marine vessels o Improved mobility and safety o Longer construction season  SLR – Flooding of low‐lying roadways and tracks;  SLR – Evacuation impacts;  SLR – Increased flooding of tunnels;  SLR – Erosion impacts;  SLR – Loss of wetland barriers to protect surge and storm damage;  SLR – reduce bridge clearance for marine vessels;  SLR, changes in navigable waters;  PRECIP – Construction impacts;  PRECIP – Operation delays;  PRECIP – Flooding of evacuation routes;  PRECIP – Flooding of rail lines and tunnels;  PRECIP – Increase in wash outs and damages to rail bed infrastructure;  PRECIP – Increase in mudslides impact roadway and rail infrastructure;  PRECIP – Impacts to marine channel depth;  DROUGHT – Increase wildfire threat;  DROUGHT – Impacts on river transport routes;  COASTAL – More frequent emergency evacuations;  COASTAL – More debris on rail lines and travel disruptions;  COASTAL – Infrastructure damage and failures;  COASTAL – Bridge deck instability; and  COASTAL – Harbor/Port damage to docks and wave damage to infrastructure. Some Report Recommendations   Agencies should inventory infrastructure for predicting impacts;  Incorporate climate change into long‐range transportation plans, facility designs, capital improvement plans, maintenance practices, operations and emergency response plans;  “Transportation planners and engineers should use more probabilistic investment analyses and design approaches that incorporate techniques for trading off the costs of making the infrastructure more robust against the economic costs of failure. At a more general level, these techniques could also be used to communicate these trade‐offs to policy makers who make investment decisions and authorize funding.” (Page 11‐12);  Build capacity within the organization to address emergency response and evacuation plans;  Develop and implement monitoring technologies which provide advance warning to weather and climate change;

TCRP A-41: Literature Review A-5  Consider change to design standards based on risk to lessen the need for high cost and time efforts to redevelop standards.  This means focusing on infrastructure with long life cycles; The report references climate studies for the NY/NJ/CT tri‐state area, Metro Boston, Seattle  Alaska, and the Gulf Coast.  The metro Boston and Seattle studies outline transportation impacts  based on climate data available.  The Gulf Coast study focuses on Katrina and Rita and the  damages to transportation infrastructure that resulted.  Captivating  Value  The report does not just look at potential negative impacts of climate change but the positive  outcomes such as reduction in addressing cold weather and its impacts on costs, maintenance,  construction and operations.  The report recognizes that many facilities perform beyond the design life.  Projects such as  bridges with long life cycles provide limited availability to implement adaptation strategies while  others with short life cycles allow for adaptation strategies to be implemented more frequently.   Therefore location of infrastructure is a critical decision.  (e.g. rail ROW is very expensive to  change)  Some challenges identified include:   Differences in planning horizons; the shorter the horizon, the less likely climate change is considered important as part of that planning horizon.   The report recognizes the difficulty in obtaining relevant information for planning and design purposes, specifically more localized climate projections.   Resources. Case Study Potential – California Bridge retrofitting for seismic activity may provide insight on  changing design standards and implementing those changes.  The report does address design standard options and provide recommendation forward:  Option 1: build to a more robust standard, assuming a greater frequency and magnitude of  extreme events, without a full understanding of future risks and presumably at greater cost. This  strategy could be appropriate for major facilities in vulnerable locations (e.g., critical bridges and  evacuation routes), but its high costs necessitate a highly selective approach.” (Page 154)  Option 2: “upgrade parallel routes, but this alternative depends on the availability of right‐of‐way  and the cost of upgrading.” (Page 154)  Option 3: “build infrastructure with shorter design lives, presumably at lower cost, to be  retrofitted as more knowledge about future climate conditions is gained. This alternative  probably is not viable in the United States…” (Page 154)  Option 4: “hedge by building to current standards or making marginal improvements, recognizing  that the infrastructure remains at risk and may require major improvements in the future. This  alternative poses many of the same problems as the previous one. All four options involve  important cost–risk reduction trade‐offs” (Page 154)  Table 5‐1 on Page 155 goes on to outline Climate Change that could “induce” design standards. 

TCRP A-41: Literature Review A-6 Identification of New Zealand Transit as potential case study for addressing climate change  through asset management.  Decision  Question  N/A  Decision Maker  N/A  Relevance    Outlines climate impacts and strategies;  Identifies potential case studies;  Provides details on design standards. Status  N/A  Critical  Assessment  The report provides a great basis for transportation agencies to begin the process for addressing  climate change.  However, some recommendations are specific to federal level entities and not  entirely applicable to transit agencies.  For example, multiple recommendations focus on USDOT  or other entities to take the lead on.  Additional  The report highlights a recommendation for sharing best practices.  Although this is something 

TCRP A-41: Literature Review A-7 Comments  that can be done between agencies, the report identifies sharing of cross‐sector best practices  and as such, it may be beneficial to look at what other sectors such as energy are doing to combat  climate change.  Essential   Vocabulary  “Intergovernmental Panel on Climate Change defines these  factors as follows:   Exposure, defined as the manner and degree to which a system is exposed to significant climate variations;  Vulnerability, defined as the potential for loss, or the degree to which a system is susceptible to or unable to cope with adverse effects of climate change;  Resilience, which refers to the restorative or regenerative capacity of a system when faced with change; and  Adaptation, defined as the adjustment made to a system in response to actual or expected climate change to mitigate harm or exploit beneficial opportunities.” (Page 145).  Potential  Keywords  Climate Change  Design standards  Adaptation strategies  Climate impacts 

TCRP A-41: Literature Review A-8 Citation  Cambridge Systematics. 2010. “Climate Change Vulnerability and Risk Assessment of New Jersey’s  Transportation Infrastructure.” North Jersey Transportation Planning Authority (NJTPA), Newark,  NJ.   Website/Source   http://www.njtpa.org/Planning/Regional‐Studies/Recently‐Completed‐Studies/Vulnerability‐and‐ Risk‐Assessment‐of‐NJ‐Transporta/FHWAConceptualModel.aspx   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  Document Type  Case Study   Intended  Audience  FHWA (as the study is intended to provide feedback on the FHWA Model); as well as  transportation agencies that own, maintain or operate transportation assets, including state and  federal DOTs, local transit operators and local public works/highway departments.  Abstract  “The primary objective of the study was to pilot FHWA’s Vulnerability and Risk Assessment  Conceptual Model using New Jersey as a case study, providing feedback for the advancement of  the Conceptual Model and developing a greater awareness and understanding of the potential  effects of climate change on transportation infrastructure in New Jersey.” (p. 9)   “The Conceptual Risk Assessment Model was developed to assist transportation agencies in  identifying infrastructure at risk for exposure to climate change stressors and determining which  threats carry the most significant consequences. It employs the following summary steps:  1. Build an inventory of relevant assets and determine which are critical; 2. Gather information on potential future climate scenarios; 3. Assess the potential vulnerability and resilience of critical assets.” (p. 9) These three steps were performed for two study areas in New Jersey:   Coastal Study Area: Coastal New Jersey from the mouth of the Raritan River to the tip of Cape May; and   Central Study Area: Northeast Corridor extending southward along the Delaware River from Trenton to Salem County.  Populations  Referenced  Assessing the potential vulnerability of multimodal transportation assets to projected climate  stressors is the core mission of this study; therefore the affected stakeholders and population  include anyone who uses the statewide transportation system, including residents, businesses  (freight), commuters, transit riders, operations personnel.  Topics Covered  The study addresses the following topics:   Asset inventory and criticality assessment o Defining asset categories o Determining criticality  Determining climate impacts: o Developing climate scenarios o Sea‐level rise and storm surge o Inland flooding assessment o Average climate variables o Extreme event climate variables  Vulnerability and risk assessment o Analysis of potential exposure

TCRP A-41: Literature Review A-9 o Extreme temperature and precipitation  Adaptation o Summary of current research and practices o Adaptation for New Jersey Type of  Sponsoring  Agency or  Organization   MPO; the North Jersey Transportation Planning Authority is the MPO for the 13‐County Northern  New Jersey Region.  Geographic  Distribution   Two regional geographic areas were used as case studies within the State of New Jersey:   New Jersey Coastal Study Area  Central New Jersey Study Area Both regions are considered large, with a mixture of urban and suburban land uses:   New Jersey Coastal Study Area: 6 counties and portions of 3 MPOs including the cities of Toms River and Atlantic City, and majority of the state’s tourism and leisure industry with  economic activity that is highly dependent on the area’s transportation network.   Central New Jersey Study Area: 6 counties and portions of 3 MPOs including the cities of Camden, Trenton and New Brunswick and the majority of the state’s interstate highways  and the Northeast Corridor rail line.  Type of Transit  Mode(s)  Commuter Rail, Heavy Rail, Light Rail/Bus Rapid Transit, Bus/Commuter Bus (also Airports, Ports  and highways although not considered transit)  Type of  Vulnerability  Sea‐level rise, Storm surge, Extreme temperatures and temperature ranges, Extreme precipitation  and average precipitation levels, Drought, and Inland flooding.  Goals and  Motivations  “FHWA’s Sustainable Transport and Climate Change Team developed a conceptual Risk  Assessment Model to assist transportation planners, asset managers, and system operators  identify infrastructure at the greatest risk for exposure to climate change stressors and determine  which threats carry the most significant consequences.” (p. 16) The goal of the study was to test  the model with two New Jersey regions as case studies, and identify ways in which the model  could be improved.   Context   Multiple modes exist in the region; the study assessed the entire transportation system within given data limitations/sufficiency.  Types of assets assessed for criticality include: o Roadways o Bridges o Tunnels o Passenger Rail o Freight Rail o Traffic Analysis Zones o Airports o Wetlands o Evacuation Routes o Ports o NJ Transit Bus Routes o NJ Transit Signals, Switches and Track  Amtrak, NJ Transit and SEPTA are the transit providers; however SEPTA data was insufficient and omitted. o NJ Transit is a New Jersey State‐owned public transportation system serving the US State of New Jersey; along with portions of New York, Orange, and Rockland counties in New York State; and Philadelphia County in Pennsylvania. It operates bus, light rail, and commuter rail services throughout the state, notably connecting to major commercial and employment centers both within the state

TCRP A-41: Literature Review A-10 and in the adjacent major cities of New York and Philadelphia. The Governor of  New Jersey appoints a seven‐member Board of Directors, four members from the  general public and three state officials. The Governor has veto power on  decisions made by the board.  o The National Railroad Passenger Corporation, doing business as Amtrak, is a publicly funded railroad service operated and managed as a for‐profit corporation which began operations on May 1, 1971, to provide intercity passenger train service in the United States. Amtrak is funded by the U.S. government, with a president and board of directors.  The Northeast Corridor provides a key interdependency for Amtrak and NJ Transit as they share the rail right‐of‐way.  Limitations of this region include aging infrastructure and alignment issues in vulnerable locations with limited resources.  While the study assesses physical vulnerability and risk, it does not address whether there were levels of resilience planning or asset management systems in place to reduce this risk for NJ Transit and Amtrak.  It provides a summary of current research and practices for adaptation across the country and internationally, but does not discuss ongoing efforts in New Jersey. Instead it provides “a series of matrices that identifies possible climate change impacts generally applicable to New Jersey and lists potential adaptation strategies that could be taken at the various stages of the transportation decision‐making process—including planning, design, and operations.” (p. 98). Tools   “The Conceptual Risk Assessment Model was developed to assist transportation agencies in  identifying infrastructure at risk for exposure to climate change stressors and determining which  threats carry the most significant consequences.” (p. 9)  “The Climate Change Vulnerability and  Risk Assessment of New Jersey Transportation Infrastructure project was a FHWA‐funded pilot  with the overarching goal of providing feedback to support the advancement of the Conceptual  Model.” (p. 117)  The project work encompassed three main steps:  1. Developed an inventory of relevant assets and ranked level of criticality from low to extreme based on their roles in connecting critical destinations; 2. Gathered information on potential future climate scenarios, including the magnitude and likelihood of change due to the following six climate stressors: o Sea‐level rise, o Storm surge, o Extreme temperatures and temperature ranges, o Extreme precipitation and average precipitation levels, o Drought, o Inland flooding; and 3. Assessed the potential vulnerability and resilience of transportation assets starting with the most critical assets and the most severe climate stressors the potential vulnerability and resilience of critical assets. Noteworthy  Aspects  “Although external to the FHWA model, this study looked at adaptation strategies to help  mitigate potential climate impacts to transportation infrastructure. A review of current and  recent research and planning efforts at the national, state, regional, local, and international levels  was performed. Based on the findings of the review, the project team developed a series of  matrices that identify possible climate change impacts generally applicable to New Jersey and lists  potential adaptation strategies that could be taken at various stages of the transportation  decision‐making process, including planning, design, and operations. This effort is a potential  precursor to a state or regional climate change adaptation plan.” (p. 11)  Captivating  The FHWA “model is arms agencies with a rich store of information for asset management 

TCRP A-41: Literature Review A-11 Value  through vulnerability and risk assessment, but does not complete the final link in the process—  adaptation. A full adaptation module should be added to the model.” (p. 13)  Decision  Question  Should changes be made to the FHWA Conceptual Model?  Decision Maker  Federal: FHWA  Relevance   This document provides a case study review of a conceptual model for assessing the vulnerability  of transportation (including transit) assets, and recommends improvements to the model for  advancing the state of the practice, including adding an adaptation module with recommended  adaptation measures for New Jersey.  Recommendations, promising practices and lessons learned?   Develop “policy responses that provide the planning and engineering communities with thresholds that reflect a public consensus, an approach which unites public risk tolerance with concrete planning and engineering solutions.” (p. 113)  A (preferably multimodal) “guidebook of vulnerability thresholds—corresponding to the types of climate outputs derived from downscaling—could be developed as a Transportation Research Board project, by AASHTO, or by the American Society of Civil Engineers.” (p. 114)  “Recreate the primary Conceptual Model tasks (e.g. Asset Inventory) as modules, especially for the assessment phase. Each module could contain guidance on matching approaches with needs, suggest key variables and sources (particularly if a federal agency can provide relevant information), and links to existing public tools. The creation of modules could also lead to better customization of the process for different analytical scales.” (p. 114)  A full‐fledged adaptation module could be added to the Conceptual Model.  “The Model could more explicitly highlight opportunities, as its current primary emphasis is limited to the identification of risks. A process, perhaps a separate module, should facilitate the determination of areas of potential intersection with other transportation and non‐transportation plans.” (p. 114) Status  Series of FHWA Pilots completed; FHWA evaluating potential modifications to the conceptual  model.  Critical  Assessment  Agree with the study’s recommendation that the FHWA model should include a method for  evaluating adaptation or risk reduction measures.    It would be interesting to see additional case study evaluations using this model at different  geographic scales, such as for an individual city, neighborhood or site. The emphasis on corridor‐ wide planning, while comprehensive, prevented the consideration of localized factors that affect  risk, such as existing stormwater management systems or coastal protection features.   Additional  Comments  N/A  Essential   Vocabulary  The study did not define key terms, however it did provide a discussion of resiliency and adaptive  capacity, as follows:   An asset is not necessarily highly vulnerable just because it is potentially impacted or exposed, however. If an impacted asset is relatively unaffected (physically or temporally) or can be quickly restored, the impact itself may be of minor importance. The operating agency interviewees were asked about potential immediate and short‐term adaptive responses to plausible climate stressors—ranging from maintenance and monitoring to emergency construction. This integrated consideration of impacts and resiliency/adaptive capacity allowed the project team to better understand the potential vulnerability of assets and operations to specific stressor scenarios.

TCRP A-41: Literature Review A-12 Potential  Keywords  Asset Management  Asset Inventory  Criticality  Vulnerability  Risk  Adaptation 

TCRP A-41: Literature Review A-13 Citation  Hodges, T. 2011. Flooded Bus Barns and Buckled Rails: Public Transportation and Climate Change  Adaptation. Federal Transit Administration, Washington, D.C.  Website/Source   http://www.fta.dot.gov/documents/FTA_0001_‐_Flooded_Bus_Barns_and_Buckled_Rails.pdf   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  Document Type  Research Report   Intended  Audience  Transportation practitioners, researchers, transit agencies, users of transit systems  Abstract  “This report provides transit professionals with information and analysis relevant to adapting U.S.  public transportation assets and services to climate change impacts. Climate impacts such as heat  waves and flooding will hinder transit agencies’ ability to attain a state of good repair and provide  reliable and safe service.  The report examines anticipated climate impacts on U.S. transit and  current climate change adaptation efforts by domestic and foreign transit agencies. It further  examines the availability of vulnerability assessment, risk management, and adaptation planning  tools as well as their applicability to public transportation agencies.” (p. vii (abstract))  “The report provides examples of adaptation strategies and discusses how transit agencies might  incorporate climate change adaptation into their organizational structures and existing activities  such as asset management systems, planning, and emergency response.” (p. vii (abstract))  Populations  Referenced  The report will be a valuable resource for transit agencies and be of interest to regional, state,  and federal agencies that oversee, plan, or finance public transportation.  Topics Covered  A premise of the report is that responsible risk management calls for reducing vulnerability and  improving resilience of transit assets and services to the impacts of climate change.  To support  that premise the report provides:   Synthesis of literature related to climate change, adaptation, and transportation having relevance to the transit industry;   Review of anticipated climate change impacts on U.S. transit;  Synthesis of existing vulnerability assessment, risk management, and adaptation planning tools and explains their application to transit agencies;  Discussion of strategies for adapting transit assets and operations to climate change impacts;  Discussion on implementation considerations and how transit agencies can incorporate adaptation strategies into organizational structures and activities; and  Supporting case studies and illustrative examples. Type of  Sponsoring  Agency or  Organization   Federal Transit Administration   Geographic  Distribution   National  Type of Transit  The goal of this report is to increase awareness of the future environmental stressors transit 

TCRP A-41: Literature Review A-14 Mode(s)  assets will encounter as a result of climate change and is intended for use by transit agencies of  all sizes and modes.  Type of  Vulnerability  All vulnerabilities are considered.  The report provides numerous and diverse examples of the  impact upon transit services due to extreme weather including: precipitation, temperature, sea‐ level rise and hurricanes.  Goals and  Motivations  A premise of the report is that “climate change adaptation is essentially responsible risk  management” (p.3) and “that adapting to climate change impacts will require interdisciplinary  efforts among engineers, planners, frontline maintenance and operation staff, strategic planners,  emergency response experts, and others.” (p. 3‐4) This long‐term effort will require not so much  doing entirely different things, but doing some of the same things in a different way.  These  principle beliefs spurred the effort to create a report that provides a useful departure point to  help place the transit industry on the track to climate resilience. (p. 4 (not a direct quote but  should be cited))  Context  The report recognizes that for transit agencies “already challenged by maintenance backlogs on  tight budgets, climate change brings additional environmental stressors that deteriorate assets  and requires more maintenance and expense.” (p. 5)  “The increased frequency of extreme  events (such as heat waves and severe storms) will be more challenging to manage than gradual  effects such as a steady rise in average temperatures.” (p. 1)  Additionally, “transit agencies will  face multiple climate stressors with a combined impact on transit assets and services, and these  climate stressors will interact with existing factors (such as high percentage of impervious  surfaces) to amplify effects.” (p. 32)  “Climate impacts on transit assets will hinder agencies’ ability to achieve goals such as attaining a  state of good repair and providing reliability and safety, which may then impact ridership.  Therefore, climate change adaptation should not be outside the regular purview of transit  management. Rather, given that adaptation strategies offer the opportunity to avoid catastrophic  losses through cost‐effective preventive measures, the issue falls squarely within the mainstream  duties of transit agency management.” (p. 7)  Tools   The report did not specifically introduce any tools or metrics.   Noteworthy  Aspects  The report noted that the Maryland State Highway Administration has used its asset management  system as a climate adaptation tool. “The agency collects climate change data in its  Transportation Asset Management Program (TAMP) to better analyze priority assets. Climate‐ related asset data include age, elevation, materials used, design lifetime and stage of life, FEMA  flood maps, current and historical performance and conditions, vegetation, soil type, average  daily traffic, bridge scour criticality, and length and width of bridges.” (p. 85‐86) The report  provides a case study of the Transport for London as an agency also using their asset  management system as an adaptation tool.  The report provide four case studies of the following transit agencies:   New York MTA – Partnering and Assessing Impacts  Mobile, Alabama  ‐ Developing a Criticality Assessment  Los Angeles County MTA – Initiating a Vulnerably Assessment as Part of a Broader Sustainability Framework  Transport for London – Incorporating Adaptation into Asset Management Systems Captivating  Value  “… climate stressors will interact with existing factors (such as high percentage of impervious  surfaces) to amplify effects.” (p. 31)  Decision  Question  The research document was written to encourage transit agencies to understand that climate  change adaptation is essentially responsible risk management and that adapting to climate  change is a necessary objective.   Decision Maker  Transit agency leadership 

