National Academies Press: OpenBook

High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations (2018)

Chapter: 4 Safety Culture and Human Systems Integration

« Previous: 3 Options for Improving Bolting Reliability
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 76
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 77
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 78
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 79
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 80
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 81
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 82
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 83
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 84
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 85
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 86
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 87
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 88
Suggested Citation:"4 Safety Culture and Human Systems Integration." National Academies of Sciences, Engineering, and Medicine. 2018. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations. Washington, DC: The National Academies Press. doi: 10.17226/25032.
×
Page 89

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

4 Safety Culture and Human Systems Integration HUMAN SYSTEMS INTEGRATION AND SAFETY CULTURE Human-Systems Integration (HSI) is a framework in which human capabili- ties and limitations across various dimensions are considered in the context of a dynamic system of people, technology, environment, tasks, and other systems with the goal of achieving system resilience and adaptation, approaching joint optimization.1,2 HSI considers human factors at the levels of the individual, team and organization. Safety culture exists at the organizational level and is the cumulative values and attitudes of all of those in the organization. The organization reinforces specific values and attitudes through behaviors such as work rules, processes, management practices, supervision rewards, and communication. HSI takes into account vari- ous dimensions of the human system that include manpower, personnel, training, safety, human factors, survivability, and habitability. Thus, the HSI framework in- cludes considerations of safety and at the organizational level, produces the safety culture. HSI, when done properly, can lead to an improved safety culture, but has the additional benefits of improving worker productivity and job satisfaction. This is critical because often organizations treat safety considerations as a cost of doing 1    ational N Research Council, Human-System Integration in the System Development Process: A New Look (R.W. Pew and A.S. Mavor, eds.), The National Academies Press, Washington, D.C., 2007. 2    .A. Boehm-Davis, F.T. Durso, and J.D. Lee, APA Handbook of Human Systems Integration, D American Psychological Association, Washington, D.C., 2015. 76

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 77 business; however, by doing good HSI, an organization can achieve a safer organi- zational culture and a more effective and satisfied workforce. HUMAN SYSTEMS INTEGRATION AND FASTENERS Human capabilities and limitations need to be considered in the context of the complex landscape of subsea fasteners and their employment. Humans impact and are impacted by all aspects of the system. For instance, the human who is executing the torqueing process can directly impact the integrity of the subsea installation. In addition, the size, strength, position and material composition of a fastener or stud affects the required torqueing process. Different coatings and lubricants also change the torque specified, and they do affect the ultimate fastener preload, which is in turn related to stress and the operating environment. In addition, there are also organizational impacts on torqueing stemming from the equipment, training, guidance and quality control system of the company. All of these interactions that can be affected by human variability should be taken into account when intervening to improve the human system and ultimately the entire fastener system. Considerations of selection, training, safety, skill development, and work pro- cesses are relevant to the processes involved in manufacturing, installing, maintain- ing, and inspecting subsea fasteners. Personnel must be qualified to perform the job and trained to carry out processes according to defined standards and specifica- tions. Human expertise associated with various processes and best practices need to guide the training content. Attention to these various human dimensions cannot only improve safety culture, but productivity and effectiveness of the entire system. Examples of fastener solutions that take these human dimensions into account can be found in Chapter 5. But standards and specifications, are not sufficient. Human error is often associ- ated with failure to follow correct procedures. However, this begs the question of whether the procedures can be followed—often people use work arounds because the procedures are flawed in some way; some procedures can doom a person to fail. Understanding the rationale for procedures and the consequences of not fol- lowing procedures are also important for safety. At the same time, there may be no procedures for some critical tasks. Optimization of the work process itself to reduce the risk of unsuccessful outcomes is critical and often overlooked. Standard operating procedures regarding design, production, application, and serviceability of critical fasteners may not exist to the extent required to completely avoid fastener Failure to consider HSI issues early in system design can result in safety issues, poor system performance, and increased costs of re-design. And every system that does not check the quality of every human performed task is doomed to the irreducible error rate of humans.

