National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

Summary

Since the end of the Second World War, the United States has developed the world’s preeminent system for biomedical1 research, one that has given rise to revolutionary medical advances as well as a dynamic and innovative business sector generating high-quality jobs and powering economic output and exports for the U.S. economy. Although the United States remains the global leader in science and technology, measured in terms of the funding level, number of scientists supported, discoveries made, awards received, industries supported, and impacts on the quality of health, the U.S. global share of science and technology activities is waning as that of other nations, especially China, continues to rise (National Science Board, 2018). Indeed, there is a growing concern that the biomedical research enterprise, for all of its many strengths, is beset by several core challenges that undercut its vitality, promise, and productivity and that could diminish its critical role in the nation’s health and innovation in the biomedical industry.

Among the most salient of these challenges is the gulf between the burgeoning number of scientists qualified to participate in this system as academic researchers and the elusive opportunities to establish long-term research careers in academia. One measure of initial career success is obtaining a tenure-track research position. In 1973, 55 percent of Ph.D.’s in the biological sciences received a tenure-track academic research position within 6 years, compared to 18 percent in 2009 (Cyranoski et al., 2011). Meanwhile, a decline in research funding in real dollars, combined with broader demographic trends, has reduced success rates for grant applications, and the average age of first receipt of a major

___________________

1 In this report, “biomedical” refers to the full range of biological, biomedical, behavioral, and health sciences supported by the National Institutes of Health.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

National Institutes of Health (NIH) independent grant, the R01, has risen from 36 years in 1980 to 43 years in 2016.2 Those investigators who do secure an R01 or equivalent NIH grant face increasing pressure to secure additional sources of research funding to prevent the closure of their laboratories if their grant is not renewed. Additionally, women and underrepresented minorities face persistent and endemic obstacles to success in securing tenure-track faculty positions and advancing through the professoriate.

Another set of issues affecting the future of the biomedical workforce concerns the nature of the training young scientists receive, and the mismatch between that training and their career prospects. The focus of young scientists on securing an academic research faculty position can lead them to overlook opportunities as independent researchers in other areas, such as in start-up and established industries, foundations, and government. Significantly, these opportunities may require training experiences different from those associated with traditional academic careers. Yet too many postdoctoral researchers pursue training experiences with the objective of later securing an academic position, rather than enhancing their ability to compete for the range of fulfilling, independent careers that exist outside of academia, where the majority will be employed.

At the same time, there is concern that too many newly awarded biomedical Ph.D., M.D., and M.D.-Ph.D. holders spend prolonged periods in postdoctoral positions3 currently characterized by low salaries, inadequate training and mentorship, and few opportunities for independent research or professional advancement. Although some individuals take postdoctoral positions because they are unsure of which career path to pursue or because they believe postdoctoral experience is necessary to obtain a position in sectors outside of academia, many linger as postdoctoral researchers as they wait for academic research positions to open. In the near future, it is likely that the number of Ph.D.-level researchers entering the system will exceed the number of faculty research positions available to them. Although young scientists certainly have the right to compete for the positions they desire, they must do so with a realistic understanding of their career prospects and, as much as possible, be encouraged to explore other career options sooner rather than spending time in long or multiple postdoctoral positions.

These obstacles to success have created a research career path that is increasingly unattractive, in terms of pay, duration, culture, risk-taking, and future job

___________________

2 See https://grants.nih.gov/grants/new_investigators/Age_Degree-First-Time-117-16_RFM_lls_25march2016_DR-Approved.xlsx (accessed February 17, 2018).

3 Several definitions of a postdoctoral researcher are listed in Chapter 2, but this report uses the NIH Office of Intramural Training and Education’s definition: “A postdoc is an individual with a doctoral degree (PhD, MD, DDS, or the equivalent) who is engaged in a temporary period of mentored research and/or scholarly training for the purpose of acquiring the professional skills needed to pursue a career path of his or her choosing.” See https://www.training.nih.gov/resources/faqs/postdoc_irp (accessed February 2, 2018).