TCRP A-41: Literature Review A-15 Relevance  To assist transit agencies, the report recommends taking a risk management approach noting that  risk assessment tools developed by governments and non‐profits offer guidance on how to  prioritize climate risks by assessing the likelihood of occurrence and the magnitude of  consequence. “Taking a risk management approach mitigates risk without expensively over‐ engineering assets.” (p. 2)  The report further provides examples of adaptation strategies and discusses how transit agencies  might incorporate climate change adaptation into their organizational structures and existing  activities.  For instance:   “Following the August 2007 flood, as well as other less severe floods, New York MTA raised many of its sidewalk level ventilation grates so that water could not enter from  flooded sidewalks. New York held a design competition to incorporate the vents into  street furniture.” (p. 66)   “Kansas City’s new Bus Rapid Transit (BRT) System has 30 stations with rain gardens in  bump‐outs  designed  to  collect  and  filter  stormwater  runoff  from  roads  and  sidewalks  (see  Figure  4‐6).  This  reduces  flooding,  erosion,  and  the  entrance  of  pollutants  in  rivers and streams. The BRT system also  features a pervious concrete  parking  lot  so  that  stormwater  can  seep  into  the  ground,  and  shade  trees  that  capture rain water.” (p. 70)   “Portland’s TriMet noted a significant increase in slow orders due to high heat over a period of three years. Recognizing the inconvenience to customers, TriMet  implemented a concerted set of strategies with an ultimate goal of no slow orders.  TriMet identified areas with frequent rail buckling, many of which were adjacent to  curves or in direct sunlight. The Maintenance of Way division developed expansion  joints and installed them by breaking the continuously welded rail in eight to nine key  areas and applying the joints. The joints allow for one and a half to two inches of  relief, permitting the rail to expand.” (p. 75)   “The Washington State DOT adopted an agency‐wide policy in 2010 that requires climate change analyses—both mitigation and adaptation—to be included in all  WSDOT environmental impact statements performed under the State Environmental  Policy Act.” (p. 94)  The report noted that “in recent years, multiple governmental entities have begun to assess  climate change impacts on infrastructure and to develop potential responses using closely  related vulnerability, risk, and adaptation assessment frameworks and tools. The report draws  out the elements of the frameworks that are most relevant to public transportation agencies  and noted that the frameworks share a general approach: develop or gather climate  projections, establish how those climate changes will impact assets, determine the severity of  the impacts, and develop measures to address the high‐risk impacts.” (p.45)  The report  identified the following adaptation assessment guidebooks as being particularly relevant:   New York Climate Adaptation Assessment Guidebook http://onlinelibrary.wiley.com/doi/10.1111/j.1749‐6632.2010.05324.x/pdf   Federal Highway Administration Conceptual Model Assessing Vulnerability and Risk of Climate Change Effects on Transportation Infrastructure http://www.fhwa.dot.gov/hep/climate/conceptual_model62410.htm   University  of Washington  Center  for  Science  in  the  Earth  System  (Climate  Impacts Group) and King County, Washington, Planning for Climate Change: A Guidebook for Local, Regional, and State Governments

TCRP A-41: Literature Review A-16 http://cses.washington.edu/cig/fpt/guidebook.shtml   ICLEI Adaptation Database and Planning Tool (ADAPT) http://www.icleiusa.org/programs/climate/Climate_Adaptation/climate‐resilient‐ communities‐program    UK Climate Impacts Program, Risk, Uncertainty and Decision‐Making Framework http://www.ukcip.org.uk/index.php?option=com_content&task=view&id=63&Ite mid=9  The report introduced four categories of adaptation strategies:  1. “Maintain and manage: Absorb increased maintenance and repair costs and improve real‐time response to severe events. Incorporate “smart” technologies such as  sensors that detect changes in pressure and temperatures in materials; these can set  off alerts of approaching damage thresholds for bridges and other structures, or of  rising water levels and potential flooding (97).   2. Strengthen and protect: Design new infrastructure and assets to withstand future climate conditions (larger drainage capacity, stronger structures to withstand high winds, materials suited to higher temperatures). Retrofit existing structures and facilities. Build protective features such as retaining walls, levees, and vegetative buffers. 3. Enhance redundancy: Identify system alternatives such as increased bus service in the event of rail interruption as well as a broader regional mobility perspective, considering all transport modes. 4. Retreat: Abandon transportation infrastructure located in extremely vulnerable or indefensible areas. Potentially relocate. Site new facilities in less vulnerable locations.” (p. 63) Status  Research project is complete   Critical  Assessment  The report accomplished its stated desire to provide a useful departure point to help place the  transit industry on the right track to climate resilience.   It touches on all aspects necessary to  infuse climate change adaptation into a transit agency, including organizational culture, budget  priorities, asset management, planning, environmental management, project development,  maintenance, performance measures and emergency preparedness.    It provides a general overview, but does provide numerous specific examples to clarify the  narrative and case studies to support highlighted principles.   Additional  Comments  N/A  Essential   Vocabulary  The report contained the following definitions and terms:   “Mitigation: An intervention to reduce the causes of climate change by reducing greenhouse gas emissions or enhancing sinks for capturing greenhouse gas  emissions.” (p. 10)   “Adaptation: Adjustments to reduce the vulnerability of natural systems and human communities to existing or predicted climate change impacts.” (p. 10)   “Vulnerability: The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and  extremes.” (p. 10)   “Resilience: A capability to anticipate, prepare for, respond to, and recover from significant multi‐hazard threats with minimum damage to social well‐being, the 

TCRP A-41: Literature Review A-17 economy, and the environment.” (p. 10)  Potential  Keywords  Climate change  Adaptation  Asset management  State of good repair  Risk management

TCRP A-41: Literature Review A-18 Citation  Thomson, B., E. Delaney, S. Eget, and L. Gallagher. June 2012. “Resilience of NJ TRANSIT Assets to  Climate Impacts.” First Environment, Inc., Boonton, NJ.  Website/Source   http://www.firstenvironment.com/assets/pdf/Resilience_of_NJTRANSIT_Assets_to_Climate_Imp acts‐Final‐withAppendices%20_Print.pdf   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  Document Type  Research Study  Intended  Audience  NJ TRANSIT (transit agency/operator)  Abstract  “This research includes a survey of current reports and research on the topic; identifies and maps  specific impacts to New Jersey Transit assets ‐ commuter rail, light rail and bus; compiles national  and international agency efforts underway regarding Transit strategies to protect assets;  determines appropriate resilience strategies for the impacts identified; provides a summary level  costs and benefits for each of the resilience strategies identified; and summarizes and highlights  cost‐effective strategies to maintain NJ TRANSIT current and planned future services. This report  provides a regional overview and can be used to identify critical impacts on assets and take  appropriate measures to reduce its vulnerability to extreme weather.” (p. 1)  Populations  Referenced  Anyone who utilizes the NJ TRANSIT passenger rail, bus and light rail networks, including  commuters, transit riders, and operations personnel.  Topics Covered  The research study addresses the following topics:   “Literature review to identify potential climate impacts  Identification of climate impacts on classes of assets  Mapping of assets potentially at risk  Identification of indicators to assess severity of impacts on assets for the planning horizon  Identification of resilience strategies  Identification of estimates of costs to implement resilience strategies on a per unit basis to assist NJ TRANSIT in the planning process” (p. 3) Type of  Sponsoring  Agency or  Organization   Public transit corporation; the report was sponsored by NJ TRANSIT  Geographic  Distribution    The document addresses NJ TRANSIT’s system, which covers the state of New Jersey; along with portions of New York, Orange, and Rockland counties in New York State; and Philadelphia County in Pennsylvania.  The geographic reach of the document covers the NJ TRANSIT service area of 5,325 square miles (13,790 km2); this is the largest statewide public transit system and the third largest provider of bus, rail, and light rail transit by ridership in the United States, linking major points in New Jersey, New York, and Philadelphia. Type of Transit  Mode(s)  Commuter Rail, Light Rail/Bus Rapid Transit, Bus/Commuter Bus.  Type of   Increased temperature

TCRP A-41: Literature Review A-19 Vulnerability   Sea‐level rise and higher storm surge  Storm intensity and frequency that involve: o Higher wind velocities o Increased rain and rainfall per event o Increased lightning o Increased snow levels per event o More frequent icing events o Increased flooding frequency and levels Goals and  Motivations  The goal of this project is to “determine the potential vulnerability and risk, as well as projected  climate impacts on NJ TRANSIT stationary assets that include rails, structures, and buildings – and  to develop cost‐effective resilience strategies so NJ TRANSIT can protect these assets from  negative impacts in the future. NJ TRANSIT can also use this information to protect its rolling  stock (trains, buses, etc.) from severe weather.” [p. 2] The assessment activities in this study  provide information for NJ TRANSIT leadership to facilitate planning over the five, ten, twenty and  fifty ‐ year horizons.   Context   Multiple modes exist in NJ TRANSIT’s service area, including the following modes owned, operated and maintained by NJ TRANSIT: Commuter Rail, Light Rail/Bus Rapid Transit, Bus/Commuter Bus.  Types of assets evaluated include: o Rails (heavy and light rail) o Structures (bridges, tunnels, culverts and retaining walls) o Buildings (offices, terminals, stations and platforms, depots and cabins)  Interdependencies exist among operators with shared assets, such as parts of the Northeast Corridor shared with Amtrak. “This study includes all rail lines where NJ TRANSIT operates service in New Jersey. NJ TRANSIT also owns assets outside of New Jersey, such as in the train yards in Suffern, New York and Morrisville, Pennsylvania near the Trenton Transit Station; and uses Amtrak’s tunnel into Pennsylvania Station and Sunnyside Yards in Queens, New York. NJ TRANSIT relies on all of these assets to provide service, although they are not all owned by the agency. This emphasizes the need for NJ TRANSIT to coordinate its efforts with other transit agencies and freight railroads, such as Amtrak, Port Authority of New York and New Jersey (PANYNJ), Metro North, and Conrail.” [p. 11]  Interdependencies also exist with other critical facilities and systems such as the power grid. “Heat will damage electrical equipment (switches, gates, signals), increase potential for sagging and snapping of catenary lines, and increase the opportunity for widespread electric utility brownouts and outages associated with grid damage.” [p. 12]  Limitations of this region include aging infrastructure and alignment issues in vulnerable locations with limited resources.  NJ Transit is a New Jersey State‐owned public transportation system serving the US state of New Jersey; along with portions of New York, Orange, and Rockland counties  in New York  State;  and  Philadelphia  County  in  Pennsylvania.  It  operates  bus,  light  rail,  and commuter  rail  services  throughout  the  state,  notably  connecting  to major  commercial and employment centers both within  the state and  in  the adjacent major cities of New York and Philadelphia.  The Governor of New Jersey appoints a seven‐member Board of Directors, four members from  the  general  public  and  three  state  officials.  The  Governor  has  veto  power  on decisions made by the board.  While  the  study  does  not  explicitly  state  that  asset  management  plans  are  already  in place nor that the system  is  in a state of good repair; however,  it discusses certain case study examples that  illustrate existing resiliency planning prior to natural disasters, such

TCRP A-41: Literature Review A-20 as  for Hurricane  Irene when Bus Operations moved  flood‐prone Oradell Depot buses to  Paramus Park Mall and  then again  to Garden State Plaza as  the water  rose at Paramus  Park. Further, the purpose of this study is to improve resilience planning at NJ TRANSIT.  Tools    The  study  references  NJ  TRANSIT’s  ongoing  Scorecard  initiative  to  track  customer satisfaction and performance metrics: o “Safety and Security; o Customer Experience; o Corporate Accountability; o Financial Performance; and o Employee Engagement.” (p. 15)  “This  report  reviewed  and  developed  statistical  models  for  the  5,  10,  and  20  year planning horizons to determine results specific to NJ TRANSIT. In recent years, NJ TRANSIT has  already  been  experiencing  more  extreme  weather;  the  models  indicate  these increases. The variance  in  the models do not demonstrate a  large difference within  the next 20 years  (NJ TRANSIT’s planning horizon); however,  in 50 years  there  is a surge  in temperature, sea‐level rise, and flooding.” (p. 20)  “As there are no short‐term (5‐20 year climate) models available to predict NJ TRANSIT’s extreme  weather  events,  the  report  developed  Indicators  of  Risk  that  quantify,  on average, the increase in extreme weather events that will affect NJ TRANSIT over the next twenty years and beyond. These  Indicators  identify the scale of the risk associated with these  impacts.  They  include  Days  over  90  Degrees  Fahrenheit,  Sea‐Level  Rise,  and Storm/Flood Frequency.” (p. 21) Noteworthy  Aspects   Risk management strategies and cost estimates are identified in the study based upon information presented in the literature review with particular emphasis on FTA’s “Flooded Bus Barns and Buckled Rails” (August 2011) report and NJ TRANSIT operational experience relayed to the research team.  While these strategies do not appear to be innovative or non‐standard, several strategies include minor modifications to operations and maintenance practices (such as increased snow removal) or inexpensive improvements (such as scour removal on rail bridges) that have value.  As noted above, while certain specific examples of NJ TRANSIT’s damaged infrastructure and response to Hurricane Irene are provided, no action‐after report or comprehensive mitigation strategy is discussed.  No measures are deployed to avoid, minimize and mitigate adverse effects upon populations, including low‐ income and minority populations. Captivating  Value  This document is a call‐to‐action for NJ TRANSIT. “NJ TRANSIT can expect more frequent service  disruptions over the next 20 years and must consider how the weather is affecting the state of  good repair for its assets.” (p. 26)  Decision  Question  The next immediate step for NJ TRANSIT is to prioritize its critical assets and determine which  resilience strategies it wants to implement.  Decision Maker  Public Transit Corporation at the state level.   Relevance   This document was selected because it provides an overview of potential climate impacts for NJ  TRANSIT’s assets, including a vulnerability assessment and specific risk mitigation measures with  cost estimates. The following accepted practices were mentioned for risk reduction:   Install emergency generators or have supplemental power feeds  Install high temperature shade shelters at platforms  Increase ventilation in buildings  Upgrade or replace building systems  Repair or reconstruct seawall  Relocation of assets

TCRP A-41: Literature Review A-21  Repair or reconstruct roofs  Additional snow removal  Increase maintenance / cleaning and coating of exposes steel due to de‐icing and salt corrosion  Install additional drainage systems  Cancel, slow or reduce service at certain locations  Increase maintenance and scour mitigation measures  Shorten maintenance schedule Status  Need a status update on implementation. This study was released following Hurricane Irene but  before Superstorm Sandy, which resulted in tremendous impacts to the NJ TRANSIT system. The  study should be updated or subsequent studies produced to address implementation to date, and  provide any relevant updates per Superstorm Sandy.  Critical  Assessment  The methodology and resources are sound, but are outdated in 2015, and would benefit from an  update. Additional information on existing conditions should be provided, such as length or  frequency of service disruptions, and populations affected (e.g., low‐income populations).  More  specifics should be provided for risk mitigation measures – e.g., rather than saying “substitute” or  “slow” service, information should be provided about what impact that would have on the system  and riders.    Additional  Comments  N/A  Essential   Vocabulary  Resiliency is not defined in the document.  Potential  Keywords  Resilience  Asset Management  Commuter Rail  Climate Change Impacts  Transit corporation 

TCRP A-41: Literature Review A-22 Citation  ICF International. 2013. Assessment of the Body of Knowledge on Incorporating Climate Change  Adaptation Measures into Transportation Projects. Washington, D.C.  Website/Source   N/A  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Research  Intended  Audience  Engineers, Planners, MPOs, State DOTs, Transit Agencies  Abstract  The report outlines the state of practice for addressing climate adaptation by transportation  agencies.  It further illustrates current efforts by various transit agencies as they relate to climate  adaptation and mitigation initiatives.  Through the outline of best practices, this report clarifies  the relationship between vulnerability assessments and adaptation planning.  It further provides  practices regarding cost and benefit analysis of the various adaptation strategies to support  agencies in their efforts moving forward.  Populations  Referenced  N/A  Topics Covered   Current practices in the areas of asset management, long‐range planning, design and construction, operations and maintenance as well as emergency preparedness;  Best practices for incorporating adaptation through a variety of efforts including establishment of metrics, prioritization of strategies and planning;  Cost‐benefit processes and evaluation; and  Barriers to climate adaptation. Type of  Sponsoring  Agency or  Organization   Federal Highway Administration   Geographic  Distribution   National with some examples from London  Type of Transit  Mode(s)  Transportation in general  Type of  Vulnerability  Heat, sea‐level Rise and Intense Storms   Goals and  Motivations  The primary goal of this study was to look into what agencies are to address climate adaptation  and to share those best practices to in‐kind agencies and stakeholders looking to address the  anticipated changes to climate including temperature fluctuations, intense storms which bring  intense precipitation and sea‐level rise.   Context  N/A  Tools    Report references the Transportation Research Board Report: o Methodologies to Estimate the Economic Impacts of Disruptions to the Goods Movement System,

TCRP A-41: Literature Review A-23 o FEMA Benefit‐Cost Analysis Tool (“The tool consists of guidelines, methods and software modules for estimating the benefits and costs of mitigation strategies to a range of major natural hazards, including wildfire, floods, hurricanes, and tornadoes.”) [Page 23], o Economics of Climate Adaptation (ECA).  Shaping Climate‐Resilient Development: o A Framework for Decision‐Making o Guidelines for Preparing Economic Analyses, and the Economic Analysis Primer. (“FHWA document is a brief overview of principles, concepts, and methods for performing economic analyses of highway projects.”) [Page 22] The report also briefly touches on a variety of risk communication tools to support  communicating climate adaptation to the public and to stakeholders.  Noteworthy  Aspects  The report outlines a series of recommended activities and provides a list of actions already  underway by some agencies.  Under the areas of focus for this project, the activities include:   Asset Management: Agencies should incorporate climate change objectives into the asset management system, collect data relating to the costs of addressing extreme weather,  and include risk and vulnerability rankings/ratings into the asset management system.   Actions underway include:  o MARTA is adding a field into its asset management system and decision‐making framework;  o Washington State DOT has incorporated “climate change into its bridge management system” (Page 10);  o Vermont Agency of Transportation (VTrans) has developed a tool to allow for targeting adaptation priorities regarding its culverts and bridges;  o MD State Highway collected various climate data and incident data and aggregated it into a single GIS database.   Long‐range Transportation Planning: Agencies should incorporate climate change considerations into long‐range transportation plans, specifically TIP addressing climate  through utilization of climate data to inform project prioritization.  o Boston MPO developed tool to determine if projects are located in at risk areas; o Hampton roads MPo address climate change impacts on infrastructure in its 2034 LRTP; o “The U.S. Forest Service at Olympic National Forest (ONF) evaluated ways to incorporate climate change conditions into the Road Management Strategy (RMS)…” to “help (sic) prioritize roads for maintenance, upgrading, and decommissioning… because funding allocated for road maintenance is limited.” (Page 11); o VDOT “developed a multi‐decision model to rank and reprioritize the LRTP’s proposed transportation projects and multimodal policies based on future climate factors and other non‐climate planning considerations.” (Page 11)  Design and Constructions:  The report outlines that agencies are hesitant to update design standards due to rising project costs and uncertainty surrounding climate projections.  However, agencies have: o Rebuilt and retrofitted infrastructure in response to extreme weather events; o Improved stormwater management infrastructure including culvert enhancements; o Ensure best climate and weather data is utilized; o Design based on worst case scenario event; o CalTrans evaluates roadway projects for potential impacts by sea‐level rise; o New England area agencies are coordinating the development of culverts to allow for ecosystem benefits; o ConnDOT is evaluating its hydraulic design standards for bridge and culverts;

TCRP A-41: Literature Review A-24 o Iowa DOT is retrofitting bridges to address local flooding as well as built a channel to direct flood waters away from infrastructure; and o Crossrail construction in London accounted for extreme temps and extreme flooding.  Operations and Maintenance o Prioritize maintenance activities that reduce damage during extreme weather events; o Shift construction and maintenance activities towards cooler times of the day; o Deploy “quick maintenance” patrols; and o Plant drought and heat resistant plant species for erosion control; o Amtrak is updating overhead wires to address extreme heat; o Transport for London paints bus tops white to reflect heat;  Emergency Management o “The Metropolitan Transportation Authority (MTA) Hurricane Plan details maintenance operations protocols such as moving equipment (e.g., rail cars and buses) from low‐lying areas or vulnerable outdoor tracks; staging recovery equipment such as generators and chainsaws near areas where they would be needed; and clearing catch basins and sewer lines (NYC MTA 2012a).” (Page 16) o Use of real‐time communications strategies to inform customers. o Use ICS to support response efforts. Appendix A provides additional details of example efforts.  Cost‐Benefit Practices   NYS has incorporated estimated impact and adaptation costs into the statewide adaptation strategy;   NT MTA, SEPTA, VTrans and CTA have used historical costs from weather impacts to estimate future adaptation costs;  Best Practices for estimating costs and benefits of adaptations include:   Development of an information/knowledge base;  Improving access to data;  Monitoring and tracking costs to extreme weather events including documenting the damages and repair/replacement costs;  Establish decision‐making criteria and processes;  Engaging with stakeholders. Barriers  1. Resources – Include climate change into regular business processes to eliminate the need for separate funding vehicles; 2. Political and regulatory roadblocks – Use existing programs as vehicles to push climate change (e.g. county hazard mitigation plans) but its recognized that federal guidance is needed; 3. Information availability – State and local drivers can simply things.  Some agencies have directed agencies to use climate data from specific resources as opposed to requiring agencies to select the data.  The report does highlight some research is needed related to engineering guidance; 4. Stakeholder engagement; 5. Interdependencies among sectors – Form interagency groups for coordination efforts. Captivating  Value  “Early steps that agencies can take to adapt to climate changes or prepare themselves to  implement adaptation measures… include: tracking performance metrics, incorporating climate  change considerations in asset management programs, setting up frameworks to enable  opportunistic adaptation, developing adaptation priorities, and developing system‐wide 