78 H i g h - P e r f o r m a n c e B o lt i n g Te c h n o l o g y HUMAN SYSTEMS INTEGRATION IN OTHER INDUSTRIES AND COUNTRIES Most of the HSI research and development in the oil and gas offshore industry has taken place within the European oil industry, especially Norway and Great Britain.3 Flin and Slaven report research primarily conducted in the North Sea and Irish Sea, focusing on the development of the workforce (selection, training, health, management, stress, and error) with less attention to work process, larger organizational issues, and human interactions with tools and technology. Much of this work is a direct result of the Piper Alpha disaster in July of 1988 that killed 167 workers in the world’s deadliest offshore oil industry disaster.4 Human Systems Integration is not new and has been standard practice in mul- tiple agencies and organizations including the Department of Defense, the Federal Aviation Administration (FAA), the Department of Energy, and NASA. The U.S. military has practiced human-centered design since safety issues became apparent with World War II aircraft. The U.S. Army, for instance, has a director-level position responsible for HSI and a service-level policy document. Of importance is the con- sideration of HSI in the acquisition process because changes made later in the life- cycle can be expensive as the organization becomes hampered by legacy equipment. The nuclear industry began to consider human systems integration after Three Mile Island and its human factors implications. The Nuclear Regulatory Commis- sion (NRC) has a Human Factors Information System which is a database that collects and stores reports on human performance issues in the industry. Reports are submitted by licensees (licensee event reports) and by NRC inspection. This information is used to focus efforts to improve human-system interfaces, organi- zational processes, training programs, procedures and inspections at each plant. The FAA has a Human Factors Division which by FAA Order 9550.8A is a “multidisciplinary effort to generate and compile information about human capa- bilities and limitations and apply that information to equipment, systems, facilities, procedures, jobs, environments, training, staffing, and personnel management for safe, comfortable, and effective human performance.” Though labeled “human factors division,” the FAA considers systems and systems of systems in line with the tenets of human systems integration with the aim of supporting human per- formance across various aviation domains. NASA has a Human Systems Integration Division that targets improved crew performance, safety and health in spacecraft as well as aircraft. Like the National 3    . R Flin and G. Slaven, “Introduction,” pp. 1-6 in Managing the Offshore Installation Workforce (R. Flin and G. Slaven, eds.), PennWell Books, Tulsa, Okla., 1996. 4    ASA, “The Case for Safety: The North Sea Piper Alpha Disaster,” NASA Safety Center Case N Study, May 2013, Volume 7, Issue 4, https://sma.nasa.gov/docs/default-source/safety-messages/safe- tymessage-2013-05-06-piperalpha.pdf?sfvrsn=6.

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 79 Airspace System, military systems, and the nuclear industry, NASA is responsible for a complex system of systems of humans and machines in an environment that is often challenging to human performance and survival. Like the FAA, NASA not only oversees that human systems policies are enacted in new and existing systems, but conducts research to inform policies and decisions. HSI is a reaction to issues identified in major disasters such as the Piper Alpha, Three Mile Island, or the Challenger explosion. Despite a spotty history for oil and gas in the United States including the Macondo blowout, there continues to be a gap in HSI in this industry. GAPS IN U.S. HUMAN SYSTEMS INTEGRATION IN THE OIL AND GAS INDUSTRY According to Flin and Slaven5 there had been little attention paid to HSI in oil and gas outside of Europe and apparently, the situation has not radically changed. Although safety drills are practiced broadly, there is little attention paid to HSI or human factors in U.S. standards. According to a report by the Ocean Energy Safety Institute (OESI) “the American Petroleum Institute (API) recently mandated Recommended Practice 75 (API, 2004) which incorporates directives that Human Factors should be considered, but gives no specific guidance on the appropriate steps or directions for implementation.”6 Also, the same OESI report states that “Currently there are few, if any, frame- works that can integrate human-centered design concepts throughout the rig de- sign process and can identify crucial elements specific to design stages. There are also gaps in establishing examples of successful implementation and identification of the key performance indicators (KPI) and return on investment (ROI) for all of the methods presented.”7 The OESI report also notes gaps in the perception of risk among oil and gas workers and how workload and organization factors may affect risk perception and in turn worker performance and safety. In addition, quantitative risk assessment has failed to take into account human and organizational factors in the oil and gas industry (e.g., Macondo incident). Given the minimal attention paid to HSI in the larger oil and gas industry, it should come as little surprise that there has been no attention paid to this aspect of subsea fasteners. 5    . Flin and G. Slaven, “Introduction,” pp. 1-6 in Managing the Offshore Installation Workforce (R. R Flin and G. Slaven, eds.), PennWell Books, Tulsa, Okla., 1996. 6    .C. Peres, R. Bias, N. Quddus, W.S. Hoyle, L. Ahmed, J.C. Batarse, and M.S. Mannan, Human S Factors and Ergonomics in Offshore Drilling and Production: The Implications for Drilling Safety, Technical Report, Ocean Energy Safety Institute, 2016, p. 8. 7    bid., p. 7. I