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

prospects, as well as an environment in which scientific misconduct appears to be increasing (Edwards and Roy, 2017). As the National Academies Bridges to Independence report stated in 2005, these trends have “led to a fear that promising prospective scientists will choose not to pursue a career in academic biomedical research and, instead, opt for career paths that provide a greater chance for independence” (National Research Council, 2005, p. 1). The concern is perhaps even greater today, threatening an enterprise that in 2014 supported a total of 854,000 jobs across the country, accounted for more than $550 billion in direct economic output and nearly $660 billion in indirect economic output, and generated more than $67 billion in tax revenues for state and federal governments (TEConomy Partners, 2016).

The patchwork of measures to address the challenges facing young scientists that has emerged over the years has allowed the U.S. biomedical enterprise to continue to make significant scientific and medical advances. These measures, however, have not resolved the structural vulnerabilities in the system, and in some cases come at a great opportunity cost for young scientists. As a result, the career path to becoming an independent researcher is increasingly seen as perilous. These unresolved issues could diminish the nation’s ability to recruit the best minds from all sectors of the U.S. population to careers in biomedical research and raise concerns about a system that may favor increasingly conservative research proposals over high-risk, innovative ideas.

The committee is not the first group to address these concerns and to suggest solutions in a report such as this. Before developing a new set of recommendations, the committee investigated the conclusions from these earlier reports (see Appendix B) to understand why the problems have not only persisted but also grown in intensity in the face of decades of thoughtful recommendations and growing stakeholder attention.

The committee identified several impediments to progress over the years, many of them likely working in concert. One impediment has been a constraint on resources. NIH funding has declined 22 percent in real dollars since 2003.4 While other sources, including federal government agencies such as the National Science Foundation, U.S. Department of Agriculture, and Department of Defense, as well as external organizations such as philanthropic foundations, also provide support for biomedical researchers, NIH is the predominant funder. This reduction in available funds for research has constrained NIH’s efforts to address the increasing barriers to biomedical research. Although Congress increased funding for NIH by $2 billion in each of fiscal years 2016 and 2017,5 this only returned NIH funding to the level in real dollars that existed immediately prior

___________________

4 See http://faseb.org/Science-Policy--Advocacy-and-Communications/Federal-Funding-Data/NIHResearch-Funding-Trends.aspx (accessed February 2, 2018).

5 See http://faseb.org/Science-Policy--Advocacy-and-Communications/Federal-Funding-Data/NIHResearch-Funding-Trends.aspx (accessed February 2, 2018).

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

to sequestration, and the majority of the increases are dedicated to specific initiatives rather than NIH’s broad research portfolio.

Second, there has been an absence of shared responsibility for the biomedical research system (Daniels, 2015). Many stakeholders tend to hold the federal government responsible for this system, placing blame for failures at the feet of NIH, the principal funder of biomedical research. Doing so, however, obscures the important role that other organizations, particularly universities, must play in developing and implementing solutions. The committee’s review of the implementation of past recommendations revealed that NIH has been more responsive than other stakeholders—namely universities and research institutions—in adopting reforms. It has been too easy for stakeholders other than NIH to ignore or pay superficial attention to the recommendations repeatedly made in periodic reports. In addition, without a mechanism for shared oversight of the system, institutions acting unilaterally will fail to make progress to solve what are often shared systemic problems.

Third, a lack of comprehensive and easily available data about the biomedical research system itself has impaired progress on addressing these problems. The opacity of the system has prevented students and trainees from making informed decisions about their training and career options as well as hindered institutions’ and policymakers’ ability to decide with confidence how to proceed with policy and funding reforms to ensure the system’s vibrancy and responsiveness.