TCRP A-41: Literature Review A-25 approaches to adaptation.” (Page 17)  “The appropriate approach to estimating adaptation costs and benefits, and the manner in which  the information is used, will depend both on the resources available to the decision maker and  the needs of the adaptation planning process.” (Page 22)  The report also gives a thorough description of cost‐benefit analyses and the issues and  considerations that go into the variety of methods for determining costs and benefits of  mitigation efforts.  Decision  Question  N/A  Decision Maker  N/A  Relevance    Outlines bets practices across various areas of focus including asset management, emergency management, operations and maintenance as well as design and constructions;  More comprehensive examples of current efforts for incorporating climate change into these areas;  Potential case study examples;  Cost‐Benefit descriptions and guidance;  Identification of potential tool s for further research. Status  Various   Critical  Assessment  The report provides a comprehensive review of current efforts underway or completed by all  types of transportation agencies, not just transit.  However, many of the efforts may be applied  across agency types.  Additionally, the report outlines a detailed description of cost‐benefit  analyses topics and considerations agencies should consider when embarking on such processes  for including climate change.  Additional  Comments  N/A  Essential   Vocabulary  N/A  Potential  Keywords  Cost Benefit  Climate Change  Adaptation  Best Practices  Current Practice 

TCRP A-41: Literature Review A-26 Citation  Report: Gopalakrishna, D., J. Schroeder, A. Huff, A. Thomas, and A. Leibrand. 2013. “Planning for  Systems Management & Operations as part of Climate Change Adaptation.” U.S. Department of  Transportation, Federal Transit Administration, Washington D.C.  Website/Source   http://ops.fhwa.dot.gov/publications/fhwahop13030/fhwahop13030.pdf  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Research document.  Intended  Audience  FHWA Office of Operations, transportation agencies.  Abstract  The research document is a white paper outlining projected impacts of climate change across the  country. Further, the white paper briefly describes how these changes may impacts  transportation sectors assets and options for agencies to take in assessing their vulnerability to  climate change.  Populations  Referenced  US population, TMC (Traffic Management Center)  Topics Covered   Anticipated climate change in regards to temperature, precipitation, etc. by US regions.  Potential impacts from the anticipated climate change projections.  Some strategies to be prepared for climate change. Type of  Sponsoring  Agency or  Organization   Federally sponsored.  Geographic  Distribution   National   Type of Transit  Mode(s)  The report is not designed to address and single modal administration or transportation agency  but to cover all surface transportation modes in general.  However, the report does identify CTA  specifically within.  Type of  Vulnerability  Heat‐high Days, Extreme Cold, Severe Storm Events, Coastal Storms, Flooding/Sea‐level Rise,  Winter Storm (Heavy Snow/Ice), Wildfires, Other (Landslides, Dust Storms)  Goals and  Motivations  The motivation of this white paper was based on listening sessions with FHWA staff as a topic of  interest and priority.   Context  There is no single agency focused but a broader scope to help agencies understand the  projections of climate change regionally within the United States.  Tools   N/A  Noteworthy  Aspects   Identification of dust storms and landslides is unique to certain areas of the country and could provide for interesting context as far as impacts and climate change adaptation strategies.  Provides a snapshot of climate change by U.S. region and the potential impacts those changes may bring.  A table (p. 16) is presented with a breakdown of the impacts of climate change for transportation providers These impacts include system maintenance needs:

TCRP A-41: Literature Review A-27 Impacts to operations: (p. 19) 

TCRP A-41: Literature Review A-28 And, Changing Travel Behavior(p. 21)   The white paper addresses the need for agencies to “absorb” impacts form climate change as part of its adaptation.   To address climate change and its impacts, the white paper outlines that transportation agencies are responsible for increasing its ability to respond to more incidents and extreme weather events.  To do this, the white paper suggests: o Increasing monitoring of weather and systems.  This may include mobile monitoring or use of social media to support agencies. o Integrate weather information into operation centers to enhance situational awareness and forecasting capabilities. o Increase in stakeholder coordination. o Establishment of response teams which may be rapidly deployed to respond to incidents such as flash flooding debris removal and other needs. o Develop mechanisms internally to be more flexible in resource allocation so increase ability to respond to impacts. o Cross train staff to support response to an assumed increased number of incidents while assuming staffing levels does not increase. o Train for the unexpected. (p. 24‐25)  The white paper concludes that linking climate and weather events is not simple but that the role of operations in preparing for climate change “needs to be emphasized” as challenges are posed long term. Captivating  Value  While questions may remain about climate adaptation, agencies should consider: “Introducing  risk assessment in transportation operations planning” and “integration with other adaptation  efforts.”  This may be a great way for new agencies to become immersed in the topic and to  become more knowledgeable, but also build off and benefit from other efforts going on in and  around the area.  Decision  Question  N/A  Decision Maker  N/A 

TCRP A-41: Literature Review A-29 Relevance    Provides considerable data by US region on anticipated climate changes.  Identifies a series of potential impacts climate change may have on the transportation sector.  Highlights responsibilities of agencies to begin adapting to climate change.  Addresses emergency response in a number of ways including integration of operations in the development of evacuation procedures. Status  N/A  Critical  Assessment  This is a fairly high‐level white paper which begins to outline climate change and climate change  impacts to transportation sector.  This was its intent.  It may provide a good background for the  impacts to transportation to include some events (e.g. dust storm) which have not been  considered by the team in depth.  The beginning strategies are of higher level nature but may  help frame some of the detailed recommendations in other reports.    Mainly focused on climate change but touches on other areas such as communications, asset  monitoring and weather monitoring, funding and planning.  It also provides some initial steps for  agencies just getting into the area of climate change planning.  Additional  Comments  N/A  Essential   Vocabulary  N/A  Potential  Keywords  climate change  transportation systems operations  adaptation  climate change impacts  operations  maintenance 

TCRP A-41: Literature Review A-30 Citation  Report: Chicago Transit Authority, and TranSystems. 2013. An Integrated Approach to Climate  Adaptation at the Chicago Transit Authority. U.S. Department of Transportation, Federal Transit  Administration, Washington, D.C.  Website/Source   http://www.fta.dot.gov/documents/FTA_Report_No._0070.pdf FTA Report No. 0070  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  Document Type  FTA Adaptation pilot study outlining tools which may be used to integrate climate adaptation into  operations, infrastructure planning and business practices.  Intended  Audience  Transit Agencies and practitioners within those agencies.   Abstract  The overall purpose of the pilot project was the development of tools and methods for assessing  the impact of extreme weather on operations and critical infrastructure. In the case of CTA, the  agency implemented a methodology for surveying and analyzing system vulnerabilities.  With the  knowledge gained through this analysis, the agency was then able to outline adaptation  approaches which may enhance resilience for those areas focused on by the agency.  Utilizing a  cost‐benefit model, the CTA was able to derive the best solution for addressing extreme weather  and climate change while factoring sensitivities of the scientific data surrounding climate change.   The final piece to the report outlines a high‐level approach that CTA may apply to integrate  climate change adaptation into standard business practices.  Populations  Referenced  Customers, Engineers, Planners   Topics Covered   System Vulnerability Outlook to Extreme Weather o A method for quantifying the costs on CTA for the impacts from extreme weather instances experienced recently; o A method for quantifying future costs from impacts from extreme weather;  Both methods include the development of cost estimates related to damage and labor.  Impacts included impacts to service as well as impacts to general ridership during weather incidents. o The development of climate data projections for application to future impact analysis; o An overall risk matrix of the agencies infrastructure and operations vulnerabilities based on the types of vulnerabilities studied from CTA survey participants;  Method for prioritization of vulnerabilities for further investigation. The priority areas became the basis for case studies on incorporating those improvements into the capital project planning of the organization using scenario planning methods (e.g. build and no‐ build scenarios)  Prioritization included the consideration of: o Severity of impacts; o Frequency of impact; o Capital costs increases; o Operating cost increases; o Project/site‐issues; o Process‐specific issues; o Assets under CTA control; &

TCRP A-41: Literature Review A-31 o Asset under other jurisdictions.  Develop Life‐Cycle Cost Model (LCCM) –[See Tools Section]  Incorporation of climate impacts into Asset Management System framework and ongoing engineering condition assessments. Type of  Sponsoring  Agency or  Organization   FTA sponsored. City‐based transit agency and consultant prepared report   Geographic  Distribution   Focused on the CTA, a major urban environment with application to national systems.  Type of Transit  Mode(s)  Heavy Rail, Bus/Commuter Bus  Type of  Vulnerability  The report identified the following vulnerabilities: Heat‐high Days, Extreme Cold, Severe Storm  Events, Coastal Storms, Flooding, Winter Storm (Heavy Snow/Ice)  However, further investigation into specific vulnerabilities on high heat and flooding occurred  within the report.  The flooding aspects focused on ROW flooding.  Extreme heat focused on the  impacts of heat kinks as well as signal house overheating.  These are examples specific to CTA  they moved forward as part of the study.  Goals and  Motivations  Due to the expected increase in extreme weather and their impacts on the CTA system such as  winter weather, precipitation and extreme temperatures, this report provides a framework  assessing the agencies vulnerability to such events in an effort to understand the potential  impact.  It further highlights adaptation strategies which may be implemented to increase the  systems resiliency and outlines high‐level steps which may be taken to incorporate the  consideration of climate change and extreme weather into business practices.  In doing so, the  report outlines a series of methods and tools to support decision‐making and prioritization of  capital improvement planning activities.  Context  The focus of this report outlines the potential impacts from climate change on the CTA system.   With the methodology and tools presented, CTA has developed a framework for increasing  institutional awareness of climate change.  This includes the inclusion of considerations into  capital project planning and the agencies established Enterprise Asset Management (EAM)  system [Complete for rail, being built for bus as part of 2011 grant].  “The Chicago Transit Authority (CTA) is an independent governmental agency created by state  legislation. The CTA began operating on October 1, 1947, after it acquired the properties of the  Chicago Rapid Transit Company and the Chicago Surface Lines. On October 1, 1952, CTA became  the sole operator of Chicago transit when it purchased the Chicago Motor Coach system.” ((CTA  website) As of 2013, (per the National Transit Database) directly operates 1,663 bus vehicles in  maximum service with a total of 1,872 available for maximum service. CTA operates 1,070 heavy  rail vehicles in max service with a total of 1,228 available.  The rail system has a total of 207.8  fixed guideway directional route miles.  Tools   The methodology framework used in the vulnerability analysis piece is a different approach in  that the agency did not conduct a vulnerability assessment. The CTA researched prior events to  determine impacts in terms of cost and surveyed stakeholders.  This data fed directly into the  cost‐benefit model which considers the frequency of these types of events to support the output  of costs to do nothing or cost to implement an adaptation strategy.  It used varying approaches to determine if vulnerability will have impacts on the system.  Although the report does not detail the analysis completed for its results of the project number of  events by vulnerability reviewed, examples may be gleaned.  For example, CTA used an urban  heat island map to determine likely locations of heat impacts to rail assets one high‐heat days.  In 

TCRP A-41: Literature Review A-32 some of these efforts, the agency used “global models” without much explanation though it  appears research had been done in the city on a larger climate project.  However, the report does detail the used of what was called the Develop Life‐Cycle Cost Model  (LCCM).  It “was constructed to compare the infrastructure investment costs (i.e., build scenarios)  against the costs of no action (no‐build scenarios). The model was developed in a manner to  provide flexibility to allow for different weather event frequencies and cost assumptions to be  tested to determine the sensitivity of the model to inputs for a given scenario. This flexibility also  allows for future modification of inputs to support additional case studies.”   In using the mode, the report outlines best practices.  These are summarized as:   “LCCA level of detail should be consistent with level of detail of investment” (p.61);  Only need to consider “differential costs among alternatives”, as common costs cancel out(p. 61);  “All LCCA factors should be addressed (even if limited to explanation for non‐inclusion of eliminated factors” (p. 61);  “Sunk costs should not be included” (p. 61);  LCCA time horizon should “reflect long‐term cost differences associated with reasonable design strategies.” (p. 62)  Use net present value (NPV) to allow for today and future dollar comparisons of present capital costs versus future operating costs. (p. 62)  Use of historical trends to determine discount rates. (p.62)  Annual maintenance should be equally applied across all alternatives since its impacts have only “marginal” effect. (p. 62) Model results in the identification of appropriate adaptation strategies based costs factoring in  various items including extreme weather event frequency.  Study suggests revisiting model as  more local climate change data becomes available.  Sensitivity existed to many inputs in addition  to climate change. LCCA result showed that at baseline projections, that the investment to  adapting the issues reviewed is not beneficial, though at higher frequencies, the adaptation  strategies are mostly beneficial.  Overall, the architecture outlines inputs being the severe weather frequencies and the outputs in  terms of the NPV in 2050. A list of assumptions has been made as well.  Noteworthy  Aspects   It appears an emphasis was placed on stakeholder identification of impacts rather than a complex geographic analysis of assets and extreme weather events. Though some background research was conducted.  Although the report dedicates a section of incorporation of climate change into standard business practices, it outlines multiple approaches but does not illustrate how CTA plans to move forward on integration into their EAM system.  The approaches take into consideration the things one may similarly consider for vulnerability and risk assessment such as exposure (“the nature and degree of exposure to climate impacts”), sensitivity (“the degree to which materials and systems are effected by exposure”), and adaptive capacity (“ability for system to respond to climate change”). (p. 77) The first approach is an impact‐focused approach, or a risk assessment approach, where as an agency may outline the impacts to infrastructure.  This would outline climate impacts, infrastructure impacts, other asset impacts, severity and frequency of impacts, customer impacts and a summary vulnerability index number. (p. 77) The second approach would be to take an asset‐focused approach where as new field are created in

TCRP A-41: Literature Review A-33 the EAM database for consideration of climate change. (p. 78) There are positives and  benefits of both outlined within the report but to successfully integrate into business  practices there needs to be updates to the asset management system to ensure climate is  being considered as part of  projecting “asset needs and replacement in future years”.   As almost a throwaway towards the end of the report, the report outlines an operational/finance impact framework model to help with forecasting the need of long‐ range resources such as “labor, materials and budgeting needs” (p. 81). The report outlines the analysis completed by CTA on their bus fleet diesel consumption and component defects.  In general, it correlate climate data and maintenance data to outline future increase in maintenance needs.  It is the impression of CTA that this model may be applied across other assets and resources such as rail vehicle failure and traction power issues. Captivating  Value  The LCCM model has potential but is sensitive to a variety of factors relying on available data; this  includes the issue of reliable climate change data and how it impacts on the local level.  This issue  won’t  be  solved  in  this  report,  so  a  closer  look  at  the  LCCM  provides  some  guidance  on  developing  cost‐benefit  analysis  as  a  consideration  component  for  advancing  adaptation  strategies. Furthermore, prioritization of the improvements should not be performed exclusively  from  an  LCCA  analysis;  additional  factors  must  be  considered  to  ultimately  prioritize  climate‐ adaptive improvements based on historical performance and available projection data.  Decision  Question  Should an investment be made now to reduce weather impacts to the system?  The report does not outline the decision made but the data supporting a decision one way or the  other.  The decision needs to consider more than just the cost‐benefit results from the LCCM.  Decision Maker  CTA  Relevance   Scope of climate change impacts.   Identification of impacts through survey of stakeholders;  Identification of impacts through prior reports for geographic boundary;  Identification of impacts through background research. Integration of climate change impacts into business practices   Developed a cost‐benefit model to provide input into the capital planning process;  Outlined potential steps  for inclusion into the asset management system;  Outlined of  a model to project future maintenance costs and resource needs to support budgeting and planning Status  CTA does not address a timeline for integrating climate and weather impacts into the EAM system  but does identify that going through LCCM exercise with other assets with an academic partner is  worthwhile.  So value was found by CTA in doing the LCCM analysis.  Critical  Assessment  It looks as though the report was really missing a vulnerability assessment which leads me to  believe that the referenced materials includes Chicago’s Adaptation Plan which likely addresses  many of the data needed to back up the results of the vulnerability survey.  However, it’s just not  clear.  Additionally, some approaches though different and may have some value such as mapping  urban heat island areas, does not necessarily project future impacts as heat island effects may  change moving forward and other citywide adaptation of green infrastructure could change the  heat island pattern.  This highlights the need for transit agencies to coordinate with local  governments on their plans which could impact the assumptions made by the transit agency.  The LCCM seems to have promise but without hands‐on use, it’s difficult to determine if the  simplicity ignores factors of a complex issue. The work put into developing useful model results  through evaluating different strategies was well done though.  Worth a look for transit agencies 

TCRP A-41: Literature Review A-34 but the report leaves the gap of which proposed approach the agency will take to integrate  climate into the EAM system.  One of the most interesting aspects may be the operational/finance impact framework model  that took up just a couple pages of the entire report.  It appears this effort was not part of the  pilot but an earlier project CTA was working on.    Overall, the report provides considerable meaningful methodologies and tools to support transit  agencies beyond CTA but there are some gaps in the framework which need to be understood on  why some methods were choose over others.  Additional  Comments  N/A  Essential   Vocabulary  N/A  Potential  Keywords  Asset Management  Climate Adaptation  Standard Business Practice  Capital Planning  Long‐range Planning 

TCRP A-41: Literature Review A-35 Citation  Choate, A., P. Groth, C. Snow, T. Phung, J. Casola, E. Johansen. 2013.  A Vulnerability and Risk  Assessment of SEPTA’s Regional Rail: A Transit Climate Change Adaptation Assessment Pilot.  FTA  Report No. 0071.  Website/Source   http://www.fta.dot.gov/about/12351_8850.html  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Pilot study research report.   Intended  Audience  Practitioners, especially other transit agencies, and policy makers.   Abstract  The  SEPTA  system  is  increasingly  dealing  with  severe  weather  in  terms  of  increased  and  prolonged  flooding  on  parts  of  its  system,  extreme  heat,  power  outages,  strong  winds  and  tropical  storms/hurricanes.  It  has  always  had  to  deal  with  snow,  including  blizzards.  What  is  different  is that severe storms are becoming more frequent and  lasting  longer. Traditional flood  areas are remaining flooded for longer periods and the opportunities for service disruption from  falling trees, water and strong winds have the potential for lasting longer. The Pilot has afforded  SEPTA to look at its rail system from the perspective of climate and adaptation and its effects on  its system and customers at various time frames  “The study analyzes the risks from extreme weather and climate change in the context of service  delays, train annulments, and costs to SEPTA. Projected risks are grounded  in historical data on  service disruptions  and  costs  from weather  events,  including  labor, materials,  and  equipment.  Finally, we  identified, screened, and analyzed adaptation strategies with stakeholder  input. This  report presents the results of these analyses, including detailed process information and lessons  learned for future transit adaptation efforts.” (p. 7)  Populations  Referenced  N/A  Topics Covered  Executive Summary   Section 1: Introduction   Section 2: Current Climate Hazards   Observed Weather Events and Related Disruptions on the Manayunk/Norristown Line  Weather‐Related Service Disruptions  Costs of Major Weather‐Related Disruption Events  Sensitive Locations and Asset Types  Thresholds for Weather‐Related Disruption Section 3: Future Climate Hazards   Climate Change and Projected Changes in the Frequency and Intensity of Extreme Weather   Potential Future Frequencies and Costs of Service Disruptions  Potential Changes in Sensitive Locations and Assets Section 4: Key Vulnerabilities   Vulnerabilities to High Temperatures  Vulnerabilities to Heavy Rain Events