80 H i g h - P e r f o r m a n c e B o lt i n g Te c h n o l o g y HUMAN INTERACTIONS WITH SUBSEA FASTENERS The lifecycle of a fastener includes processes from manufacturing, testing, and validation to operations, monitoring, and maintenance that are often discussed with minimal to no reference to a human being.8 For example, the significant GE H4 bolt recall was blamed on a failure of a lower tier subcontractor to use the cor- rect standard requiring a post-electroplating bake-out procedure. But this failure was just a symptom of the fact that no process was in place to insure lower tier subcontractors were provided the information they needed, nor was any planning given to the critical need to monitor their human performance. Typical Venn diagrams9 depicting the fastener landscape and potential failures include interac- tions between materials, stress, and the environment,10 pointing out the complex interactions between these three systems, yet without reference to the complex human system that is involved in all processes throughout the life of a fastener (Figure 4.1b). Notably, a very large portion of the processes involved in the fastener lifecycle are not automated, but are executed by humans. For instance, in the manufacturing process humans process the raw material, and carry out machining, heat treatment, quality control, and coating processes. Although these processes may be associated with specifications and standards, it is the human who translates the standard to practice. It is also a human who makes decisions is areas where no specifications and standards apply. Finally, it always falls to a human to monitor, or fail to monitor, another human’s confor- mance with the standards. Similarly, humans play a role in every fastener process (see Table 4.1). These processes can be further subdivided into sub-processes as has been done in Tables 4.2 and 4.3 for the manufacturing processes of steel and fasteners. Each process and subprocess requires human intervention.  8  R. San Pedro, “Fastenered Flange Joints in Offshore: Basic Principles and Applications,” presen- tation to committee on March 22, 2017.  9  A Venn diagram is a diagram that shows all possible logical relations between a finite collection of different sets. A typical Venn diagram consists of multiple overlapping closed curves (often circles) each representing a set. 10    .C. Adamek, “A Historical View of Subsea Fastenering,” presentation to the Workshop on F Bolting Reliability for Offshore Oil and Natural Gas Operations, April 10-11, 2017; see Figure 4.1a.

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 81 FIGURE 4.1  Systems involved in fastener failure: (a) A historical view of subsea bolting and (b) with the human system. SOURCE: F.C. Adamek, “A Historical View of Subsea Fastening,” presentation to the Workshop on Bolting Reliability for Offshore Oil and Natural Gas Operations on April 11, 2017. TABLE 4.1  Processes in a Fastener Life Cycle that Involve Humans Fastener Drilling Contractor Manufacturing Operations Monitoring and Maintenance Raw material processing Assembly Corrosion, integrity, voltage Machining Installation Current Heat treatment Torqueing Flex joint angle Coating Cathodic protection Connector loading Marking In-service inspection Monitoring environment

82 TABLE 4.2  Steel Manufacturing Casting Chemistry Product Process Design Control Melt/Re-melt Ingot Continuous Hot Working Heat Treat Quality Control Identification • Interpret • Prepare Ma- • Heat to • Select cor- • Select cor- • Select ap- • Determine correct • Ensure all • Understand terial Input proper tem- rect size rect size propriate heat treatment measurement marking re- —Industry QC program peratures casting strand and working procedure— equipment quirements stan- throughout molds and number of equipment times, tempera- is properly as per PO dards • Review ladle prepare strands. (forge tures, load size calibrated material • Mark cor- —Customer molds. presses, and qualified documenta- • Maintain • Make sure • Properly load rectly—hard Specs rolling tion temperature • Make sure that pour- material in • Ensure all stamp, tags, —Contract/ mills, etc.) for correct that metal ing tem- furnace to ensure samples are labels as • Chemical PO times is at the perature • Select cor- uniform heating correctly applicable verification • Define pro- correct and rate as rect work- and cooling) prepared • Mix molten • Gather all • Properly tempera- correct. cess steel for ing forces, • Heat to correct • Properly Mfg. docu- mark mate- ture rates and —Steps proper time • Cast the temperature at perform tests mentation rials times • Pour ingots strand at right heating rate according and records —Param- • Track Heat/ • Perform (amount of proper rate to written eters ladle treat- • Cool steel to reduction • Maintain tempera- • Pack, pre- PO numbers procedures ments as right tem- • Cool steel to in each ture for correct serve, and —Resolve • Properly sort applicable perature right tem- pass, total amount of time • Interpret test ship prod- ques- materials at right perature for results ucts and tions • Properly reduction) • Cool steel to right • Send right cooldown subsequent documenta- and record all • Work to cor- temperature at • Correctly materials to rate processing tion conflicts Mfg. pa- rect dimen- right cooldown document all Mfg. pro- rameters • Properly • Properly rate results sions • Prepare Mfg. cess record all record all procedures • Perform • Properly • Properly record • Track Heat/PO Mfg. pa- Mfg. pa- quality con- record all all Mfg. param- numbers • Prepare QC rameters rameters trols—ladle Mfg. pa- eters program analysis • Track Heat/ • Track Heat/ rameters • Track Heat/PO PO num- PO num- • Track Heat/ • Track Heat/ numbers bers bers PO num- PO num- bers bers