Finally, the sands of the biomedical research enterprise are rapidly shifting. Since the release of earlier reports and their calls for reform, the funding landscape, demographic trends, and scientific priorities in science and industry have changed. The nature of research itself has evolved: team science, with its attendant premium on collaboration in multi-investigator and multidisciplinary projects, is ascendant; the growing use of pre-prints enables quick disclosure of research results; experimentation with hybrid business models blend traditional research institutes and for-profit companies; and the emergence of data sciences and online connectivity accelerates the pace at which experiments can be conducted.

The committee took its mandate seriously. Congress, NIH, scientific societies, and U.S. research institutions are acutely aware of the frailties of the current biomedical research environment and have put forth many recommendations, so there is a heightened sense of urgency to address the problems.

To meet its mandate, the committee developed recommendations that attend to the research ecosystem not only as it exists now, but also as it is likely to evolve during the next 10 years. This report discusses the current biomedical research ecosystem and its challenges, informed by new insights into the workforce from NIH and independent scholars, and proposes several substantive and structural reforms for stakeholders across the research enterprise. These reforms chart a path to a biomedical research enterprise that is competitive, rigorous, fair, and dynamic, and can attract the best minds from across the country. In such an enterprise

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
  • All relevant institutions assume a role that reflects their interests and stake in the system, and mechanisms for shared oversight enable sustained and collaborative reform.
  • Trainees and newly independent investigators receive accurate and timely information about their training and career prospects through mentorship and career counseling that aligns with their aspirations.
  • Early-stage investigators are presented with stable and attractive career options, and robust roles exist for scientists inside and outside of the traditional academic faculty position.
  • Policy experimentation and assessment are core concepts of the system, leading to the development and implementation of programs and policies that respond to investigators’ needs at all stages of their careers.

To that end, the committee offers the following recommendations, grouped by report chapter:

Chapter 3: Transparency, Shared Responsibility, and Sustainability

Recommendation 3.1

Congress should establish a Biomedical Research Enterprise Council (BREC) to address ongoing challenges confronting the Next Generation of Biomedical Researchers. The BREC would exercise ongoing collective guardianship of the biomedical enterprise and function as a forum for sustained coordination, consultation, problem-solving, and assessment of progress toward implementation of the recommendations put forth in this report.

Recommendation 3.2

All stakeholders in the biomedical research enterprise—universities, research institutions, government laboratories, and biomedical industries—should promote, document, and disseminate their existing and planned efforts to reduce the barriers to recruiting and retaining diverse researchers at all stages of career development.

Recommendation 3.3

Biomedical research institutions should collect, analyze, and disseminate comprehensive data on outcomes, demographics, and career aspirations of biomedical pre- and postdoctoral researchers using common standards and definitions as developed by the institutions in concert with the National Institutes of Health (NIH). To incentivize compliance, NIH should make collection and publication of these data a requirement for additional NIH funding. This requirement should be phased-in over a 5-year period.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

Recommendation 3.4

The National Science Foundation (NSF) should develop and implement a plan to improve sector-wide data collection and analysis in a manner that is easily accessible by policymakers and integrates data from numerous other sources. NSF should expeditiously link the Survey of Doctorate Recipients and the Survey of Earned Doctorates to U.S. Census data, and those linked data, under strict confidentiality protocols, should be made available for qualified researchers to use at Federal Statistical Research Data Centers to better understand the biomedical workforce.

Recommendation 3.5

Congress should consider increasing the National Institutes of Health (NIH) budget specifically to support implementation of the recommendations in this report and should provide sustained support for NIH’s recently announced Next Generation Researchers Initiative.