TCRP A-41: Literature Review A-36  Vulnerabilities to Snow and Winter Storms  Vulnerabilities to Tropical Storms  Overall Vulnerabilities Section 5: Adaptation Strategies   Process for Identifying Adaptation Strategies  Adaptation Strategies for High Temperatures  Adaptation Strategies for Heavy Rain Events  Adaptation Strategies for Snow  Adaptation Strategies for Tropical Storms  Cross‐Cutting Adaptation Strategies  Recommendations Section 6: Lessons Learned   Appendix A: Detailed Approach for Analysis of Baseline Service Disruptions   Appendix B: Detailed Approach for Analysis of Weather‐Related Costs   Appendix C: Detailed Approach for Analysis of Baseline Weather Conditions   Appendix D: Detailed Approach for Analysis of Future Climate Projections  Type of  Sponsoring  Agency or  Organization   FTA sponsored the pilot and study report.  Geographic  Distribution   SEPTA provides transit service (commuter rail, bus, subway, and paratransit service) in the  Philadelphia region of Pennsylvania, extending service into nearby states. The pilot study focuses  on the single rail line of   Manayunk/Norristown (M/N).  Type of Transit  Mode(s)  The pilot study focuses on the regional rail line of   Manayunk/Norristown (M/N).  Type of  Vulnerability  Future  weather‐related  events  are  examined  and  tables  are  produced  to  present  frequency,  intensity  and  duration,  and  the  effects  on  service,  equipment  and  costs  based  on  previous  experience  scaled  up  to  represent  expectations  for  the  future:  high  heat  days,  heavy  rains,  tropical storms, and winter storm/ snow events.     High Temperature Events o For  the region  the most disruptive  future weather event will be heat: “In such high temperatures,  the  M/N  line  (and  other  rail  lines)  would  be  vulnerable  to  sagging wires, equipment  stress, and  track buckling.  In addition,  these  temperatures create harsh working conditions that can make it difficult to assess or repair damages…. High temperatures  primarily  affect  SEPTA’s  power  system.  Temperatures  affect  power lines  and  wires,  and  high  temperatures  can  cause  wires  to  sag.  Older  wires  are especially vulnerable. Not only are  they more prone  to sagging,  they are also more likely to break if tightened. The regional power grid may also be stressed and subject to brownouts during periods of high heat.” (p. 34)  Heavy Rain Events o “The M/N line is highly vulnerable to flooding from heavy rain events. When rain falls, it combines with runoff from upstream and can overwhelm culverts and cause severe flooding  on  the  line….  During  heavy  rain  events,  SEPTA  is  often  forced  to  close sections  of  track.  This,  in  turn,  disrupts  service  and  may  require  rescue  buses  for some passengers, single tracking, and changes to service schedules.” (p. 35‐36)  Tropical Storms events o “The M/N line is highly vulnerable to damage from the tropical storms that affect the Philadelphia area. Tropical storms combine high winds and high precipitation volumes and,  therefore,  can  cause  not  only  flooding  but  extensive  infrastructural  damage. Even  more  so  than  heavy  precipitation  events,  tropical  storms  are  likely  to  cause

TCRP A-41: Literature Review A-37 downed  trees, damage  to catenaries, power outages, and damage  to signals. Some  tropical storms can also cause severe flooding,” (p. 37)  SEPTA represents the vulnerabilities to weather events on power, track, signals, track beds,  bridges, communications and staff  on the M/N line in a simple Table 4‐1: SEPTA’s Vulnerabilities  to Weather Events and Projected Climate Changes on the Manayunk/Norristown Line (organized  by weather event and SEPTA department) (p. 39)  Goals and  Motivations  Goal: Develop Cross‐Cutting Adaptation Strategies   “Incorporate climate change vulnerability into the asset management program.  Document and disseminate institutional knowledge.  Incorporate climate risk management into SEPTA planning, construction, operations, and maintenance processes.  Continue to enhance communication systems.  Create and monitor performance indicators. o Weather‐related costs o Heat and speed restriction delays o Real‐time condition monitoring  Acquire backup power systems  Incorporate changing climate conditions into planning and budgeting process” (p. 63‐64) Context  “The FTA pilot projects (of which SEPTA is one) were chosen to advance the state of the practice  for  incorporating  climate  change  and  extreme  weather  considerations  into  existing  decision‐ making paradigms and, ultimately,  improving  the resilience of  transit assets and services  to  the  impacts of climate change. These pilots, which focus on climate‐related risks, are being conducted  in  the  context  of  long‐term  goals  to  address  state  of  good  repair  needs  and  enhance  transit  safety.” (p. 6)  SEPTA provides transit service (commuter rail (known as regional rail), bus, subway, trolley, and  paratransit service) in the Philadelphia region of Pennsylvania, with limited service extending into  New  Jersey.  SEPTA  was  developing  its  asset  management  system  at  the  time  of  the  report,  including fleet assets, infrastructure assets and SOGR.  Tools   In an effort to level the risk playing fields among the whether events, SEPTA developed the  following:   “Disruption Risk (in Delay Minutes) = (Probability of a Weather Event) × (Probability of Disruption Associated with that Event) × (Median Delay for that Event)  Disruption Risk (in Annulments) = (Probability of a Weather Event) × (Probability of Annulment Associated with that Event) × (Median Number of Annulments for that Event)” (Page ) SEPTA recognized that there are many commonalities to responding to weather events. To  address this. They developed:   “Cross‐Cutting Adaptation Strategies o “Incorporate climate change vulnerability into the asset management program. o Document and disseminate institutional knowledge. o Incorporate climate risk management into SEPTA planning, construction, operations, and maintenance processes. o Continue to enhance communication systems. o Create and monitor performance indicators.  Weather‐related costs  Heat and speed restriction delays  Real‐time condition monitoring o Acquire backup power systems

TCRP A-41: Literature Review A-38 o Incorporate changing climate conditions into planning and budgeting process” (p. 63‐64) Another useful tool/ methodology is cost identification, needed for potential reimbursement  from FEMA or FTA.   Costs The initial cost data was derived from two sets of data:   o “Reimbursement  information submitted to FEMA to cover costs associated with weather disasters.4 SEPTA provided  information about recent submittals for five  events … These events are limited to major snowstorms and tropical storms.  o Weekly labor costs that have been coded as “weather‐related” and that correspond to the same dates as the 28 major events days …. Although the  payroll costs are available for the major weather disruption events (as opposed to  FEMA reimbursements, which are limited to five events), they are limited to  SEPTA labor and do not include costs for equipment, materials, or contracted  labor service.  (p. 11)  From the severe weather identification the next step was to determine how often severe weather  events occur and  their risk projection “Tropical storms occur  less  frequently, but when  they do  occur,  they  severely  disrupt  operations  and  in  the  recent  past  have  prompted  system‐wide  service  annulments.  Non‐tropical  storm  precipitation  events  cause  median  delays  of  9–18  minutes 47 percent of the time they occur.” (p. 19) “The risk estimates represent the product of  the probability of an event’s occurrence and the magnitude of an event’s consequences in terms  of delays and annulments. The estimates act as a measuring stick to compare the various weather  risks. For example, snow and heat currently pose comparable risks to the system, roughly double  the disruption risk associated with heavy rainfall.” (p. 21) SEPTA estimates “… the future risks of  disruption and  the costs associated with disruption by combining  the projected changes  in  the  frequency of extreme weather events with  the known  costs and  service disruptions associated  with these events.”  (p. 30)  Noteworthy  Aspects  SEPTA undertook a very different approach  to  the FTA  request compared  to  the six other Pilot  projects.  The  other  Pilot  projects  undertook  large‐scale  analyses  of  their  rail  and  some  bus  services, climate modeling, various asset management analyses, emergency management efforts,  etc. and the climate impacts on their systems currently and forecasted. Los Angeles Metro posed  a critical asset question “If this service or asset were removed from the transit system, would the  transit  system  be  fundamentally  different?”  (LA  Metro  Pilot  Report,  Page  8)  Answering  the  question  requires  an  analysis  of  the  whole.  SEPTA  believed  you  could  understand  weather’s  disruptive impacts on one rail transit service and extrapolate to the whole.  SEPTA  believed  it  could  provide  a  viable  climate  adaptation  and  climate  impact  analysis  by  examining, in depth, the impact climate on SEPTA’s most weather affected rail corridor. Based on  discussions with SEPTA O&M and planning staff the “the Manayunk/Norristown (M/N)  line, was  based on ridership and other objective metrics related to criticality, but subjective factors were  equally important.” (p. 7) Of the 18.6 miles of the M/N line most runs along the Schuylkill River.    They  then  identified  their  assets  that  are  currently  vulnerable  to  severe  weather  events  and  assessed their service disruptions (p. 11). This base will be used to assess and estimate “…  future  risks of disruption and the costs associated with disruption by combining the projected changes in  the  frequency  of  extreme  weather  events  with  the  known  costs  and  service  disruptions  associated with these events.” (p. 30)  “With respect to climate model selection, unlike many of the climate change vulnerability studies  underway,  this study began with historical data and used observed/monitored weather data  to  drive decisions about which future climate variables to consider.” (p. 7)  

TCRP A-41: Literature Review A-39 Using historical data and current observations of weather, what weather events are causing the  greatest delay, annulments, disruption and costs on the M/N line? SEPTA developed the following  five questions to determine what weather events were the most harmful and disruptive:  “What types of weather events lead to service disruptions?  What is the magnitude and duration of disruption for different types of weather events?  How frequently do disruptive weather events occur?  What are the costs of different types of disruptive weather events?  Are there any “thresholds” for temperature or precipitation for which service disruptions  consistently occur? If so, how often are such thresholds exceeded?” (p. 8)  The weather events were not a surprise, nor were the fact that snow was the  leading culprit  in  causing delays and annulments. However, future weather projections will see fewer snow events,  though their intensity may be severe.   The M/N line compared “…to  the entire SEPTA Regional Rail system, …experiences higher rates of  impacts  from heavy  rain and  flooding  in addition  to  similar  rates  for all other weather‐related  delays. ….The M/N  line  appears  to  experience  fewer heat‐related delays  compared  to  the  full  SEPTA system but similar rates for all other causes.” (p. 10)  Also noteworthy were the following, noted among lessons learned:    Staff engagement  Data  Stakeholder engagement (p. 68) Captivating  Value  “The project design, both in approach and in scope, proved to be an effective way to analyze  transit vulnerability and adaptation strategies. This project examines climate change vulnerability  through the lens of current weather conditions and weather‐related disruptions. This proved to  be an invaluable aspect of the project. It allowed the project team to immediately engage SEPTA  staff about their vulnerabilities without needing to broach more controversial climate change  topics and without having to complete a full climate modeling effort beforehand. SEPTA staff  from a range of backgrounds could therefore be engaged from the outset of the project.” (p. 67)  Decision  Question  Identifying vulnerabilities and potential adaptive measures with heavy involvement from the  frontline operating personnel.  Most of the recommendations are from the possible solutions to the problems identified in Table  5. They are in three areas:  Two Capital Planning Strategies  Seventeen Operation Strategies  Ten Maintenance Strategies.  They range from the practical such as cleaning culverts before severe storm events to raising  equipment to communicating with customers (p. 64‐66).  Decision Maker  Most decisions are made at the agency level.   Relevance   “Noteworthy aspects” addresses the process.  Other noteworthy relevant aspects are in the  presentation and recommendations.   The tables provide succinct and fairly comprehensive summaries of the proposed adaptive  solutions, that can be readily adapted to other transit agencies, as follows:    Table 4‐1 becomes the basis for adaptive solutions in Table 5‐2 for Temperature (p. 44‐46); Table 5‐3 for Heavy Rains (p. 50‐53); Table 5‐4 for Snow (p. 55); and Table 5‐5  for Tropical Storms; (p. 57‐59)   The measures emerged from conversations with SEPTA’s staff, literature review, knowledge from long time employees on the line, and conversations with other  railroad personnel.  

TCRP A-41: Literature Review A-40  Table 5‐2 identifies the problems, possible solutions, departments responsible and barriers to solutions. Nine temperature related problems are identified from “sagging wires and track buckling to harsh working conditions and passenger discomfort.” The solutions run from modernizing the catenary system to constant tension to “educate workers on stress and hydration.”  Most of the nine problems have multiple solutions.  Table 5‐3 identifies the problems, possible solutions, departments responsible and barriers to solutions. Nine heavy rain related problems are identified from “track wash outs to power outages.” The solutions run from “build flood resistant structures to emergency sand bagging.” Most of the nine problems have multiple solutions.  Table 5‐4 identifies the problems, possible solutions, departments responsible and barriers to solutions. Five snow related problems are identified from “snow on the tracks to service disruptions.” The solutions run from “have third party personnel available to remove the snow to continue to improve customer communications.” Most of the five problems have multiple solutions.  Table 5‐5 identifies the problems, possible solutions, departments responsible and barriers to solutions. Twelve related problems are identified from “loss of power, downed catenary system and delays.” The solutions run from tree trimming, increased pumping and customer communications.” Most of the twelve problems have multiple solutions. Recommended strategies that may have relevance for other transit agencies are as follows (p. 64‐ 66):   “Capital Planning Strategies o Promote use of pervious surfaces. o Improve stormwater management on SEPTA property by installing green roofs and rainwater capture systems (e.g., rain barrels).  “Operations Strategies o Record climate‐ and weather‐related vulnerability for assets in transit asset management program, beginning with most critical assets, if necessary. o Continue efforts to make institutional knowledge more resilient (e.g., through asset management program and other means). o Create and track performance indicators of resilience (e.g., frequency of FS1 restrictions, relationship of delays to weather conditions, labor hours spent on and costs of weather events, customer satisfaction). o Improve monitoring of water levels and possibly identify key thresholds for planning. o Continue to enhance customer communication and develop weather event communication protocols. o Incorporate changing climate conditions into planning and budgeting processes (projected number of heat events, tropical storm risk, etc.). o Prepare to adjust services as needed and communicate with riders (before, during, and after events). o Increase bus service in advance of predicted flood events to service flooded stations. o Develop policies and action plans to be taken when a heat wave is forecast (e.g., worker schedules, cooling stations, equipment readiness, backup power). o Put specialty equipment and staff on standby when storms or heat waves are forecast (e.g., high rail excavators, trucks loaded with stone and ballast, chain saws). o Educate workers about heat stress and hydration, especially in advance of summer months. o Store equipment in higher elevation areas in advance of potential flood events (and ensure it gets done by assigning tasks to specific people).

TCRP A-41: Literature Review A-41 o Institute policy to consider elevating assets (or otherwise making them more resilient) if opportunity arises through business‐as‐usual operations. o Place sandbags in flood‐prone areas when floods are predicted. o Increase coordination with PECO and other entities who require tree‐trimming services. o Chain gate arms in “up” position in advance of severe, windy storms (such as tropical storms). o Regularly review and update Hurricane Standard Readiness Plan.  Maintenance Strategies o Continue tree‐trimming program. o Monitor and track problem tree areas. o Keep backup parts, materials, and equipment in stock and in good repair. o Identify and catalog problem areas for track buckling. o Regularly check and maintain wire tension, especially during heat waves, to avoid sagging wires. o Maintain HVAC systems to reduce potential for customer discomfort during heat waves. o Increase frequency of track inspections during heat waves. o Increase frequency of culvert and drainage system inspections and maintenance. o Continue to salt rails, stations, and other areas in advance of snow storms. o Continue to monitor staff working on snow removal to prevent or respond to injuries and fatigue. Status  The pilot is complete, recommendations and action steps have been identified.   Critical  Assessment  If someone was approaching the issue of climate adaptation and rail transit for the first time this  approach would be most useful  The Report was:   Targeted and comprehensible.  Used tables to correlate problems with possible solutions. The problems identified and many of the possible solutions are common sense and transferable to other SEPTA railroad lines and other railroad properties.  Customers were recognized in terms of negative impacts and the need for communications.  A simple cost calculation was established and can be quickly used to assess costs before more developed cost analyses are developed. The cost approach also underscores the need for using different accounts for each severe weather event to improve the reimbursement process from FEMA and FTA.  Has performance measures.  Limited utilization for bus operations.  Minimal attention to new technologies and materials that could resolve problems.  Recognized policy issues as an important part of addressing the vulnerabilities. Additional  Comments  N/A  Essential   Vocabulary  No definition of resilience provided – closest was the recommendation to “Create and track  performance indicators of resilience (e.g., frequency of FS1 restrictions, relationship of delays to  weather conditions, labor hours spent on and costs of weather events, customer satisfaction).”  (p.65.)  Potential  Keywords  SOGR  o FSI Speed restriction (no definition given) o performance metrics

TCRP A-41: Literature Review A-42 o high heat o asset management flooding  snow  tropical storms  heavy rain 

TCRP A-41: Literature Review A-43 Citation  Report: Brooks, J., R. Stevens, S.M. Sandidge, L. Cherrington, R. Blessing, A. Stiles, and Dr. S.  Brody. 2013. “Gulf Coast Climate Change Adaptation Pilot Study.” U.S. Department of  Transportation, Federal Transit Administration, Washington, D.C.   Website/Source   http://www.fta.dot.gov/documents/FTA_Report_No._0072.pdf FTA Report No. 0072  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  FTA pilot Planning Study  Intended  Audience  Gulf Coast Transit Agencies  Abstract  This study was intended to provide Gulf Coast transit agencies a source of reference to address  climate change within their agencies.  This source of information includes a broad range of  climate change research and potential and actual weather‐related impacts to Gulf Coast  communities.  This report further provides agencies a framework to address climate change at  the agency level and tools and methodologies necessary to develop assessments and adaptation  strategies.  More specifically, Island Transit, Houston metro and the Hillsborough Area Regional Transit were  provided additional benefits as case studies through the application of the outlined framework  and methodologies.  Populations  Referenced  Gulf Coast Transit Agencies  Topics Covered   Background information regarding climate change and the effect climate change may have on Gulf Coast transit agencies; o A survey of agencies about past severity of various weather events is provided to support the report and transit agencies alike.  A conceptual framework for planning and adapting to climate change outlined in a multiple step process;  Tools for the use of developing vulnerability matrices and the establishment of policies and practices;  Application of the framework and tools through the three case study examples of previous/ongoing adaptation strategies; and  A “detailed methodology using GIS spatial data to assess climate change vulnerability of transit assets.” Type of  Sponsoring  Agency or  Organization   Federally sponsored by FTA with consideration of many Gulf Coast agencies.  Geographic  Distribution   The study area consists of the entire Golf Coast from the Texas/Mexico Border to southern  Florida. 17 agencies throughout this entire region were surveyed.  Case Studies for specific  agencies: Island Transit in Galveston Texas, METRO in Houston and Hillsborough Area Regional 

TCRP A-41: Literature Review A-44 Transit.  Type of Transit  Mode(s)  All  Type of  Vulnerability  Heat‐high Days, Sea‐level Rise/Flooding, Other (High Winds), Coastal Storm  Goals and  Motivations  Gulf of Mexico coastal transit agencies and their constituents are especially vulnerable to natural  hazards resulting from extreme heat, flooding, and high winds. Study was to provide benefit to  three specific project member transit agencies and to compile practical information for all Gulf  Coast transit agencies.   Context  The study worked to have a broad scope to the entire Gulf Coast Region whereas a survey was  sent to any urban transit agency with a headquarters within 100 miles of the Gulf of Mexico  coastline.  Therefore, the focus is on an urban transit system but with a variety of contextual  variability.  20 respondents representing all Gulf Coast states responded and the result are  provided in an appendix to the report.  Respondents consisted of county agencies such as Lee  County, Florida up to major metropolitan authorities such as Houston and New Orleans.  Tools   Framework with steps to conduct assessment.  “The eight steps of the process are:  1. Identify current and future climate hazards. 2. Conduct inventory of transit assets. 3. Characterize risk of climate change impacts. 4. Develop initial adaptation strategies. 5. Identify opportunities for coordination. 6. Link strategies to organizational structures and activities. 7. Prepare and implement adaptation plans. 8. Monitor and reassess. “ o Step 1 “must” happen to create the adaptation plan.  This report highlights the need to refresh climate change and projection data with updated information as science and new data becomes available. o Step 2 provides an initial look at incorporating climate change into operations and capital planning. o Step 3 provides the vulnerability assessment aspect to the framework where those using such a process will outline the severity and frequency of events. o Step 4 should allow stakeholders to begin brainstorming adaptation options to include cost and timing of the adaptation.  This will provide agencies the ability to compare options and prioritize adaptation strategies. o Step 5 highlights the importance to coordinate with partners and stakeholders. Planning in stovepipe may cause missed opportunities to leverage in‐kind interest and adaptation strategies.  Furthermore, actions which may impact interdependent infrastructure needs to be addressed ahead of time. o Step 6 brings the entire agency into the discussion through linking adaptation strategies to various organization components responsible for that strategy.  The report states the best way to incorporate this agency wide is into the asset management system. o Step 7 outlines the selected strategies into a comprehensive adaptation plan including resource commitments, “metrics to measure success”, timelines, and other aspects. o Step 8 create a cyclical process whereas monitoring and reassessing the adaptation plan calls on a looking at the process all over again using new information as it becomes available and as initial adaptation strategies are implemented.