TABLE 4.3  Fastener Manufacturing Preliminary Input Material Cutting Threading and Product Design QA Heat Treat Lengths Forming Machining Coating Quality Control Identification • Interpret • Procure ma- • Define heat • Determine • Select proper • Determine • Pre-quality • Ensure all • Understand — Industry terial from treatment cut lengths forming dies starting diam- coating measurement marking Standards a qualified procedure— • Program/ • Program/ eter. vendors equipment require- — Customer supplier times, tem- set-up cut- set-up form- • Machine or • Ensure is properly ments as Specs • Prepare peratures, ting equip- ing equip- form to coating calibrated per PO — Contract/ material load size ment ment—de- required vendor • Ensure all • Mark cor- PO input QC • Properly load • Monitor cut termine diameter as knows samples are rectly — Resolve program material in lengths to time and necessary which correctly • Gather ques- • Review furnace maintain temperature • Program/set- coating selected and all Mfg. tions and material • Heat to dimension- • Ensure up threading to apply prepared documen- conflicts documenta- correct al quality temperature equipment for PO • Properly tation and • Design prod- tion temperature • Track Heat/ monitors are • Check proper and that perform tests records uct manufac- • Properly at right Lot/PO working and dies or cut- all ques- according • Pack, turing plan sort materi- heating rate numbers calibrated ters are tions are to written preserve, • Define process als • Maintain • Ensure billets installed answered procedures and ship — Steps • Dimensional temperature are fully • Machine other • Visually • Interpret test products — Param- & chemical for correct heated be- dimensions inspect results and docu- eters verification amount of fore placing to the part coating • Correctly mentation • Prepare Mfg. • Track heat/ time in forming drawing as • Track document all procedures lot/PO • Cool/quench machine. applicable Heat/Lot/ results • Prepare QC numbers steel at • Keep forming • Monitor output PO num- • Track Heat/ program • Send right the right dies proper- quality and bers Lot/PO num- • Communicate material to cooldown ly lubricated change dies bers information to Mfg. pro- rate • Handle or cutters the produc- cess • Properly formed to maintain tion function record all parts so dimensional Mfg. param- avoid dam- quality eters age • Properly re- • Track Heat/ • Track Heat/ cord all Mfg. Lot/PO Lot/PO parameters numbers numbers • Track Heat/Lot/ PO numbers 83

84 H i g h - P e r f o r m a n c e B o lt i n g Te c h n o l o g y THE HUMAN’S ROLE IN FASTENER FAILURES Root cause analyses for fastener failures, if carried to the full root cause, will likely implicate the human. Armagost11 reported five root cause categories associ- ated with fastener failures: 1. Maintenance: Mistake, misuse or oversight during maintenance. 2. Procedural: Mistake, misuse or oversight during operation. 3. Quality assurance/quality control (QA/QC) manufacturing: Failure related to manufacturing. 4. Wear and tear: A component that has reached a point where it cannot perform its intended function as the result of use. 5. Human error: Errors in judgment and behavior Clearly humans are involved in the fifth category, but are likely to also be in- volved in other categories as well. It is a human who is probably making the mistake or misusing equipment, or failing to provide adequate oversight. The fact that there is human involvement, however, does not justify the label “human error” as the root cause. Human errors come in many varieties. They have immediate effects (active errors) or latent with consequences are not experienced for some time.12 They can also be characterized as slips, lapses, mistakes, and violations.13 They can be errors of omission in which a critical step is omitted and errors of commission in which something extra is done that is not in the procedure. Errors of commission and those with latent consequences are challenging to address. Understanding the type of error can be instrumental in intervening to prevent additional errors. Moreover, the human needs to be considered as a complex system component, on par with the fastener environment or materials. It would not be sufficient to identify environmental error or materials error as a root cause, just as the “human error” label is not sufficient. More importantly, the label, “human error” is not an explanation that can point to any interventions other than to remove humans from the system. It is necessary to identify why the human followed the wrong procedure or made an incorrect action. This needs to be done in the context of the complex human-fastener system. 11    . Armagost, “Root Cause Failure Analysis in Support of Improved Systems Reliability,” presen- K tation to the Workshop on Bolting Reliability for Offshore Oil and Natural Gas Operations, April 10-11, 2017. 12    . Gordon, “Contribution of Human Factors and Human Error to Accidents,” pp. 149-176 in R Managing the Offshore Installation Workforce (R. Flin and G. Slaven, eds.), PennWell Books, Tulsa, Okla., 1996. 13   J. Reason, Human Error, Cambridge University Press, Cambridge, Mass., 1991.