Chapter 4: Transitioning to Independence

Recommendation 4.1

Research institutions, principal investigators (PIs), and federal funding agencies should each play their part to support transitions from Ph.D.’s, M.D.’s, and M.D.Ph.D.’s to research independence by providing every postdoctoral researcher, regardless of the support mechanism or training location, with a high-quality training experience that prepares them for success in their chosen career. To achieve this overarching objective:

  • The National Institutes of Health (NIH) should require the inclusion of an institutional training and mentoring plan as a component of the “Resources and Environment” reported on research and training grant applications. In addition, NIH should require PIs to provide a postdoctoral research training and mentoring plan in all grant proposals, as well as updates on those plans in annual and interim research performance progress reports for funded proposals.
  • Research institutions should provide evidence to NIH of formal training of faculty mentors of postdoctoral trainees.
  • Research institutions should introduce a mechanism to facilitate career guidance counseling for all postdoctoral researchers. This mechanism would preferably begin in the first year but must occur no later than the third year of postdoctoral training. Such guidance should assess the postdoctoral researchers’ progress and evaluate alignment of their career aspirations with career prospects.
  • NIH should increase the Ruth L. Kirschstein National Research Service Award (NRSA) starting salary for new postdoctoral researchers to $52,700 (in 2018 dollars), with annual adjustments for inflation and for
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
  • cost-of-living increases tied to the Personal Consumption Expenditure Index. Research institutions should adjust their base postdoctoral salary annually to match the corresponding NRSA rate, with adjustments based on local cost-of-living, and they should harmonize benefits for all postdoctoral scholars regardless of support mechanism.
  • Research institutions should levy a fee of at least $1,000 per year, to be paid by the host investigator, for each postdoctoral fellow on all biomedical research grants. Funds from the fee would be used to support effective training and professional development programs for postdoctoral researchers, as well as effective training of mentors. Research institutions should report publicly on the use of the money generated by this fee.
  • All research institutions should, following best practices, identify or provide an institutional ombudsperson to resolve fairly and expeditiously conflicts and concerns between PIs and postdoctoral researchers related to training experiences.

Recommendation 4.2

The National Institutes of Health (NIH) should expand existing awards or create new competitive awards to support postdoctoral researchers’ advancement of their own independent research and to support professional development toward an independent research career. Both domestic and foreign postdoctoral researchers should be eligible for these awards. Over the next 5 years, NIH should incrementally and steadily increase by 5-fold the number of individual research fellowship awards (F-type) and career development (K-type) awards for postdoctoral researchers. The award recipients’ home institutions should provide them with benefits commensurate to those provided to postdoctoral researchers supported on NIH research project grants and appropriate to their level of experience. The increase should not come at the expense of institutional training grants. The indirect cost recovery rate earned by K-type and training grant awards should be increased to 16 percent.

Recommendation 4.3

The National Institutes of Health (NIH) should phase in a cap (3 years suggested) on salary support for all postdoctoral researchers funded by NIH research project grants (RPGs) based on the following considerations:

  • The cap should not apply to time spent on fellowships or career development awards;
  • The phase-in should occur only after NIH undertakes a robust pilot study (or studies) of sufficient size and duration to assess the feasibility of this policy and provide opportunities to revise it;
  • The pilot study (or studies) should be coupled to action on recommendation 4.2, which calls for an increase in individual F and K awards that are not restricted to U.S. citizens and permanent residents;
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
  • The pilot study (or studies) should assess potential benefits as well as potential deleterious consequences of such a cap for postdoctoral researchers, with special emphasis on women, underrepresented racial and ethnic minorities, and individuals with disabilities; early-stage independent investigators; and research creativity;
  • A short extension of RPG support can be requested, with sufficient justification, to offset time lost because of unplanned circumstances (e.g., illness, lab disaster) or parental responsibilities; and
  • Postdoctoral researchers should be allowed sufficient time between their last fellowship decision and the termination of their funding on RPGs to enable smooth career transitions.

Recommendation 4.4

Postdoctoral training should be limited to 5 years, after which time any postdoctoral researcher continuing in the same laboratory should be shifted to employment as a staff scientist with increased salary and benefits as appropriate for a permanent staff member.

Recommendation 4.5

Congress and the National Institutes of Health (NIH) should create and expand existing entrepreneurial and private-sector opportunities to attract and support the next generation of biomedical and behavioral researchers.