TCRP A-41: Literature Review A-45  Assessment matrices addressing impacts and consequence scoring.  Two evaluation tools are identified and provided.  Agency System‐wide Evaluation and o Agency System‐wide Evaluation consists of asking agency staff and stakeholders to think about weather events, the likelihood and severity of impacts and provide the form back to the study team.  Follow‐up detail is also asked regarding asset criticality, value, etc. o The second tool is a baseline assessment tool.  This tool details a list of questions which may be asked by each agency department, though the list of questions is an example and may not include all information desired.  The report briefly identifies the Climate Change Vulnerability Index (CCVI) methodology. This methodology is a way of scoring climate change risks through the development of composite spatial data layers.  It’s a simplistic way of developing an index number normalized across climate change “dimensions” (e.g. hurricanes, rainfall, sea‐level rise, temperature changes).  The CCVI developed did not weight scores to limit bias interpretation but such complexities are available to users.  The numbers result in the identification of the most likely climate change dimension to impact the study area. Noteworthy  Aspects   This report identifies four categories of successful climate change adaptation.  These four areas include “maintain and manage” which is the ability for a system to “absorb increased maintenance and repair costs and improve real‐time response to severe event.”  This category would support the post‐event resiliency through the agency’s ability to quickly act and respond to limit impacts to the system.  The second category is to “strengthen and protect.  This category addresses new design standards to infrastructure and other agency resources with the ability to withstand climate change. Such actions may include retrofitting “existing structures and facilities” and to “build protective features” such as flood walls.  The third category is “enhance redundancy.” This category identifies the alternative solutions to climate change impacts such as rerouting bus service or the establishment of bus bridges should impacts to rail asset occur.  Overall, it provides a regional mobility and modal options should one mode be lost of any period of time.  Finally, “retreat” is a suggested strategy to relocate facilities in vulnerable areas to areas less likely to be impacted from the risks identified.  The assessment tools are clear and seem to be easily implemented across agencies if used properly.  It would not take expertise to implement the tools unlike others which call for model runs.  Of course, there may be some bias relying completely on surveys and questionnaires but there seems to be some benefits to conducting an assessment this way.  The CCVI may provide agencies a way to quantify frequency as part of the vulnerability assessment piece to the framework.  Using the spatial data, it provides a more science based result than perception results an agency may see through surveys and questionnaires of staff and stakeholders.  A summary of strategies identified by participating case study agencies include: o “For routes frequently affected by flooding, identify standard re‐routes and acquaint the public with the alternative alignments used if street flooding is present (low cost)” o “Establish a method to record site and street flooding impacts to maintenance, facilities, and service delivery for use during future planning processes (low/ medium cost).“ o “Use operators as eyes on the street; informing community public works departments of blocked storm drains and other drainage issues (low cost). In addition, transit agency management can actively engage in local/regional drainage planning (low

TCRP A-41: Literature Review A-46 cost).“  o “Plan for and setup contracts for staff meals, hotels for employee sleep quarters, street clearing equipment and services, and safe parking for the vehicle fleet (all  require low, periodic investment to establish and maintain contracts).“  o “Identify core bus routes that serve emergency medical facilities, evacuation centers, and other critical first‐response locations, ensure contracts for route clearing  assistance focus on core routes (low cost).”  o “Arrange to accommodate fueling needs during storm recovery, including fuel reserves and established contracts and practices to maintain fuel availability, as well  as the ability to get fuel to wherever vehicle fleet may be located during recovery (low  to high cost).”  o “Identify and disseminate clear information internally and to stakeholders about key personnel during emergency operations and an order of succession in case a key  individual becomes unavailable (low annual cost, due to planning).”  o Specific to HART. o Specific to Island Transit

TCRP A-41: Literature Review A-47 o Specific to Houston METRO (Focus on Hurricane/Tropical Storm) Captivating  Value  The following quote shows how wide of a net that needs to be cast to be sure climate adaptation  is being considered holistically. –   “Common types of plans or documents that do or can pertain to climate change adaptation at  Gulf Coast transit agencies include, but are not limited to, the following:  •Emergency management plans •Risk improvement plans •Catastrophe risk analysis •Sustainability plans •Continuity of operations plans

TCRP A-41: Literature Review A-48 •Food service disaster plans •Metropolitan transportation plans •Corridor alternatives analysis •Local or regional flood plain management plans” Decision  Question  Decision Maker  Transit Agencies  Relevance   Scope of climate change   Provides an overview of Gulf Coast impacts and projections but furthers the importance of scoping the impacts through the first step of the framework developed.  Assessing climate risks   Report defines a framework for addressing climate change which could be applied nationally even though the reports intended audience is the Gulf Coast.   Provides methods for assessing vulnerabilities. Integration of climate adaptation into standard business practices.   Outlines steps in the framework forcing agency cooperation where without input form varying departments on risks and vulnerabilities and well as assigned responsibilities for  adaptation, the efforts would be for not.  Some gaps and solutions to addressing climate change is the identification of limited data at the  local level.  For example refined data is needed for local predictions of sea‐level rise. The solution  proposed is outlined in Step 8 of the framework which forces agencies to reassess and reevaluate  climate change and its impacts.  This includes using new data and information as it becomes  available.  Status  Available for use by other transit agencies.  Critical  Assessment  Overall, the report is a high‐level outline of the things to think about when an agency is looking to  incorporate climate change adaptation into business practices.  The report provides easy to  understand and use assessment tools and a framework that requires continuing planning and  discussions throughout the agency.    Chapters 1 through 3 generally review the background on risk assessments and the literature  review conducted as part of the project.   Chapter 3 outlines a conceptual framework that many  of the reports follow.  The results from the literature search highlight the need for updated design  standards and to conduct further research into longer term horizons as a place to implement  adaptation to infrastructure.  It also highlights general land‐use issues, technological needs and  impacts to operations.  Chapter 4 provides a basic assessment outline while Chapters 5‐7 outline  case studies with limited information.  Chapter 7 specifically focuses on response and recovery.   Chapter 8 highlights the need to understand spatial asset vulnerability and more localized  predictions as far as sea‐level rise.  Chapter 9 reviews the vulnerabilities and potential impacts.   Chapter 10 provides a crash course on how GIS may be used to get to the CCVI score.  Additional  Comments  Case studies examples going through some of the methodologies described include:  1. Island Transit – Galveston, TX 2. Hillsborough Area Regional Transit (HART) – Tampa Bay, FL These case studies seemed that each agency was approached as part of this research effort to  discuss issues they encounter and to identify some adaptive measures they may look at.  Each 

TCRP A-41: Literature Review A-49 case study provides business practices as well as standards and infrastructure design  recommendations.   3. Houston Metro – Houston TX (Chapter 7 focuses specifically on tropical storm and hurricanes.  Seems to focus primarily on disaster recovery.) Essential   Vocabulary  N/A  Potential  Keywords  Climate Change  Gulf Coast  Climate Change Vulnerability Index  CCVI  Case Study  Natural hazards  Gulf Coast transit  Emergency transportation  Asset management 

TCRP A-41: Literature Review A-50 Citation  Liban, C., Egge, M., Markovitz, C. 2013. Los Angeles County Metropolitan Transportation  Authority Climate Change Adaptation Pilot Project Report. FTA Report No. 0073. U.S. Department  of Transportation, Federal Transit Administration, Washington, D.C.  Website/Source   N/A  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Pilot study research report.   Intended  Audience  Policy makers, internal staff, coordinating agencies and practitioners, especially other transit  agencies.  Abstract  In the beginning, metro states that the Pilot will build upon their existing work: “Climate Action  and Adaptation Plan (CAAP) and Environmental Management System (EMS), and asset  management systems—the Environmental Information Management System (EIMS) and the  Maintenance and Materials Management (M3)” (p. 1) The EMS will become the document to  integrate the Pilot recommendations throughout Metro, where appropriate. (p. 2).  Because of Metro’s early and continuing efforts in the above stated areas,   Metro’s Pilot builds upon its earlier efforts and proposes that the Pilot “goes beyond the issue of  identifying risks and proposes viable implementation strategies to incorporate climate adaptation  into established programs and initiatives within the agency.” (p. 1) By doing so Metro hopes that  there will be a new synergy among the various early separate work efforts and the Pilot. (p. 2)   Metro  asks  a  critical  asset  question:  “If  this  service  or  asset  were  removed  from  the  transit  system, would the transit system be fundamentally different?” (p. 8) Answering this fundamental  question should have value for all Climate Management Plans.  Populations  Referenced  Los Angeles Metropolitan Area and Metro customers  Topics Covered  Executive Summary  Section 1: Metro Background  Section 2: FTA Pilot Program Background and Objectives  Section 3: Metro Pilot Project Summary   Background  Metro’s Climate Change Adaptation Pilot Overview  EMS Integration/Asset Management  Metrics Development  Outreach Strategies and Climate Adaptation Roundtable Section 4: Lessons Learned  Section 5: Next Steps  Appendix A: Los Angeles Metro Survey  Appendix B: EMS Integration/Asset Management Report  Appendix C: Metric Development Report  Appendix D: Outreach Elements  Type of  Sponsoring  FTA sponsored the pilot and study report. 

TCRP A-41: Literature Review A-51 Agency or  Organization   Geographic  Distribution   “Metro is the state‐chartered Regional Transportation Planning Agency (RTPA) and public  transportation agency for Los Angeles County (California). Metro serves as the transportation  planner and coordinator, designer, builder, and operator for Los Angeles County. The county has  the largest population among all counties in the United States (about 9.8 million people, which  represents about 26% of the total population of California). Los Angeles County’s population  would make it equivalent to the ninth largest state in the country, just behind Michigan. It  includes people from 140 countries that live and work in 88 cities and unincorporated areas.  Metro's service is essential for meeting the travel needs of people with very diverse  socioeconomic and demographic backgrounds. According to the 2010 U.S. Census,  the demographic profile of Los Angeles County consists of 47.7 percent Hispanic,  27.8 percent White, 13.7 percent Asian‐Pacific Islander, 8.3 percent African‐  American, and 2.5 percent people from other ethnic groups.  Metro's service area is currently 1,433 square miles (35% of the area of Los  Angeles County) and is located within the Los Angeles‐Long Beach‐Santa Ana  Urbanized Area (UZA). “ (p. 4)  Type of Transit  Mode(s)  “The services that Metro provides include heavy rail (Red Line and Purple Line), light rail (Blue  Line, Gold Line, Green Line, Expo Line), and bus service (local, limited, express, shuttles and  circulators). Metro also operates Bus Rapid Transit (BRT) service (Metro Rapid, Orange Line, Silver  Line) and a vanpool program. It also provides funding for local and highway improvement   projects as well as subsidy for commuter rail and other municipal transit service.” (p. 4)  Type of  Vulnerability  Weather vulnerabilities, (e.g. High Temperatures, Wind, Severe Rain Storm Events, Coastal  Storms, Flooding/Sea‐level Rise, and reference to Dust Storms and Wildfires)  Goals and  Motivations  “The key components of the project include the following:  • Task 1: Development and  implementation of a plan  for  the  integration of adaptation principles  into Metro’s  Environmental Management  System  (EMS)  that  can  be  applied  agency wide.  • Task 2: Development of a  tool or modification of an existing  software application  to evaluate and track climate risks associated with Metro’s fixed and rolling assets.  • Task  3:  Development  of  adaptation  set  of  metrics  to  measure  and  assess  Metro’s progress in addressing adaptation.  • Task 4: Development of an outreach plan  to create  internal and external stakeholder awareness of Metro’s adaptation efforts.  The goal is for “these results can be used by other agencies as deemed appropriate.” (p. 15)  Context  “The FTA pilot projects (of which Metro is one) were chosen to advance the state of the practice  for incorporating climate change and extreme weather considerations into existing decision‐ making paradigms and, ultimately, improving the resilience of transit assets and services to the  impacts of climate change. These pilots, which focus on climate‐related risks, are being conducted  in the context of long‐term goals to address state of good repair needs and enhance transit  safety.”    Prior to the natural disaster there was an Asset Management System, Operation and  Maintenance system, and levels of resilience planning in place.  However, these system plans are  currently ongoing and evolving measuring up to a state of good repair.  Tools   Metro has a wealth of plans and studies. Metro’s M3 product was chosen to be an integrator for  this Pilot.  “Metro’s M3, is a commercial‐off‐the‐shelf (COTS), fully integrated public transit Enterprise Asset  Management software suite. It is designed to integrate with commonly‐used transit systems such  as fuel and fluids management, automated vehicle location (AVL), human resources, finance, and  procurement. The technical design is multi‐tier client/server that allows access from all Metro  locations to a central data system. Its reporting capabilities track Metro’s key performance 

TCRP A-41: Literature Review A-52 indicators, and the system includes a search engine for ease of use, searching, and printing  reports. M3 supports asset management, inventory, and warehouse management, as well as bus,  rail and facilities maintenance. It is integrated with Metro’s purchasing and financial systems to  create a seamless environment and eliminate duplication of data. The system uses and resides on  computer hardware accessible at all Metro locations. …Metro’s case study through this project  shows how Metro and any transit agency can address asset risk from climate change by  identifying the criticality and vulnerability of assets over time, using Metro’s EMS Adaptation Plan  and Metro’s M3 as a template. Building on Metro’s ISO 14001:2004‐certified EMS and CAAP  at the Red Line Yard (RLY), First Environment developed a methodology to screen for the assets at  risk. In particular the methodology provides a tool for a transit agency to:  • Identify assets • Screen assets for criticality • Screen assets for vulnerability to precipitation, heat, and wind • Screen for indicator of risk over time – rate of change • Assess the risk on the asset” (p. 24‐25) Metro then screened for asset criticality and vulnerability.  “Metro worked alongside the Urban & Environmental Policy Institute (UEPI) at Occidental  College to determine key metrics that the agency could use to track its progress of implementing  any adaptation strategies…There were 109 possible metrics generated through the literature  review, related research, and discussions with various Metro departments and staff. The metrics  fall into four categories: Planning, Operations, Adaptation, and Riders.” (p. 31‐32)  The 109 possible metrics were reduced to 20 and then 7. The 7 metrics are:  1. “Has vulnerability assessment been conducted? 2. Have adaptation actions been prioritized? 3. Have vulnerable assets been mapped with transit‐dependent and low‐income populations? 4. Number of injuries/medical emergencies to workers and riders by temperature and rainfall. 5. Does the agency have overheating standards for public transport facilities and rolling stock? 6. Capacity to monitor weather and temperature conditions in real time at key locations in service area. 7. Extreme weather impacts on service delays and cancellations.” (Page 33) “These metrics serve to:   Determine the completeness of Metro’s current climate mitigation and adaption efforts  Identify the extent of implementation of Metro’s mitigation and adaption strategies  Indicate the level of employee and customer consideration in the implementation of such strategies  Understand and monitor the extent of EMS implementation and integration efforts that need to be performed  Gauge the agency’s engagement and commitment for continual improvement as a function of its core mission of moving people safely and reliably regardless of external potentially impactful conditions” (p. 33)

TCRP A-41: Literature Review A-53 Noteworthy  Aspects  Metro has taken initiative to understand parts of resiliency and sustainability by analyzing various  other plans and documents assembled by several distinct entities that, too often, were stand‐ alone documents. Their effort was to integrate the various documents and plans to achieve a  more universal approach/plan. One of the future take always from the Pilot is to use the Pilot for  a “Climate Adaptation Roundtable.” “The audiences targeted include the Metro Board of  Directors, elected officials, and service area residents, as well as transit‐dependent riders and  discretionary riders. Metro staff will use this messaging strategy when developing outreach  materials to aid in developing appropriate and relevant messaging techniques to particular  audiences.” (p. 35)  “Creation of a Metro Climate Adaptation Webinar with a focus on:  Building off of the roundtable discussion to share additional information on Metro’s climate  efforts  • Identifying and outlining existing and forthcoming policies, programs, and resources available to transportation agencies for climate adaptation planning • Creating an accessible forum to increase audience engagement and participation.” (P. 41‐ 42) Captivating  Value  The project design was to integrate the various public documents with respect to climate  adaptation. This is an important approach as many public agencies have multiple plans,  regulations, studies that end up being siloed documents. An integrated approach makes more  sense.  Decision  Question  “If this service or asset were removed from the transit system, would the transit system be  fundamentally different?” (p. 8)  Decision Maker  Metro and their reports and plans, political leaders, and regional organizations.  Relevance   LA Metro is one of the major transit systems in the United States located in a region that is and  will continue to be affected by extreme weather and natural events, such as earthquakes. This  has required the region and the public sector to develop plans. Assembling literature to illustrate  the relationship between plans and integrating them with respect to climate adaptation is an  important approach that may be duplicated elsewhere.  “One of the project’s key objectives was to develop valuable messaging strategies for  communicating to various audiences (i.e., internal staff, external agencies, private investors,  elected officials, county residents, and riders) on how Metro is preparing for climate change and  severe weather impacts and how each of these stakeholders may help Metro to prepare for and  mitigate these impacts.” (p. 2)  The development of the metrics and the reduction from 109 to 7 has value in terms of decision‐ making approach.  The recognition of customers. Unfortunately customers are not a focus in the  Pilot and it really isn’t until Section 5 that Next Steps customers reemerge in a post‐pilot plans. (p.  44‐45) Recognition of the importance of employee buy‐in and that it takes a great deal of effort.  (p. 43) as staff has many immediate issues and problems to address.  For Metro the Pilot effort also revealed an unexpected correlation:  “independent research by  Metro staff found a correlation between weekly temperature averages and weekly bus  breakdown averages, even with preventive maintenance. While this challenge was not critical to  the success of the project, it is an ongoing issue that Metro staff will continue to address. (p. 43)  “A regional approach to adaptation is needed, but coordination and resources to facilitate this  dialogue remain a challenge.” (p. 44)  Status  The pilot is complete, recommendations and action steps have been identified. .  Critical  Assessment  N/A  Additional  Comments   There is no financial analysis to assist in the prioritization of climate adaptation‐ they could learn a great deal from the SEPTA approach.

TCRP A-41: Literature Review A-54  Customers are basically an afterthought as they are in the 7 Pilots. I think this is unfortunate. If one starts with the customer and assess their needs in climate change, there is likely to be some different priorities. For example for Metro bus shelters and station or their lack: a 95 F degree requires bus patrons to have adequate shelters. Metro O&M staff are rightly concerned about A/C on the buses, but is an at‐risk transit‐ dependent person has no protection then Metro starts with a bigger cooling problem Shelters and stations are also critical with respect to heavy rainfall and flooding. Are the shelters and stations in flood zones? Can customers get to them safely? FTA and Metro are concerned about the large capital projects and equipment. Unfortunately shelters are not significant enough.  The report is more of a policy platform and self promotion then an implementation document.  Metro undertook a survey of their regional operation and maintenance employees, asking them about their responses and mitigation of climate impacts. Appendix A provides the survey and response. It is very revealing. Flooding, A/C and power are major concerns, but the body of the document hardly mentions the concerns. Fueling stations underwater will have long‐term consequences for getting service restored.  There are no performance measures for the metrics and no indication of what happens if the climate goals are not met. It is unclear who is responsible for implementing this program.  No mention of addressing on Demand services and how they and staff may be affected by severe weather.  No effort to create weather event coding so that Metro will have a better understanding of their full costs and not simply labor and capital assets.  Metro basically dismissed sea‐level changes and surge because the overwhelming numbers of services are not affected. Sea‐level changes could have domino impacts on the more inland communities.  Little recognition is given that climate adaption requires a community response, other than to indicate in the Next Steps that regional approach remains an issue. However, the Report did not indicate that they sought to integrate their EMIS with the communities Emergency Management System or with non‐profits. Major emergencies affect whole communities and each agency has a critical part to play in order to effectively manage the emergency.  The Report was too dense and requires the reader to have an understanding of past and current policies and documents to fully understand the Report material. Furthermore, the Report spends considerable time praising Metro and how they are national leaders on the environment etc. It is an appeal to authority that does not work here.  No training and no apparent response to the survey responses provided in Appendix A.  No use of social; media and telecommunications as part of their solutions, even in emergencies. In fact technology is extremely limited in the conversation. Essential   Vocabulary  N/A  Potential  Keywords  N/A 

TCRP A-41: Literature Review A-55 Citation  Report:  Feng, T. 2013. “San Francisco Bay Area Rapid Transit District (BART) Climate Change  Adaptation Assessment Pilot.” U.S. Department of Transportation, Federal Transit Administration,  Washington, D.C.  Website/Source   http://www.fta.dot.gov/documents/FTA_Report_No._0074.pdf FTA Report No. 0074  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Planning Study  Intended  Audience  Transit Agencies and policy drivers.  Abstract  “Evaluate the impacts of climate change on the San Francisco Bay Area Rapid Transit District  (BART) infrastructure and to develop and implement adaptation strategies against those impacts.  Climate change hazards considered are sea‐level rise, downpours, and flooding. The study focuses  on four specific types of assets: station and maintenance facilities, track and aerial structures,  train control, and traction power. Adaptation strategies are developed and linked to various  departments within the organization.” (p. iii)  The report provides tools used to develop a risk assessment, prioritize adaptation strategies  based on cost/benefit analysis and a life‐cycle cost analysis.  It further provides linkages of  adaptation strategies to departments within the transit agency thereby initiating the  incorporation of climate adaptation into business practices.  Populations  Referenced  Executives, planners, designers & engineers, emergency managers & responders, maintenance  managers & staff, and asset managers & staff  Topics Covered   Climate Adaptation Assessments using Climate Hazard Scenarios o Vulnerability & Risk Assessment  Addressing specific rail infrastructure such as station & maintenance facilities, track & ariel structure, train control and traction power  Adaptation Strategies  Organizational Structure & Activities  Asset Management and Life‐Cycle Cost Analysis Type of  Sponsoring  Agency or  Organization   Regional made up of county and city jurisdictions sponsored by Federal  Geographic  Distribution   San Francisco/Oakland, CA Region    The  project  study  area  focuses  on  the  East  Bay  coastline  of  the  San  Francisco  Bay  Area.  The  project study area spans from West Oakland to Hayward.  Type of Transit  Mode(s)  Heavy Rail  Type of  Vulnerability  Severe Storm Events, Flooding/Sea‐level Rise  Goals and  The purpose of this report was to analyze available data to determine the potential impacts from 