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 85 For example, torqueing to preload a fastener or stud is a task that is particularly prone to “human error” for the following reasons: 1. Different coatings lubricants, and quality of thread surface finish all change the torque required to achieve the desired fastener preload, but the current specifications do not appear to account for these differences. 2. Torqueing of flange fasteners must be done following a rather complex procedure that specifies the order in which flange fasteners are torqued and the number of torqueing passes required to attain required torque. 3. Torqueing of flange fasteners must be done a number of times around the flange, in the proper order. 4. From a design perspective, torqueing is an inaccurate method for preloading fasteners due to: i. Manufacturing tolerances of threads. ii. Uncertainty about whether the actual friction during torqueing is accurately predicted by the friction factor assumed when calculating the required make-up torque. iii. bsent observing the torqueing procedure directly, there appears to be A little use of technologies that could be used to check if adequate preload on the bolt has been, in fact, obtained. In tasks like this the human can be set up to fail to achieve the desired result. It may be, for instance, impossible to follow the established procedure that is poorly written or overly complex. In other words, other parts of the system are impacting human performance. For example, there is no standard torque train- ing or competency assessment available for workers on the rig or the shop floor who perform torqueing. Or, better yet, a new method of measuring preload as discussed elsewhere in this report has yet to be instituted. Interestingly, the 2012 National Academy of Engineering (NAE)/National Research Council (NRC) report Macondo Well Deepwater Horizon Blowout: Lessons for Improving Offshore Drilling Safety also notes that education and training of offshore drilling personnel needs to be expanded.14 It is important to note that training alone will not eliminate human error in the face of distractions such as time pressure. Training is also not a solu- tion for poor design. An API workgroup established a “Torque Action Plan” that reviewed the specification of the torqueing process (e.g., attending to the number of passes to final torque). Their recommendation to ensure torqueing was done correctly was to have a supervisor removed from his/her normal duties to verify 14    ational Academy of Engineering (NAE)/National Research Council (NRC), Macondo Well N Deepwater Horizon Blowout: Lessons for Improving Offshore Drilling Safety, The National Academies Press, Washington, D.C., 2012.

86 H i g h - P e r f o r m a n c e B o lt i n g Te c h n o l o g y that any crew performing torqueing is doing it correctly.15 Putting a second human on a task to supervise work that is too difficult for the first does not seem like the best solution to the problem. There is no assurance that a supervisor is any more competent (i.e., trained) to perform or oversee a torqueing operation. Addition- ally, what other risks will be introduced by removing the supervisor from his/her normal duties? Instead, directly addressing the issues associated with torqueing dif- ficulty to improve the process would be more likely to succeed. Alternatively, some version of the installation quality technique recommended by the Research Council on Structural Connections (RCSC) should be considered. This technique required that an engineer of record approve the installation technique and the required installation quality steps. Additionally, a trained inspector is required onsite to perform torqueing calibrations and to monitor crews performing bolt torqueing.16 In general, in cases of human error, the “error” needs to be considered in light of the larger system including the larger human system. In all the processes in- volved in the fastener lifecycle there is also input from teams of humans and entire organizations. For example, industry standards, specifications, and recommended practices are developed from teams comprised of representatives from various types of companies in one or more industries. Their development is likely impacted by team dynamics as much as by technology. TEAM ISSUES Seldom do individuals work alone. Fastener processes are complex and require the work of multiple individuals. For instance, inspection of subsea fasteners on drilling risers is undertaken every 3 days by a crew of eight people who control a remotely operated vehicle. Teamwork can be highly effective. But can also be a contributor to systems failures when there are failed team processes such as poor communication and coordination, lack of shared knowledge, and role confusion.17 There are some specific challenges for teamwork in the world of subsea fasten- ers. Multiple disciplines must coordinate design, manufacturing, operation, and maintenance. Additionally, these processes must be coordinated across multiple organizations, including operators, drilling contractors, BOP original equipment manufacturer (OEM), and fastener manufacturers. Communication across multi- disciplinary teams can be difficult, but is especially challenging in the oil and gas industry due to contractual obligations and legal risk mitigation. Experienced field 15    . Fleece, BP, “Mitigating BOP Failures,” presentation at the Workshop on Bolting Reliability for T Offshore Oil and Natural Gas Operations, April 11, 2017. 16    esearch Council on Structural Connections, Specification for Structural Joints Using High R Strength Bolts, Chicago, Ill., August 1, 2014. 17    . Salas, N.J. Cooke, and M.A. Rosen, On teams, teamwork and team performance: Discoveries E and developments, Human Factors 50:540-547, 2008.