  • Congress should revise the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) program to enable NIH to create a novel ecosystem that fosters entrepreneurship for next generation biomedical scientists, facilitates women- and minority-owned entrepreneurship, and supports fulfillment of NIH’s mission across the private sector.
  • Congress should extend/establish an employment tax credit to research and development (R&D) firms for hiring recently minted Ph.D.’s, M.D.’s, and M.D.-Ph.D.’s. and make the credit higher for small- to medium-sized R&D firms and firms that recruit into R&D activity for the first time.

Chapter 5: Building a Better Ecosystem for Independence

Recommendation 5.1

The National Institutes of Health (NIH) should invest in strengthening the research funding landscape for the next generation of investigators.

  • To promote innovative research with high potential for groundbreaking discoveries, NIH should expand the number of NIH Director’s New Innovator Awards (DP2) and similar programs funded by individual NIH Institutes and Centers.
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
  • NIH should ensure that the duration of all R01 research grants supporting early-stage investigators (ESIs) is no less than 5 years to enable the establishment of resilient independent research programs. NIH Institutes and Centers should monitor the effect of this change on the availability of funds for other research project grants and should experiment with further extensions of the duration of R01 awards for ESIs.
  • To avoid dis-incentivizing research collaboration, those ESIs who participate in multi-principal investigator (PI) submissions prior to receiving their own R01 grants should retain their ESI status unless serving as a co-PI on a funded multi-PI award provides them with R01-equivalent funds for their own research.
  • NIH should expand the Pathways to Independence (K99/R00) award, with a priority on fostering independence through career development, including the development of an innovative and independent research project orginally conceived of and executed by the applicant, rather than additional or new training.

Recommendation 5.2

The National Institutes of Health (NIH) should continue to improve the peer review process to optimize the evaluation of applications submitted by early-stage and early experienced investigators in the Next Generation Researchers Initiative. This action would especially benefit investigators from underrepresented groups. NIH should revise the biosketch requirement to focus peer review on recent contributions and accomplishments and should continue to test effective practices to reduce the effects of implicit bias on the review process and to increase the diversity of reviewers.

Recommendation 5.3

Research institutions and the National Institutes of Health should develop mechanisms to increase the number of individuals in staff scientist positions to provide more stable, non-faculty research opportunities for the next generation of researchers. Research institutions should experiment with providing career tracks with clearly defined review and promotion processes, as well as opportunities for professional development. Individuals in a staff scientist track should receive a salary and benefits commensurate with their experience and responsibilities.

Recommendation 5.4

The National Institutes of Health (NIH), research institutions, and principal investigators should share responsibility for increasing the diversity of and promoting the inclusion of early-career researchers.

  • To promote diversity and inclusion at the junior faculty level, NIH should require an institutional diversity and inclusion plan as a compo
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
  • nent of the institutional resources reported on research grants supporting trainees.
  • To promote diversity and inclusion of research trainees, principal investigators should provide a diversity and inclusion plan in their grant proposals and should provide updates in progress reports if funded.

Recommendation 5.5

The National Institutes of Health should allocate funds from its Next Generation Researchers Initiative to expand the number of Research Supplements to Promote Diversity in Health-Related Research (PA-16-288). These should be awarded to underrepresented minority (URM) early-stage investigators and URM investigators who have not been awarded a research project grant and seek to collaborate with funded investigators on new but related research projects. Proposals must clearly detail how the collaboration will result in a grant proposal by the URM investigator. To best support this career stage, awards should be enhanced with funds for supplies, equipment, professional development, and mentoring. The eligibility criteria for these diversity supplements should reflect only the URM populations specified by the National Science Foundation for the biomedical research enterprise.

Recommendation 5.6

The National Institutes of Health (NIH) should make the Loan Repayment Programs available to all individuals pursuing biomedical physician-scientist researcher careers, regardless of their research area or clinical specialty. NIH should increase the monetary value of loan repayment to reflect the debt burden of current medical trainees. NIH should also continue implementation of the recommendations laid out in the 2014 NIH Physician-Scientist Workforce Working Group Report. NIH should test new strategies and expand effective approaches to increase the pool of early-stage physician-scientists.