TCRP A-41: Literature Review A-56 Motivations  climate  change.    Once  outlined,  adaptation  strategies  are  to  be  developed  and  linked  to  the  various departments at BART.  Evaluate the impacts of climate change on the San Francisco Bay Area Rapid Transit District   (BART) infrastructure and to develop and implement adaptation strategies against those impacts.   Context  Focused on Heavy Rail  BART  is a special governmental agency created by  the State of California consisting of Alameda  County, Contra Costa County, and the City and County of San Francisco. San Mateo County, which  hosts  six BART  stations,  is not part of  the BART District.  It  is governed by an elected Board of  Directors with each of the nine directors representing a specific geographic area within the BART  district.  BART  operates  209 miles  of  heavy  rail  fixed  guideway with  up  to  666  vehicles  available  as  of  2013(per the National Transit Database).   Other assets  include stations and maintenance yards,  tracks  including  areal, with  train  control  and power  tractions  needs which  is  the  focus  of  this  report.  Funding  availability  has  created  limitations  but  other  strategies  which  require  limited  funding  such  as  business  practices  and  agency  coordination was  identified  as  immediate  options with  limited funding needs.  Currently, the agency estimates that “$6B in investments over the next 10  years to maintain good performance and bring these assets into an acceptable or normal state of  good repair. If funding  levels are not changed, this number  is expected to grow by an estimated  30 percent over the next 10 years.” (p. 80) 

TCRP A-41: Literature Review A-57 Tools    Repeatable methodology for evaluating and assessing assets vulnerability and risk.  The approach defines risk criteria such as likelihood of events for the events studied and consequence and places these definitions into a risk matrix. It provides an interesting approach whereas each scenario has its own set of probability definitions. o The consequence scales provided fit across all hazards and focuses on two concepts: repair costs to physical damage and revenue service downtime. These two consequence definitions are combined to provide a single output score for consequence.  Provides a prioritization of adaptation strategies based on cost and benefits. o In a similar manner to risk assessment, the report outlines a matrix which place cost and benefits along the two axis.  Each strategy was characterized as have low, medium or high cost and benefit and a corresponding score was assigned.  Benefit scores were “determined by calculating the difference between the baseline risk score and the residual risk score.” (p. 59) The residual risk score is developed by staff opinion and is defined as the “risk after implementation of the adaptation strategy.” (p. 32) Costs were assigned “based on interpolations from projects of similar scope and scaled” (p. 58) inventoried at BART.  To support decision makers, a time scale was also provided as part of the output with the cost‐benefit score to help decision makers.  Provides framework for Life‐Cycle Cost Analysis o This particular LCCA considers climate adaptation “and the operations and maintenance activities that would reduce risk to the asset over the life cycle thereby improving asset and system resiliency. Adaptive maintenance and operations activities would reduce risks to performance and safety and extend service life. Similarly, adaptive capital improvement activities are expected to not only reduce risks but also O&M costs. The O&M activities (as well as capital work) would be designed to reduce the impact of time on condition and hence treatment cycles (see Figure 6‐2).”  (p. 84) A framework based on US DOT LCCA methodology is outlined as follows: (p. 84)  Step 1 assumes an asset has already been selected and a list of alternative adaptation measures is ready for analysis though both an adaptive scenario and a scenario in which the adaptation does not occur. (p. 85)  Step 2 requires the agency to select maintenance schedules and the length of time each of the scenarios should play out in terms of lifetime design.(p. 85)  Step 3 is the development of costs estimates based on both direct and indirect costs.(p. 85)  Step 4 involves computing life‐cycle costs while keeping the valuation of a dollar in mind.(p. 86)  Step 5 is the final step in which an analysis is conducted to determine if adjustments to the adaptation strategies need to be made or if move forward with the final recommendation of action.(p. 86)

TCRP A-41: Literature Review A-58 Noteworthy  Aspects   A risk assessment was done on each of the four BART assets and was generally based on guidance from ISO 31000: 2009 Risk Management—Principles and Guidelines  The adaptation strategies are aimed at increasing the resiliency of the assets and realign BART’s business practices to better respond to the climate change impacts. These adaptation strategies fall into one of four categories: Land Use and Planning, Design and Construction, Operations, and Maintenance. A complete list of the 35 potential strategies reviewed is included in Appendix B‐1. (Pg. 146 of the pdf.)  Provides a framework for comparatively evaluating the costs to implement adaptive strategies on a life‐cycle basis. Using a case study example, the framework is applied on a programmatic level to inform prioritization and budgetary decision‐making processes.  “Education (Op7) is a critical element to mainstreaming a successful climate change adaptation program. By increasing awareness and informing employees of the climate change impacts and adaptation strategies, they will be able to assist and take responsibility in achieving strategy objectives. Because climate change adaptation strategies connect with different business functions, staff will have different educational needs.” (p. 69)  The report briefly outlines roles executives, planners, designers & engineers, emergency managers & responders, maintenance managers & staff, and asset managers & staff play in climate change adaptation. Activities such as simply putting this section of the report together have created discussions within the organization on the topic of climate change. o Staff general responsibilities are as follows:  “Executive managers—allocate resources and funding to adaptation efforts  Planners—inclusion of climate change in the planning phase  Designers and engineers—modifications to BFS and design approach  Emergency managers and responders—response to catastrophic storm event scenarios  Maintenance managers and staff—modifications to maintenance protocols  Asset management managers and staff—climate change considerations in the asset management program” (p. 69) o Under Outreach and Education, all departments will have assigned responsibility to implement climate change adaptation. o Under Land Use and Planning, the planning department will need to incur added responsibilities including the considerations of climate change in future planning and to coordinate with partners with other ongoing efforts which may impact the agency. Finally, the department will need to seek funding for such planning efforts which will take climate change into consideration. o Under Design and Construction, the Bart Facility Standards, which address environmental design and sustainability, architecture, civil, electrical, mechanical, electronics, and structural standards, will all need to be updated to take climate change into consideration.  However, at this time, BART is not under taking this effort and changes will be limited to the results of this study.  The changes in the study outline changes to station entrance design, track portal design, train control room design, and traction power substation design.  Any change to standards requires review by committee and further education on climate change and adaptation strategies may be required for such meetings and tasks. o Under Operations, the department responsible for emergency plans and response are required to revise plans with respect to climate change. One item to address is communication with flood control districts that may have additional information on historical and real‐time data and trends.  Additionally, the agency is to look into technological improvements such as early warning systems to support the operations

TCRP A-41: Literature Review A-59 branch.  o Under Maintenance, implementation of storm drain maintenance program is identified as well as maintenance programs related to equipment.  Finally,  maintenance and engineers alike will be required to update the criteria used to  evaluate projects so that it reflects climate change as a priority.   Additionally, the asset management team will be responsible for incorporation of climate change into the asset registry and coordinate activities with stakeholders and regional  entities on best practices for making such changes.  Chapter 6 dives heavily into asset  management and where adaptation can fit into the system at an enterprise level.   Opportunities at the enterprise level are identified in the below table which includes  status of efforts undertaken by BART. (p. 82)  Opportunities at the asset level are: (p. 83)  Captivating  Value  BART recognizes that there is no “one size fits all” solution to climate change adaptation. (p. 68)  As indicated in Element 2, vulnerability can vary for each asset depends on the location and the  type of the asset. In addition, some BART assets are more critical to BART operations than others.  For example, open spaces and parking lots are less critical than tracks and train control assets.  Non‐critical assets may be allowed temporary flooding at acceptable frequencies and may not  require climate change adaptation. Climate change adaptation will likely require the  implementation of an array of strategies dependent on the location and asset type.   Decision  Question  How to incorporate climate adaptation into decision‐making and what immediate actions can be  made now to begin addressing the identified adaptation strategies.  Decision Maker  Transit Agencies 

TCRP A-41: Literature Review A-60 Relevance    Provides insight on how the agency is beginning to incorporate climate adaptation into  standard business practices.   Outlines methods for assessing climate change risk and prioritization and analysis of  adaptation strategies.   Outlines a number of adaptation strategies, though specific to this study, may help build a  larger inventory of adaptation strategy options.  Status  “As an immediate step following this study, a funding plan should be devised so that a  comprehensive, system‐wide, vulnerability and risk review of BART operating systems and assets  can be performed. It is a value‐added approach by leveraging the findings from several regional  and federal climate change adaptation projects, by applying the methodologies developed  through this pilot, and by continuing the broad teamwork that came together during this pilot.”  (p. 101)  Critical  Assessment  This report provides a detailed example of applying a simple vulnerability assessment of  infrastructure and considerations for adaptation and where adaption fits into asset management.   Additional  Comments  In regards to the developed risk/vulnerability assessment methodology, something to think about  is the approach to defining probability in general and not just this report.  The risk assessment  approach to defining probability on varying time scales is likely common but it may be of interest  how these play out in planning. “Downpour” is broken into 5 categories from “Improbable” to  “Frequent”.    “Improbable” is defined as “Unlikely during the next 25 years”.  Contrarily, sea‐level  rise uses estimates for impacts at 2050 and 2100.  Is it appropriate for the risk scales to be  defined by the timeframe of the data is provided in?  How does one compare downpours being  improbable by 2038 with sea‐level rise being frequent by 2050?  In simply terms, 1 event is  improbable to occur in about 25 years while another event is will occur in about 35 years.  On the  probability scale, one is scored 1 while the other 5.  Is this appropriate for transit agency planning  or should the probability follow agency planning horizons?    There needs to be clear distinction between risk assessments and vulnerability assessments for  terminology purposes and how they are the same and different.  Essential   Vocabulary  N/A  Potential  Keywords  Climate Adaptation  Rail  Asset Management  Business Practice  Climate change  Adaptation  Rail transit  Flooding  Sea‐level rise  Precipitation  Risk assessment  Bay Area 

TCRP A-41: Literature Review A-61 Citation  Binder, L., Tohver, I., Snover, A., Shatzkin, A. Sound Transit Climate Risk Reduction Project, FTA  Report 0075,  September 2013    Website/Source   http://www.fta.dot.gov/documents/FTA_Report_No._0075.pdf  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Research document   Intended  Audience  Transit Agencies  Abstract  “The Climate Risk Reduction Project assessed how climate change may affect  the Central Puget  Sound  Regional  Transit  Authority’s  (Sound  Transit)  commuter  rail,  light  rail,  and  express  bus  services. The project  identified potential  climate  change  impacts on agency operations, assets,  and long‐term planning; [more than 70] options for strengthening the agency’s resilience to these  impacts;  and opportunities  for  integrating  climate  change  considerations  into  agency decision‐ making processes.” (p. viii) Assessment involved a survey to gauge staff’s initial understanding of  the  climate  change  impact  and  more  than  a  dozen  vulnerability  assessment  workshops  with  transit  staff.  Workshops  used  a  combination  of  presentations,  existing  asset  mapping  and  inventories,  and  structured workgroup activities  to  stimulate discussions about  climate  change  impacts and risks. A ranking of climate change impacts was developed using three levels: minor,  moderate or significant.   The  ranking was based mostly on how a climate change  impact could  affect  service  delivery.  Potential  significant  impacts  are  those  that  could  cause  frequent,  extended  or  permanent  service  cancellations,  require  expensive  infrastructure  repairs,  and/or  reduce customer confidence. “The project concluded that many climate change impacts will likely  be minor to moderate, although potentially significant  impacts are possible with higher rates of  sea‐level rise and mudslide activity.”  (p. viii)   Populations  Referenced  Transit agency technical staff and managers  Topics Covered   Phases in planning for climate change impacts o Preparation of technical materials o Vulnerability assessment, adaptation and integration workshops and meetings o Synthesis and assessments  Prioritization of climate change impacts o Potential (expected and possible) impact on service delivery o Geographic distribution o Potential cost (qualitative) of responding to the impact o Probability of climate change impact occurring  Prioritization of services (or stations) to be adapted o Type of climate change impacts potentially affecting the service o Range of potential issues o Geographic extent o Ease of adaptation  Adaptation to strengthen resilience o Adjustments to infrastructure

TCRP A-41: Literature Review A-62 o Adjustments to operations and  maintenance o Design changes o Decision support and capacity‐building activities  Integrating Adaptation into Agency Processes o Opportunity to consider climate adaptation in a large number of transit agency processes o Ongoing process Type of  Sponsoring  Agency or  Organization   Sponsoring agency is federal agency; Report is written by transit authority and an academic  research group.  Geographic  Distribution    Washington State’s central Puget Sound region  Large (3 million service area population) Type of Transit  Mode(s)   Rail, Light Rail, and Express Bus  Type of  Vulnerability  High heat days, Flooding, Other (extreme winter precipitation, drought)  Goals and  Motivations  The goal of the project were as follows:   “Identify climate change impacts on Sound Transit operations, assets, and long‐term planning    Identify options for strengthening the agency’s resilience to these impacts  Identify opportunities for integrating climate change considerations into agency decision‐ making processes  Create a process and a model for assessing and planning for climate change impacts that is transferable to transit agencies across the United States (FTA Climate Change Adaptation Pilot Program)  Provide a state‐to‐local testing ground for WSDOT’s pilot use of the Federal Highway Administration’s (FHWA) climate change vulnerability assessment methodology.” (p.1) The  motivation  for  this  Project  was  that  Sound  Transit  was  already  experiencing  service  disruptions and increased maintenance cost due to mudslides, flooding, poor drainage and storm  surge and  that research shows  that climate change could potentially have significant  impact on  the  region,  which  would  make  transit  problems  worse.  In  addition,  Sound  Transit  was  in  the  planning and design phases of various aspects of  its service expansion plan (ST2), which offered  the  opportunity  to  integrate  information  on  potential  climate  change  impacts  into  long‐term  planning and asset management decisions.   Context   Sound transit offers rail, light rail, and express bus. There are a few other agencies in the region providing bus service and there is ferry service.  Sound Transit is a young transit system that began between 1999 and 2009 so design is relatively recent. Tools   Report describes the framework for assessing vulnerabilities and prioritizing climate change  adaptation measures that they developed and used to develop a baseline scenario for Sound  Transit.    Noteworthy  Aspects  The service expansion plan offered a window of opportunity to start incorporating climate change  impacts.  Captivating  Value  Effective adaptation is an ongoing effort; there are opportunities for integrating climate  adaptation in a wide variety of agency processes.  Decision  Question  “Decisions about if, when, and where adaptation measures in design, construction or operations  standards may be warranted.” (p. 5) Opportunity to consider adaptation are present in many 

TCRP A-41: Literature Review A-63 agency processes (e.g. board and administrative policies, strategic plans, partner service  agreements, federal and state funding and grant agreements, environmental impact statements,  long‐range plan, system/corridor studies, value engineering and risk workshops for alignment,  standard operating procedures, procurement plans, asset management systems, real estate  acquisitions, property value assessments, disaster preparedness.)  Decision Maker  Transit agency  Relevance   Report describes methodology of 18 month project that focused on reducing climate change risk  by considering its impacts a wide variety of processes.  Status  Research report is completed. Authors indicate that they will develop a formal set of  recommendations that will outline the steps that Sound Transit should take to address the  report’s findings.   Critical  Assessment  Comprehensive well‐documented report of 18 month study. However, document does not  include survey instrument or check list or other materials that would help replicate the  methodology by other agencies.   Additional  Comments  N/A  Essential   Vocabulary   Resilience: “A capability to anticipate, prepare for, respond to and recover from significant multi‐hazard threats with minimum damage to social well‐being, the economy and the environment” (FTA definition) (p. 2)  Adaptation: “Adjustment in natural or human systems to a new or changing environment that exploits beneficial opportunities or moderates negative effects.” (p. 2)  Vulnerability: “The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes.” (p. 2) Potential  Keywords  Climate Adaptation  Vulnerability Assessment  Workshops  Prioritization  Decision‐Making Processes 

TCRP A-41: Literature Review A-64 Citation  Amekudzi, A., Rose, D., Springstead, D., Batac, T. and Crane, M. 2013. Transit climate Change  Adaptation Assessment/Asset management Pilot for the Metropolitan Atlanta Rapid Transit  Authority. Federal Transit Administration, Washington, D.C.  Website/Source   http://www.fta.dot.gov/documents/FTA_Report_No._0076.pdf   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  Document Type  Research Report   Intended  Audience  Transit agencies, transportation practitioners and researchers  Abstract  “This report applies transit asset management principles to climate change adaptation using the  Federal Transit Administration’s “Asset Management Guide.” Climate change adaptation  generally involves understanding potential impacts of the changing climate on an agency’s  services and assets and taking necessary actions to avoid, reduce, or manage anticipated impacts.  For transit agencies, this involves identifying vulnerable assets and their associated risks and  prioritizing improvements to develop more resilient systems while achieving other system  performance objectives. Principles from the “Asset Management Guide” are applied to  demonstrate how a public transit agency can adapt to extreme weather events or changes in  climate using the Metropolitan Atlanta Regional Transit Authority (MARTA) as a case study.” (p. 1) “The report outlines procedures for identifying the climate hazards and vulnerable assets and  their associated risks in a transit agency’s service area. It identifies opportunities to integrate  climate adaptation strategies in a transit asset management system at the enterprise and asset  levels and then link the resulting information to appropriate business units to manage risks while  undertaking continual improvement and updates in the lifecycle management of assets.   Addressing climate change through asset management programs can help agencies achieve  system resilience simultaneously with other system performance objectives such as safety,  mobility and the state of good repair.” (p. 1)  Populations  Referenced  The report will be a valuable resource for transit agencies and be of interest to regional, state,  and federal agencies that oversee, plan, or finance public transportation.  Topics Covered  The premise of the report is that “addressing climate change through asset management  programs can help agencies achieve system resilience simultaneously with other system  performance objectives such as safety, mobility and the state of good repair.” (p. 1)   To support  that premise the report provides:   a framework for addressing climate adaptation in transit asset management based on FTA’s “Asset Management Guide”    a process for identifying climate hazards in the Metro Atlanta area and the MARTA service area   an overview of MARTA’s Asset Management System that outlines opportunities to incorporate climate change adaptation considerations in the system    a discussion on the integration of climate adaptation into MARTA’s decision‐making processes   possible adaptation strategies based on the climate hazards identified for the transit

TCRP A-41: Literature Review A-65 system service area  Type of  Sponsoring  Agency or  Organization   This research report was sponsored by the Federal Transit Administration   Geographic  Distribution   National  Type of Transit  Mode(s)  “This report makes a case for using transit asset management programs to adapt to climate  change, discusses key elements of the process using Metro Atlanta’s public transit system as a  recurring example and presents guidelines and a case study for using risk‐based transit asset  management procedures to adapt to climate change, using FTA’s “Asset Management Guide.””  (p. 9)  MARTA operates a fleet of buses, on‐demand services and rail service.  Type of  Vulnerability  “Identifying present and future climate hazards in the transit agency’s service area is an  important starting point for adapting to climate change” (p. 27) and the report provides a process  to identify climate hazards.    Discussions with MARTA regarding weather‐related incidents that affected operations in the past  revealed that the two climate stressors affecting MARTA’s operations and assets the most, are  higher extreme temperatures for longer periods of time and higher‐intensity precipitation in  storm events.  Goals and  Motivations  “With the growing intensity and frequency of extreme weather events, such as hurricanes Irene  and Sandy, several public transportation agencies have begun to adapt their systems to make  them more resilient to the changing climate conditions.” (p. 1) This report makes a case for  “addressing climate change through asset management programs to help agencies achieve  system resilience simultaneously with other system performance objectives such as safety,  mobility and the state of good repair” (p. 1) using Metro Atlanta’s public transit system as an  example.  Context  “A transit agency adapting to climate change refers to adjusting its assets, systems and  management practices in a way that moderates potential damage, copes with consequences, or  finds opportunities to build system resiliency and maintain a minimum level of service.” (p. 11)  From the viewpoint of the Metropolitan Atlanta Rapid Transit Authority (MARTA), “climate  change adaptation involves understanding the potential impacts of the changing climate on the  agency’s services and assets and taking the necessary actions to avoid, reduce, or manage  anticipated impacts.” (p. 1)  “The implications of the climate change assessment is that those assets most vulnerable to  flooding (at lower elevations near streams or creeks, or that depend on well‐maintained drainage  systems to remove runoff from the facility) and those whose performance can be affected by  longer exposures to higher temperatures, as well as a wider variation in temperatures (signal and  communications equipment and perhaps tracks and pavements), are those in most need of  monitoring. This monitoring could entail actual condition monitoring of individual assets, or  keeping track of maintenance records associated with certain types of assets (and introducing  different design or maintenance strategies once a certain threshold level is reached).” (p. 35)  “The MARTA rail system began operating in 1979.  The agency operates 132 bus routes, covering  approximately 1,000 route miles with 621 buses. … The agency also operates approximately 175  paratransit vehicles and 450 non‐revenue vehicles.  MARTA’s system includes 4 lines serving 38  stations.  It also includes approximately 48 miles of track and operates with 318 rail vehicles.  Annual ridership is more than 105 million trips (approximately half a million per day).” (p. 36)  Tools   The report did not specifically introduce any tools or metrics.  

TCRP A-41: Literature Review A-66 Noteworthy  Aspects  The report contained several noteworthy items including:   “Lifecycle management plans are developed at the design/procurement stage to ensure that the asset is designed and/or manufactured in a way that considers its performance  requirements (including resilience to extreme weather and climate risks) and total cost of  ownership. The contents of a lifecycle management plan may vary based on the asset  management maturity level of an asset class.” (p. 20)   “There is a broad range of preventive and reactive maintenance strategies addressing climate change adaptation for specific asset classes and climate stressors (e.g., drought, extreme heat, flooding, increased precipitation, more frequent high winds, etc.). At a more detailed level, these adaptation strategies are often linked to specific business unit operations, asset classes, specific climate risks, and other details such as when and where the strategy will be implemented, and how much the strategy will cost.” (p. 25) The report recommends prioritizing these strategies to identify short‐term versus longer‐term strategies.  A number of examples of preventive and reactive maintenance measures to reduce the impacts and consequences of climate change implemented by MARTA include: o “Preventive Maintenance Strategies  Explore integration of real‐time video feeds from agency vehicles into operations decisions  Incorporate technology, such as sensors, that can detect changes in pressure and temperatures in materials to alert when damage thresholds are near approaching  Review and augment cross‐training in emergency response and maintenance tasks  Review and update culvert maintenance, storm water management, and tree‐trimming programs  Design for larger drainage capacity  Maintain and update automated system for detecting traffic signals affected by power outages, and monitor the battery back‐ups at the intersections that would require traffic officers in case of outages  Adjust design parameters based on detailed asset‐specific vulnerability analyses for the most critical assets and layout the possible effects on the transportation system  Establish a bus rerouting procedure for flood‐prone areas and a communication plan for affected customers  Establish modified railcar and bus washing plans for varying degrees of drought  Update design standard for new railcars to have heat resistant materials where feasible, increased ventilation for electrical components, and more durable air conditioning systems  Identify potential landscape designs (natural or man‐made) that can reduce or better withstand greater wind velocities o Reactive Maintenance Strategies  Revisit the design or location of an asset to be replaced or rehabilitated if damaged due to climate change or extreme weather events  Provide real‐time detour route information to drivers during incidents, and explore establishing a 511 travel service (especially for trucks and

TCRP A-41: Literature Review A-67 buses)   Build protective features such as levees, retaining walls, etc.  Review and update truck and bus parking accommodations during snowstorms and other extreme conditions and convey information to drivers  Programmatic correction of failures that are being responded to but whose root cause is climate change‐related.” (p.24) Captivating  Value  “In essence, climate change adaptation can be viewed as building resilience to climate change.”  (p. 7)  Decision  Question  Transit agency leader must decide how to “expend limited funds on climate‐related issues in the  face of other critical priorities such as SGR backlogs and operational safety. This is where an asset  management platform can be a very useful and effective approach to providing appropriate  decision support in the face of multiple decision‐making objectives.” (p. 8)  The research document was written to make a case to transit agencies for using transit asset  management programs to adapt to climate change using Metro Atlanta’s public transit system as  a recurring example.  Decision Maker  Transit agency leadership  Relevance  This report provides a case study using the examples from MARTA on the process to use a transit  asset management program in adapt to climate change and improve the resiliency of the transit  system.  The report characterizes an asset management focused adaptation process by “three  broad steps: 1) define scope of climate adaptation, 2) assess and address climate risk, and 3)  integrate into decision making.” (p. 11)  “Defining the scope of climate adaptation involves two key actions:  1. Identification of current and future climate risks 2. Identification of critical transit assets based on number of people affected, mobility, or access needs in the event of an emergency or extreme weather event” (p. 12) “Assessing climate risk also required two key actions:  1. Assessing the vulnerability (sensitivity or level of exposure) of the asset to a particular climate stressor  2. Conducting a risk assessment, evaluating the severity or consequences of a climate impact in combination with the likelihood that the asset will experience that particular  impact “ (p. 13)  “Integrating the adaptation plan and risk management strategies occurs at two levels:  1. At the enterprise level, where the adaptation plan is the overall strategy providing direction for cross‐asset business decisions related to processes and capital expenditures  2. At the asset class level, where the adaptation plan provided direction to managers regarding capital improvements that strengthen and protect and/or enhance  redundancy” (p. 15)  The report stated that preventive and reactive maintenance plans and strategies play a key role in  adapting a transit asset or system to changes in the climate and noted that “MARTA expects  maintaining SGR to be a continuing challenge in the future. This implies that climate change  considerations will likely occur within the context of SGR decision making, making the agency’s  asset management program an appropriate platform that can be used to adapt MARTA’s services  and system to anticipated climate changes. Therefore, the report concluded that asset  management platforms will be highly useful decision‐making systems in which to address climate 

TCRP A-41: Literature Review A-68 change issues by balancing SGR needs with the risks of climate hazards and the need for system  resiliency.” (p.23)  Status  Research project is complete   Critical  Assessment  The report provides value by demonstrating how the principles of transit asset management can  be successfully incorporated within the organizational framework and operational practices of a  transit provider use MARTA as the case study.  The report contains meaningful examples from  MARTA to illustrate the steps an agency undertakes towards implementing an adaptation plan to  make their system more resilient.  The report also provides MARTA’s initial adaptation strategies  mapped to the appropriate business units within the agency demonstrating the extent to which  resiliency can be infused throughout an agency’s culture.  Additional  Comments  N/A  Essential   Vocabulary  The report contained the following definitions and terms:   “Resilience represents the ability of a system to react to stresses that challenge its performance. A resilient system is able to adjust its functioning prior to, during, or  following changes and disturbances, so that it can continue to perform as required after a  disruption or a major mishap, and in the presence of continuous stresses. Resilient  systems have the ability to recover from sudden and severe stresses in a dynamic  environment.” (p. 10)   “Criticality relates to how critical an asset is to the fulfillment of the agency’s objectives.” (p. 10)  “Vulnerability Assessment refers to the process of identifying, quantifying, and prioritizing the vulnerabilities in a system. “ (p. 9)  “Risk Assessment refers to an integrated evaluation of the likelihood and consequences of climate change impacts on the performance of the transit asset or system.” (p. 9)  “Climate Change Adaptation or Climate Risk Mitigation Strategies are actions taken to adapt to expected changes in the climate. In essence, climate change adaptation can be viewed as building resilience to climate change” (p. 9)  “Asset Management is a strategic and systematic process of operating, maintaining, upgrading, and expanding physical assets effectively throughout their lifecycle.” (p. 3) Potential  Keywords  Climate change  Adaptation  Asset management  Risk management  Vulnerability assessment  

TCRP A-41: Literature Review A-69 Citation  Report:  U.S. Department of Transportation. 2014. “U.S. Department of Transportation Climate  Adaptation Plan 2014: Ensuring Transportation Infrastructure and System Resilience.” U.S  Department of Transportation, Washington, D.C.  Website/Source   http://www.dot.gov/sites/dot.gov/files/docs/2014‐%20DOT‐Climate‐Adaptation‐Plan.pdf   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  X  Document Type  Plan  Intended  Audience  USDOT stakeholders  Abstract  In a follow‐up to the US DOT Policy Statement on addressing climate change, the US Department  of Transportation has developed a Climate Adaption Plan for the federal agency which applies to  its modal units within.  The plan provides an outline of steps the agency is undertaking to address climate change as well  as the roles the modal units play under the plan pursuant to Executive Orders 13514 and 13653.  Populations  Referenced  USDOT and its modal administrations.  These include:  • Federal Aviation Administration (FAA) • Federal Highway Administration (FHWA) • Federal Transit Administration (FTA) • Federal Railroad Administration (FRA) • Federal Motor Carrier Safety Administration (FMCSA) • Maritime Administration (MARAD) • Pipeline and Hazardous Materials Safety Administration (PHMSA)  Saint Lawrence Seaway Development Corporation (SLSDC) Topics Covered   Identification & Assessment of Climate Change Impacts;  Programs, Policies an Plans put in place;  Agency response to climate change risk;  The process of how US DOT will incorporate climate change into its own agency including the use of various tools;  And highlights of accomplishments by modal administrations under DOT including FTA;  Potential impacts of climate change. Type of  Sponsoring  Agency or  Organization   Federal, U.S Department of Transportation  Geographic  Distribution   National applications under USDOT.  Type of Transit  Mode(s)  Those agencies which report to, are funded by, and depend upon the modal units within USDOT.  Type of  Vulnerability  Heat‐high Days, Extreme Cold, Severe Storm Events, Coastal Storms, Flooding/Sea‐level Rise,  Winter Storm (Heavy Snow/Ice), Earthquakes, Wildfires, Other   Goals and  This plan is an updated version which addresses a requirement to develop and implement a 

TCRP A-41: Literature Review A-70 Motivations  climate adaption plan per executive order.  Although it fulfills a requirement, then plan works to  address safety, state of good repair and sustainability issues.  Context  The U.S. DOT is required to develop and implement a climate adaptation plan.  This document is  updated form a 2012 version which reviews the past successes of the department modal unit  successes and activities.  Tools   Identification of Common Support Services – Weather (CSS‐Wx) – However, this is aimed at  aviation.  Identifies that FHWA has multiple tools available an under development to assist agencies in  identifying climate change vulnerabilities:   “Climate Change and Extreme Weather Vulnerability Assessment Framework (Complete FY 2013)–This is a comprehensive resource and guidebook for transportation agencies  conducting vulnerability assessments and it includes discussion, resources, and in‐ practice examples of the major tasks involved. The Framework is an update of a draft  version that FHWA released in FY 2010.” (p. 20)   “Assessment of the Body of Knowledge on Incorporating Climate Change Adaptation Measures into Transportation Projects (Complete FY 2014) ‐This report highlights  adaptation actions that transportation agencies are pursuing and articulates a growing  set of best practices for implementing adaptation. The report also discusses strategies,  examples, and best practices for evaluating the costs and benefits of adaptation. The  purpose of the report is to provide transportation practitioners with a guide to the  current "state of practice" in this field.”(p. 20)   “Transportation Climate Change Sensitivity Matrix (Expected FY 2014) ‐ This Excel file documents how different climate stressors affect several types of transportation  infrastructure. The tool contains a macro‐based user interface that allows users to  generate reports related to specific stressor‐asset combinations per their needs.” (p. 20)   “CMIP Climate Data Processing Tool (Expected FY 2014) –This tool processes raw climate data, which users download from a third party site. Outputs are projected temperature  and precipitation changes in a local area. The tool provides a relatively quick and easy  way for users to determine the potential magnitude of certain changes in their area”(p.  20)   “Vulnerability Assessment Scoring Tool (VAST) (Expected FY 2014) – This Excel tool allows users to design and structure a score‐based vulnerability assessment. Once complete,  users will have a relative vulnerability score for each asset evaluated.”(p. 20)   “Webinar Series on Planning for Climate Change Adaptation –(Complete FY 2013) FHWA held a four‐session webinar series aimed at state and local governments, which included  sessions on:  o Determining assets to study and climate information; o System‐level vulnerability assessments; o Applying vulnerability assessment results into decision making; and o Lessons learned from Superstorm Sandy. FHWA is planning an additional webinar series in FY 2014 focused on roll out of the Department’s Gulf Coast Phase 2 study. Recordings of the FY 2013 webinars are available on FHWA’s website. “(p. 20) Noteworthy  Aspects   The department has instructed modal administrators to have grantees consider climate change into asset management.  Stakeholders are further encouraged to incorporate adaptation and mitigation efforts into land‐use planning, capital projects, retrofitting existing infrastructure, relocation of infrastructure, system redundancies and increased ability to absorb impacts to quickly recover form an incident.  The document breaks down FY12‐13 accomplishments through categorically organizing

TCRP A-41: Literature Review A-71 work by planning, outreach, tools, funding, etc. for each modal administration under US  DOT agencies may take advantage of.  Seems to be useful base of knowledge and  resources to agencies.   Document also outlines notable impacts form climate change to transportation infrastructure.  Captivating  Value  The document breaks down FY12‐13 accomplishments through categorically organizing work by  planning, outreach, tools, funding, etc. for each modal administration under US DOT agencies  may take advantage of.  These are listed under tools and may provide a series of useful methods  for incorporation of climate change into business practices.  Decision  Question  N/A  Decision Maker  N/A  Relevance    A number of tools, research and other efforts are documented as available for use.  An assessment framework and incorporation of climate change into policy decisions and funding elements is addressed.  Funding for the years reported on focused on resilience following post‐disaster from Superstorm Sandy. This funding is limited in geographic scope.  DOT is working to incorporate d climate variability and impacts into asset management and planning.  An outline is provided on potential climate impacts on transportation infrastructure. Those are briefly summarized as: o Flooding of tunnels; o Shortened infrastructure life; o Degradation of infrastructure such as pavement and asphalt; o Increased maintenance and construction costs; o Decrease driver performance; o Increased risk to vehicle accidents; o System delays and downtime increases; o Drainage infrastructure impacts. These impacts are results from temperature changes, increased precipitation events, storms and  storm surges, and general increase in weather events which may impact risks.  This is highlighted  by vehicle accidents and driver performance as operated vehicles in adverse weather is likely to  increase risk of an accident.  Status  N/A  Critical  Assessment  A great summary of what the various modal administrations are working on but limited as far as  guidance for how to incorporate climate change into agency governance and funding for such  activities.  Additional  Comments  N/A  Essential   Vocabulary  Tools, Climate Change, Executive Order, Climate Adaptation Plan, Modal, Transit, Impacts  Potential  Keywords  Transportation  Climate Change Adaptation  Policy  Tools  Impacts  Resilience  DOT 

TCRP A-41: Literature Review A-72 Outreach  Education  Planning  Asset Management 

TCRP A-41: Literature Review A-73 Citation  Meyer, M., M. Flood, J. Keller, J. Lennon, G. McVoy, C. Dorney, K. Leonard, R. Hyman and J. Smith. 2014. NCHRP Report 750: Strategic Issues Facing Transportation, Volume 2: Climate Change, Extreme Weather Events, and the Highway System: Practitioner’s Guide and Research Report. Transportation Research Board of the National Academies, Washington, D.C. Website/Source   http://www.trb.org/Main/Blurbs/169781.aspx   Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  Document Type  Research Report  Intended  Audience  Transportation professionals, state DOTs  Abstract  “The objectives of this project were to (1) synthesize the current state of worldwide knowledge  regarding the probable range of impacts of climate change on highway systems by region of the  United States for the period 2030–2050; (2) recommend institutional arrangements, tools,  approaches, and strategies that state DOTs can use to adapt infrastructure and operations to  these impacts and lessen their effects; and (3) identify future research and activities needed to  close gaps in current knowledge and implement effective adaptive management.” (Foreword)  “The project examined adaptation to climate change on three scales of application—road  segment, corridor, and network—including the types of impacts likely to be faced in coming years  and the different design, operations, and maintenance strategies that can be considered. The  report discusses adaptation planning in the United States and in other countries, with special  consideration for the approaches taken in developing adaptation strategies. An eight step  diagnostic framework for adaptation assessment is presented.” (Foreword)  The document consists of two major project deliverables:  • A Practitioner’s Guide to conducting adaptation planning from the present through 2050 • A research report that summarizes the research results supporting the development of the Practitioner’s Guide and provides recommendations for future research. Populations  Referenced  The report focuses on the effect of climate change on highway systems and the impact those  effects have on highway users.   Topics Covered  “The guide was developed to help transportation professionals understand the changes in climate  that may affect the future (and, in the case of extreme weather events, the current)  transportation system and how assets and activities can be adapted to provide transportation  system resiliency in the face of changing environmental conditions.” (p. 3)  It accomplishes this by  providing:   a framework for undertaking an adaptation assessment  a tutorial on the basics of climate change modeling  information on the likely impact of different climate stressors on the highway system and the types of strategies that can be considered as part of an agency’s adaptation efforts  approaches and methods for considering the risk to infrastructure of changing climatic conditions and extreme weather events  discussion regarding institutionalizing adaptation into the project development process,

TCRP A-41: Literature Review A-74 construction, operations and maintenance   consideration of incorporating adaptation in asset management systems Type of  Sponsoring  Agency or  Organization   The research was sponsored by the American Association of State Highway and Transportation  Officials in cooperation with the Federal Highway Administration.   Geographic  Distribution   National and International (Adapt Planning)  Type of Transit  Mode(s)  The guide identifies likely impacts on the highway system and is therefore most applicable to  those modes that utilize the highway, such as: Bus Rapid Transit, Bus/Commuter Bus and Demand  Response.  However, the principles contained in the guide are applicable to all modes of transit.  Type of  Vulnerability  The guide does address a specific vulnerability but presents different strategies that can be used  to minimize or avoid climate change‐related disruptions.  As used in the document “an asset is  vulnerable to climatic conditions if conditions such as intense precipitation and extreme  temperatures and their aftermath (e.g., a flood exceeding certain stages and consecutive days of  higher than 100F temperatures) result in asset failure or sufficient damage to reduce asset  functionality.” (p. 5)  Goals and  Motivations  “Transportation officials and practitioners need a sound foundation on which to plan for the  near‐term impacts of climate change.” (Foreword)  “From a resiliency/adaptation planning perspective, knowing whether the location and/or design  of the facility presents a high level of risk to disruption due to future climate change is an  important part of the design decision. For existing infrastructure, identifying high‐risk assets or  locations provides decision makers with some sense of whether additional funds should be spent  to lower future climate change–related risk when reconstruction or rehabilitation occurs. This  could include conducting an engineering assessment of critical assets that might be vulnerable to  climate stressors and in essence, “piggybacks” adaptation strategies on top of other program  functions (e.g., maintenance, rehabilitation, reconstruction, etc.).” (p. 59)  Context  The guide was developed in the context of helping “transportation professionals understand the  changes in climate that may affect the future (and, in the case of extreme weather events, the  current) transportation system.” (p. 3) Its focus is on providing guidance on incorporating  adaptations into operations and maintenance practices, construction activities, and the planning  and (re)design of new and existing infrastructure.    For the purposes of the guide, “adaptation consists of actions to reduce the vulnerability of  natural and human systems or to increase system resiliency in light of expected climate change or  extreme weather events.” (p. 3) The implication is that “the result of adaptive action either  decreases a system’s vulnerability to changed conditions or increases its resilience to negative  impacts.” (p. 11)  Although the framework focuses on the technical aspects of adaptation planning, a challenge to  implementation was noted in the document. “Many of the state officials participating in the  testing of the framework noted that, while there are several reports on how to do adaptation  planning technically; there is a dearth of guidance and materials for helping DOTs to implement  adaptations in the context of shrinking budgets and public skepticism.” (p. 25)  Tools   A diagnostic framework for undertaking an adaptation assessment is presented. “This framework  includes the steps that should be taken if transportation officials want to know what climate  stresses the transportation system might face in the future; how vulnerable the system will likely  be to these stresses; and what strategies can be considered to avoid, minimize or mitigate  potential consequences.” (p. 3) 

TCRP A-41: Literature Review A-75 “The main tools used to simulate global climate and the effects of increased levels of greenhouse  gases (GHGs) are called “general circulation models” (GCMs). The guide provides advice on how  to use climate models and model output.” (p. 5)  Noteworthy  Aspects  Several noteworthy points are contained in the document, including the following:   Recognition that “one of the most valuable roles an asset management system could have for an agency is its continuous monitoring of asset performance and  condition.”  (p. 9)   “Transportation agencies … should link adaptation planning efforts to existing agency processes and procedures.” (p. 22) The guide describes how adaptation considerations  can be incorporated into a typical transportation planning process.    A discussion of the relationship between vulnerability and risk noted that: o “An asset is vulnerable to climatic conditions if these conditions (such as intense precipitation and extreme temperatures) and their aftermath (e.g., a flood exceeding certain stages and consecutive days of higher than 100°F temperatures) result in asset failure or sufficient damage to reduce asset functionality. The vulnerability can thus be measured as the probability that the asset will fail given climate stressors (e.g., “there is a 90 percent chance the bridge in its current condition will fail with a 500‐year flood”). Vulnerability primarily focuses on the condition of the asset.” (p. 56) o Climate‐related risk relates to not only the failure of the asset but also to the consequences or magnitudes of costs associated with that failure. “In this case, a consequence might be the direct replacement costs of the asset, direct and indirect costs to asset users and, even more broadly, the economic costs to society given the disruption to transportation  caused by failure of the asset or even temporary loss of the asset’s services (e.g., a road is unusable when it is under water).” (p. 187) o Putting it all together, the complete risk equation is thus: ”Risk Probability of Climate Event Occurrence x Probability of Asset Failure x Consequence or Costs” (p. 5) Captivating  Value  ”Adaptation consists of actions to reduce the vulnerability of natural and human systems or to  increase system resiliency in light of expected climate change or extreme weather events.” (p. 11)   “Ultimately, a wide range of activities can be considered “adaptation,” from relatively simple  operations and maintenance actions, such as ensuring culverts are clear of debris, to complex and  costly planning and engineering actions, like re‐locating a road alignment away from a flood‐ prone area.” (p. 11)  Decision  Question  Transportation professionals are being asked to utilize the practitioner’s guide to adapt assets  and activities to provide transportation system resiliency in the face of changing environmental  conditions.  Decision Maker  Transportation professionals and state DOT policy makers.  Relevance   “The result of adaptive action either decreases a transportation system’s vulnerability to changed  conditions or increases its resilience to negative impacts.” (p. 11)  The guide points out that “the types of actions that can be taken to reduce a transportation  system’s vulnerability to changing environmental conditions could include; avoiding,  withstanding, and/or taking advantage of climate variability and impacts.” (p. 11)   “Thus, for roads and other transportation facilities, avoiding areas projected to have a higher risk of potentially significant climate impacts should be an important factor in  planning decisions.” (p. 11)   “If such locations cannot be avoided, steps need to be taken to ensure that the transportation infrastructure can withstand the projected changes in environmental  conditions. For example, the potential for increased flooding might be a reason to  increase bridge elevations beyond what historic data might suggest.” (p. 11) 