Chapter 6: Experimentation and Innovation

Recommendation 6.1

Congress and the National Institutes of Health should promote innovative pilot projects on the part of research institutions and other stakeholders that seek to improve and accelerate transitions into independent careers. A Next Generation Researcher Innovation Fund should be created to support these experimental projects.

Recommendation 6.2

The National Institutes of Health should enhance the use of its Institutes and Centers as vehicles to pilot new mechanisms designed to support the independence of early-career researchers and thereby strengthen its capacity for innovation more

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

broadly. The Biomedical Research Enterprise Council proposed in recommendation 3.1 should monitor and evaluate those efforts.

Many of these recommendations will require new policies or funding mechanisms, and others encompass structural norms that reflect an effort to shift to a new paradigm, one premised on multi-stakeholder involvement, transparency, multiple pathways for research success, and a tradition of evidence-based experimentation and innovation. In this manner, the committee seeks to offer recommendations for reform and for the conditions necessary for their adoption, assessment, and ongoing adaptation and responsiveness, with the goal of creating a biomedical research enterprise that is truly equipped to promote the independence, creativity, and innovation of our scientists, for the benefit not only of the next generation of researchers and the generations to follow, but also the health and economic strength of the nation.

REFERENCES

Cyranoski, D., N. Gilbert, H. Ledford, A. Nayar, and M. Yahia. 2011. Education: The PhD factory. Nature 472(7343):276-279.

Daniels, R. 2015. A generation at risk: Young investigators and the future of the biomedical workforce. Proceedings of the National Academy of Sciences of the United States of America 112(2): 313-318.

Edwards, M. A., and S. Roy. 2017. Academic research in the 21st century: Maintaining scientific integrity in a climate of perverse incentives and hypercompetition. Environmental Engineering Science 34(1):51-61.

National Research Council. 2005. Bridges to independence: Fostering the independence of new investigators in biomedical research. Washington, DC: The National Academies Press.

National Science Board. 2018. Science and engineering indicators, 2018. Alexandria, VA: National Science Foundation.

TEConomy Partners. 2016. The economic impact of the U.S. biopharmaceutical industry. Washington, DC: Pharmaceutical Research and Manufacturers of America.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×

This page intentionally left blank.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 1
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 2
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 3
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 4
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 5
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 6
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 7
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 8
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 9
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 10
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 11
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through. Washington, DC: The National Academies Press. doi: 10.17226/25008.
×
Page 12
Next: 1 Introduction and Overview »
The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through Get This Book
×
Buy Paperback | $50.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Since the end of the Second World War, the United States has developed the world’s preeminent system for biomedical research, one that has given rise to revolutionary medical advances as well as a dynamic and innovative business sector generating high-quality jobs and powering economic output and exports for the U.S. economy. However, there is a growing concern that the biomedical research enterprise is beset by several core challenges that undercut its vitality, promise, and productivity and that could diminish its critical role in the nation’s health and innovation in the biomedical industry.

Among the most salient of these challenges is the gulf between the burgeoning number of scientists qualified to participate in this system as academic researchers and the elusive opportunities to establish long-term research careers in academia. The patchwork of measures to address the challenges facing young scientists that has emerged over the years has allowed the U.S. biomedical enterprise to continue to make significant scientific and medical advances. These measures, however, have not resolved the structural vulnerabilities in the system, and in some cases come at a great opportunity cost for young scientists. These unresolved issues could diminish the nation’s ability to recruit the best minds from all sectors of the U.S. population to careers in biomedical research and raise concerns about a system that may favor increasingly conservative research proposals over high-risk, innovative ideas.

The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through evaluates the factors that influence transitions into independent research careers in the biomedical and behavioral sciences and offers recommendations to improve those transitions. These recommendations chart a path to a biomedical research enterprise that is competitive, rigorous, fair, dynamic, and can attract the best minds from across the country.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!