TCRP A-41: Literature Review A-76 The adaptive strategies noted in the guide to either reduce the impact or reduce the  consequences of climate impacts are analogous to strategies suggested to improve resiliency.   Additionally, the approach taken to provide transportation practitioners a sound foundation on  which to plan for and implement adaptive strategies is readily transferable to efforts to improve  the resiliency of transit agencies.  The document contains a “diagnostic framework that provides highway agency staff with a  general step‐by‐step approach for assessing climate change impacts and deciding on a course of  action.” (p. 14)  Those steps include:   Establishing the overall focus and approach of the adaptation study  Determining the likely future climatic and weather conditions  Determining the vulnerability of targeted assets to selected climatic stresses  Determining the level of risk associated with the possibility of an asset failing, once the assets that are most vulnerable are known  Identifying, assessing, and costing alternative strategies for protecting the high‐risk assets With respect to barriers to implementing effective resiliency methods, it is reasonable to  anticipate similar challenges to resiliency will be experienced as those noted for adaptation.   Apparently, “many of the state officials participating in the testing of the framework noted, that  while there are several reports on how to do adaptation planning technically, there is a dearth of  guidance and materials for helping DOTs to implement adaptations in the context of shrinking  budgets and public skepticism.” (p. 25)  Status  This research project is complete.   Critical  Assessment  The document is comprehensive in identifying the likely impacts of climate change on planning,  design, construction, operations and maintenance of infrastructure assets in the United States.  It  also fully develops an eight step framework to incorporate adaptation into the context of  transportation agencies activities.    Because the primary focus of the report is the effect of climate change and extreme weather  events on the highway system discussion regarding transit systems is limited.  Although, the  guiding principles and framework provided are transferable to the transit industry, impacts to the  unique assets of transit systems are not addressed by the report.  Additional  Comments  N/A  Essential   Vocabulary  The document contains the following terms and definitions:   “Adaptation consists of actions to reduce the vulnerability of natural and human systems or to increase system resiliency in light of expected climate change or extreme weather  events.”(p.3)   “An asset is vulnerable to climatic conditions if conditions such as intense precipitation and extreme temperatures and their aftermath (e.g., a flood exceeding certain stages and  consecutive days of higher than 100°F temperatures) result in asset failure or sufficient  damage to reduce asset functionality.” (p. 5)   “Climate‐related risk relates to not only the failure of that asset but also the consequences or magnitudes of costs associated with that failure.” (p. 5) 

TCRP A-41: Literature Review A-77  “Climate sensitivity is defined as the eventual (equilibrium) warming that would occur if the amount of CO2 in the atmosphere were doubled.” (p. 30)  “A climate is defined as an average of 20 to 30 years of observations.” (p. 40)  “Transportation Asset Management is a strategic and systematic process of operating, maintaining, upgrading, and expanding physical assets effectively throughout their life cycle.  It focuses on business and engineering practices for resource allocation and utilization, with the objective of better decision making based upon quality information and well‐defined objectives.” (p. 91) Potential  Keywords  Climate Change  Extreme weather  Adaptation  Vulnerability  Risk 

TCRP A-41: Literature Review A-78 Citation  European Environment Agency, 2014.  Adaptation of transport to climate change in Europe  Challenges and options across transport modes and stakeholders,  EEA Report No 8/2014.  Website/Source   ISBN 978‐92‐9213‐500‐3  ISSN 1977‐8449  doi:10.2800/56672  Focus Area(s)  Policy and  Administrative  Procedures  Systems  Planning  Finance and  Capital  Programming;  Capital Project  Planning,  Infrastructure  Design, and  Construction  Asset  Management  Operations  and  Maintenance  Emergency  Preparedness,  Response, and  Recovery  X  X  X  X  X  Document Type  Research document.  Intended  Audience  This document addresses governments, primarily.  This report aims to provide information of  relevance to most of these stakeholders:   European institutions ‐ how adaptation is making progress throughout Europe, and how it is being integrated within transport policy and practices.   National and sub‐national governments ‐ information on actions taken in some countries, which could be replicated by others.   Practitioners and researchers ‐ how adaptation needs are being identified and assessed in different contexts, and how actions are prioritized, as guidance for revising or expanding  their professional or research activities in this field.  Abstract  As an initial step towards the necessary widespread mainstreaming of climate change adaptation  into transport planning and decision making, this report aims to shed light on initial adaptation  practices in the transport sector across Europe while providing a perspective on the emerging  challenges and opportunities.   The purpose of the report is to stimulate discussion.   The factual  information collected is based on data available in the Climate‐ADAPT (1) information platform, a  literature review, case studies provided by many stakeholders, and a questionnaire on transport  and adaptation addressed to EEA member countries in 2013. A total of 23 country  representatives answered this questionnaire and provided information on the variety of national  approaches to adaptation in transport.  Populations  Referenced  Stakeholders such as infrastructure developers and managers, service providers — within a mode  or integrating various transport modes — and manufacturers of vehicles, trains, airplanes, ships  and equipment.  Topics Covered  This report explores current climate change adaptation practices concerning transport across  European countries and provides:  • a summary of the challenges • an overview on the state of adaptation action concerning the transport sector and system • a review of a number of inspiring initiatives in different countries • conclusions on a potential way forward Type of  Sponsoring  Agency or  Organization   Over the last 15 years, the EEA has published annually the Transport and Environmental  Reporting Mechanism (TERM) report looking into specific topics of sustainable transport, such as  air quality, noise or urban transport, and tracked progress towards the EU achievement of  environmental targets in this sector.    Geographic  Distribution   All of Europe.  Type of Transit  Commuter Rail, Heavy Rail, Light Rail/Bus Rapid Transit, Bus/Commuter Bus, Demand Response, 

TCRP A-41: Literature Review A-79 Mode(s)  Ferryboat, Other  Type of  Vulnerability   Rising temperatures and extended heatwave periods increase the problems of rail buckling, pavement deterioration and thermal comfort for passengers in vehicles.  Weather extremes generating floods or landslides can lead to short‐term delays and interruptions but also long‐term interruptions and detouring needs in the event of destroyed infrastructure. Sea‐level rise can threaten harbors and other transport infrastructure and services in coastal areas.  Air transport can be challenged by changing wind patterns, flooding of airport infrastructure, and other weather events. In addition, climate impacts that trigger changes in the organization of society and economy, like different tourist destinations or agricultural productions, can impact upon transport demand. Goals and  Motivations  Identification of challenges to adaptation planning and implementation as well as best practice.  Context   Highly variable context of existing transit and resilience planning across western and eastern European countries.  Multiple modes – all.  National rail, extensive interdependencies.  Highly interconnected, networked.  High levels of expertise.  Different languages and systems for estimating weather, issues, etc.  Sophisticated asset management and operations and maintenance, but still exploring and growing in Adaptation planning.  Limited resilience planning. Beginning to examine cascading effects. A number of EU processes will encourage the emergence of this more resilient and sustainable  transport system. These processes include the Europe 2020 program and the Commission's White  Paper Roadmap to a Single European Transport Area — Towards a competitive and resource  efficient transport system (EC, 2011b).  Tools    xGeo Cooperation between transport stakeholders, hydrological and meteorological experts in Norway The xGeo tool is an online tool for risk assessment and preparedness, and for monitoring and forecasting of floods, landslides and avalanches. It was developed by the National Public Roads Administration (NPRA) and the Norwegian Water Resources and Energy Directorate (NVE) in collaboration with the National Rail Administration (JBV) and meteorological services. The tool was developed under the auspices of the Climate and Transport project (2007–2010) led by the NPRA.  The idea for combining different data sources such as hydro‐meteorological data and maps of the road network in a single tool was developed after a major storm near the city of Trondheim in 2006 resulted in significant disruptions to transport infrastructure and operations.  The mapping tool combines historical, present and forecast weather data with ground and road data, threshold values for natural hazards and data on road network events such as floods, landslides and avalanches. Use of historical time series data on weather conditions and events such as floods and landslides affecting the road and rail networks supports better use of forecast data through improved identification of conditions that increase the risk of damages and operational disruptions.  The tool is primarily used for forecasting avalanche and landslide risks in the national alert system for landslides and avalanches. Alerts are issued by the NVE forecasting center and communicated to road and railway authorities as well as a range of other authorities and media outlets. Overall, cooperation of the involved actors was and will be key for the successful development of the tool and its adoption for practical use in the national alert system for landslides and avalanches. Source: Barfod et al., 2013; Devoli et al., 2013; xGeo, 2014.

TCRP A-41: Literature Review A-80 Examples of national information platforms and their support of adaptation efforts  Many countries have set up a climate change adaptation platform providing information  — mainly on their national adaptation plans — to all agents interested in the subject,  covering the transport sector, for example:   France: WIKLIMAT WIKLIMAT is a platform for sharing knowledge between actors involved in climate change. It was created in July 2013 within the framework of the National Climate Change Adaptation Plan, and allows stakeholders to contribute on French adaptation initiatives and achievements. WIKLIMAT covers three main objectives: o To create a platform for gathering and sharing knowledge on adaptation and facilitating widespread dissemination of new ideas and innovative concepts. o To make updated experiences available to training actors. o To involve different contributors: public administrations at national and regional levels, municipalities and their technical services, consulting firms and companies, and nongovernmental organizations. WIKLIMAT includes one category on transport infrastructure. Documents and case studies  are available for six sub‐categories: ship design and boats, transport economics and  logistics, management of navigation‐related infrastructures, infrastructure and  environment, and safety and e‐navigation.  http://wiklimat.developpement‐ durable.gouv.fr/index.php/Cat%C3%A9gorie:Infrastructures_et_transport   Spain: The AdapteCCa Platform The AdapteCCa Platform exchanges information on impacts, vulnerability and adaptation to climate change, and facilitates the coordination and transfer of adaptation information, knowledge and experiences among the different Spanish administrations and the scientific community, planners and managers, and other public and private agents, allowing multi‐directional communication between them. The Platform includes transport among its main areas, and different transport‐related reports and results are already available.   http://www.adaptecca.es/contenido/transporte  Poland: The KLIMADA adaptation platform The project 'Development and implementation of a strategic adaptation plan for the sectors and areas vulnerable to climate change', with the acronym KLIMADA, provides a website, which has become the main information platform of adaptation in Poland. Aside from information related to the Polish adaptation policy and local adaptation initiatives, it considers adaptation in different sectors, including transport. http://klimada.mos.gov.pl/en/2013/04/15/transport Noteworthy  Aspects   Delivering tomorrow: Logistics 2050 — A scenario study examines different scenarios (DHL, 2012) and illustrates a much broader and more forward‐looking view as well as the analysis undertaken by Rossello (2011), exploring the potential climate change impact on air transport patterns. They demonstrate the need to consider not only changes in climate but also in society and the economy, as they generate different transport patterns and demand. Transport is a derived demand, and it could therefore be worth exploring more generally whether resilience can be attained in a more efficient way by revising some economic and social practices, which are at the origin of that demand, rather than acting exclusively on the transport system as such. This requires a broader perspective and out‐of‐the‐box thinking well beyond single modes or even beyond the transport system.  Assessing adaptation options may also require the subsequent revision of standard project assessment practices, such as cost‐benefit or financial analyses, in order to integrate the new risks identified in the evaluation of future investment alternatives by planners and decision makers (Cochran, 2009).  An area of common interest for planning and management/regulatory experts, on the one side, and operations and maintenance

TCRP A-41: Literature Review A-81 experts, on the other side, emerges here, as vulnerability assessments would require  input from both sides.   Considering transport under a broader spatial perspective provides several benefits. Firstly, transport stakeholders may find it easier to develop and implement their adaptation actions if they can link to integrated adaptation strategies at the appropriate spatial level. Secondly, integrating transport within regional or city adaptation strategies also facilitates a discussion about how changes in climate can impact population flows and transport behavior. This broader framework may offer a better basis for a revision of current transport plans based on particular regional or local characteristics (including their socioeconomic developments).  Useful knowledge can also be found in related policy areas, such as disaster‑risk prevention or river‐basin and flood‑risk management.  Mobilizing the cooperation of different stakeholders could help to overcome the fragmentation that exists in what is — ironically — a highly connected sector. An ambitious approach by the public authorities seems necessary to overcome these barriers. This approach has already been adopted in some countries, where the transport sector has been invited to participate in the formulation of national and regional adaptation initiatives. Captivating  Value  The transport system is of trans‐boundary character and highly interconnected inside its modes  and across modes; hence, disturbances in one part of the network might have a domino effect in  other parts too. As such, effects usually extend beyond the transport system by hindering the  ability to deliver reliable services, and jeopardizing the free movement of people and goods.  Depending on the specific case, these indirect damage costs can be many times higher than direct  costs to the transport sector itself.  Decision  Question  Investments in effective transport systems are usually costly and with long return rates.   Considering future climate trends now helps in keeping the costs for adaptation bearable and  avoiding lock‐ins into an unsustainable development path of the transport system. Many tools  developed for natural disaster risk management or contingency plans can easily be made relevant  for climate change adaptation too. Improving cooperation among different stakeholders and  encouraging more out‐of‐the‐box thinking would enable better benefiting from such synergies  and low‑cost options.   Adaptation to climate change is a new policy area; the effectiveness of  current steps should be evaluated in the future.  Decision Maker  Political and management decisions at the state, local, and national levels and national  governments have a prominent role in enabling this integrated approach and cooperation by  organizing exchanges of experience, facilitating the generation of tailored knowledge and tools,  and stimulating solution‐finding across the board.    Relevance   The prevailing approach among most stakeholders in the transport sector is still incremental  improvements of transport infrastructure, operations and services based on past experience, to  deliver valuable solutions that also work under the new conditions being created by climate  change. However, given the magnitude of expected change, these approaches alone are likely to  be insufficient. The anticipated impacts suggest long‐term visions as well as thinking about  solutions outside traditional paths in areas like spatial planning, relocations of infrastructure or  regional flood risk management, and the exploration of transitional changes by organizing future  accessibility differently. The report argues that prevalent transport paradigms such as efficiency  need to be reconsidered together with alternative paradigms such as flexibility using, for  example, multimodal concepts instead of uni‐modal solutions, technology and redundancy.  Transport sector and adaptation challenges:    Observed and projected climate change — such as increases in temperature, sea level, changes in rainfall, and the increase in frequency and intensity of some extreme weather events.  Reducing GHG emissions (mitigation) and adaptation to unavoidable impacts are

TCRP A-41: Literature Review A-82 complementary actions both needed to cope with climate change.   Transport requires many costly and long‐lasting investments in infrastructure, airplanes, trains, ships and other transport equipment. This calls for anticipatory planning approaches that consider future climate change but also other socioeconomic changes.  Transport, is a very complex system with responsibilities distributed across many different stakeholders. This situation makes integrated adaptation approaches challenging to achieve and requires appropriate governance approaches. More interesting to me than these points was the observation that transport demand is expected  to change as a short‐term reaction to delays and interruptions, but in addition long‐term changes  are also expected. This includes, for example, changes in tourism destinations and seasonal  tourism caused by increasing temperature.  Most stakeholders may only have a partial  perspective of the system they manage or use. They might also have different interests in  transport (Table 1.1). It is expected that, without overall strategies, the main stakeholders will  react autonomously to the challenges of climate change. Given the broad challenges of climate  change and the strong interconnectivity inside the transport sector and with other sectors and  areas of society, such a fragmented approach seems unlikely to be efficient. It challenges the  necessary consistency and coherence across the sector and system to address long‐term  challenges.  The responsibility for adaptation action in the transport sector is often not clear. The  providers of equipment and infrastructure will expect new standards and guidelines from  regulators. Policymakers and regulators will look at researchers for collecting evidence and  providing options. Implemented measures are often spontaneous and relatively isolated, often as  a reaction to a weather‐related disaster.  Together with a relatively low awareness of the  adaptation needs for the transport system, the lack of tailored knowledge, like adequate climate  reference thresholds for the assessment of the vulnerability of transport infrastructure and  services, capacities and resources, poses barriers to adapting the transport system.  Options and Opportunities:   Most practical examples of adaptation action in the transport sector and system that can be found across Europe focus on early steps like collecting the knowledge, and tailoring climate change impact information and assessments.  Tools and measures developed to manage risks and disaster from natural hazards, including early warning systems and contingency plans, can be useful for climate change adaptation too; however, there are only few examples of implementation in the transport sector/system.  Most adaptation action focuses on climate‐proofing transport infrastructures; relatively little attention is given so far to transport operations.  Only a few examples are found that search for innovative solutions across different transport modes, transport as part of broader adaptation plans, or outside traditional paths — e.g. by considering relocation, building redundancies, or changing services to accommodate current and future accessibility demands.  Effective cooperation between stakeholders inside and outside the transport sector can help to make use of the knowledge gained in other sectors and to find tailored, innovative and effective solutions to adapt transport.  Integrating adaptation requirements into the design of new and upgraded infrastructure comes at lower cost than adding them at a later stage. Highlights from Ways Forward   Good adaptation action requires information and knowledge.  Currently, greater attention is given to adapting transport infrastructure (rail tracks, ports, roads, etc.) than to adapting transport services (operation of infrastructure and equipment, use of staff, timetables and routing, contingency plans, communication of service options, etc.). More use could be made of this underused potential of transport

TCRP A-41: Literature Review A-83 service operators.   Adaptation measures taken in the transport sector are monitored and analyzed. This will enable stakeholders to improve the effectiveness and efficiency of future policy, and will help to stimulate a transparent public debate on what additional actions are needed. Status  Recent – last half of 2014.  Critical  Assessment  Results obtained reflect the perceptions of a limited number of respondents.  Transport  adaptation but not transit specific.  Additional  Comments  The European Commission proposes a Roadmap for moving to a competitive low‐carbon  economy in 2050 that foresees a reduction of at least 80 % of GHGs by 2050 compared to 1990.   Their thinking is that  transforming transport behavior and transport demand could achieve not  only lower emissions but, at the same time, offer opportunities either to build a more resilient  transport system and services under climate change or to develop more flexible social and  economic practices that could better accommodate eventual disruptions in the transport system.   Some countries (e.g., France and Germany) have therefore adopted a top‐down approach to  transport adaptation in addition to bottom‐up approaches by single stakeholders as a means to  create the necessary conditions to facilitate the action of all these stakeholders in the future.   Action is mainly in the hands of the national government and its associated public sector, by  means of expanding the knowledge base and undertaking systematic assessment of current  vulnerabilities in the system.   Essential   Vocabulary   Adaptation:  Adaptation consists of actions responding to current and future climate change impacts and vulnerabilities (as well as to the climate variability that occurs in the absence of climate change) within the context of ongoing and expected societal change. It means not only protecting against negative impacts of climate change, but also building resilience and taking advantage of any benefits it may bring (EEA, 2013).  Resilience: Simply put, resilience refers to a system's capacity to remain operational under different external pressures. In IPPC, 2014, resilience is defined as 'the capacity of social, economic and environmental systems to cope with a hazardous event or trend or disturbance, responding or reorganizing in ways that maintain their essential function, identity and structure, while also maintaining the capacity for adaptation, learning and transformation.' In the context of this report, resilience is used in reference to the transport system. However, as transport is an important pillar to maintain services and quality of life in society, this refers indirectly to a resilient society.  Although the resilience concept refers to all type of possible pressures — economic, social and environmental — this report focusses on a resilient transport system adapting to the impacts of climate change.  Transport system versus transport sector:  This report uses both terms. The distinction between them is not totally fixed. The transport system is a set of interacting components include all the transport modes, the physical elements, and the movements that contribute to the services provided by transport to the socioeconomic activity (Frybourg, 1991). With transport sector the report instead refers to transport as a part of the economy, including its governance structure and regulating authorities.  Accessibility:  This refers to the ability to reach desired goods, services, activities and destinations (collectively called opportunities). Access is the ultimate goal of most transport options, except a small portion of travel in which driving itself is the purpose (Litman, 2003).  Policy stages of adaptation:  This report understands here the following stages: agenda‐ setting, policy formulation, decision to adopt policies, implementing measures foreseen in the policies and monitoring of the policy/action (EEA, 2014).  Further definitions of terms related to adaptation can be found in the glossary of the EEA Report National adaptation policy processes in European countries — 2014 (EEA, 2014b).

Pot Key ential  words  Adaptatio Transpor climate c Europe  n  tation  hange  A-84 TCRP A-41: Literature Review

TCRP A-41: Literature Review A-85 Citation  Filosa, Gina and Alexandra Oster. 2015.  International Practices on Climate Adaptation in  Transportation: Findings from a Virtual Review.  Volpe, Washington D.C.  Website/Source   http://www.fhwa.dot.gov/environment/climate_change/adaptation/publications_and_tools/inte rnational_practices/fhwahep15011.pdf; NSN 7540‐01‐280‐5500  Focus Area(s)  Policy and  A