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 87 workers may not share perspectives of scientists and engineers. On the other hand, sharing information about fastener performance, failures, and near misses across different disciplines and organizations is needed to promote a safety culture. Other team issues include handoffs (a shift handoff being the cause of the Piper Alpha disaster)18 or crew changes that can result in significant risk of system failure. Work left incomplete by one crew could go unnoticed by the next if there is no formal procedure for handoffs. ORGANIZATION ISSUES There are also issues that occur at the organizational level that impact human performance and ultimately safety culture and system performance. Work and management processes vary by company and often differ across companies (rigs, operators, OEMs). Companies may be hesitant to share information related to fastener failure for liability reasons. Business decisions have been made to protect and optimize shareholder value (e.g. Deepwater Horizon) at the expense of safety, quality, and personnel. This can have a negative impact on the company’s safety culture (Safety and Environmental Management Systems; SEMS; API RP76). There needs to be an adequate balance between competition that leads to resistance in taking responsibility for a failure or near miss and cooperation that enables steps to be taken to avoid future failures. Moreover, reporting on fastener failures and near misses should be encouraged and built into the work rules as part of the safety culture. This was also recommended in the 2012 NAE/NRC report and the 2014 and 2016 QC-FIT recommendations. The move to deep water installations has resulted in a paradigm shift regard- ing the conditions surrounding the fasteners. Industry, however may not have fully shifted all parameters regarding oil and gas operations. Fasteners, which are seen as off-the-shelf commodities, may be one of the design elements that went unnoticed except by the bolting specialists. It should be mentioned, however, that the oil and gas industry, through the API, has responded to recent fastener failures with an outstanding effort. Decision makers are driven by KPIs that are sometimes not well thought out. Laws and regulations hastily written responses to bad practices can make indus- try less competitive. An overly-prescriptive regulatory environment can suffocate newer technological developments and applications. An alternative that should be considered is a deliberate move toward a goal-oriented regulatory system such as is practiced by Norway and the United Kingdom. The study committee that authored the 2012 NAE/NRC Macondo report also believed in the advantages of goal-oriented regulations. Contained in its report is Summary Recommendation 18    eference R Lord Cullen’s report.

88 H i g h - P e r f o r m a n c e B o lt i n g Te c h n o l o g y 6.1: “The United States should fully implement a hybrid regulatory system that in- corporates a limited number of prescriptive elements into a proactive, goal-oriented risk management system for health, safety, and the environment.”19 Organizations also need to adapt to changes in the workforce such as the “great crew change” of 1986 or the workforce decline that paralleled the declining price of oil. Students stop majoring in petroleum engineering in lean times resulting in an expertise gap in the workforce. In an industry in which skills are often learned on the job and passed down through generations, there is a serious lack of skilled crew and experienced mentors when the oil economy turns around. SUMMARY AND RECOMMENDATION Human systems integration has not been widely considered in the U.S. oil and gas industry or has been trivialized in the analysis of past fastener failures to explanations of “human error.” Yet, the human system is integral to the fastener landscape and the processes involved in the lifecycle of a fastener. It is critical that the complex human system at all levels (i.e., individual operator, teams, and orga- nizations) and across all dimensions (e.g., training, selection, safety) be considered within the fastener system and the interventions to reduce fastener failures and improve the safety culture. Considering fasteners within the larger system neces- sitates an enterprise-wide safety culture. A human systems integration perspective is required in considerations of fastener failures and the interventions to prevent failure. Examples of HSI solutions are presented in Chapter 5. Finding: Virtually every root cause analysis of an undersea bolt or stud failure finds a human error at least as a contributing cause. Finding: In general, human error or mistakes are often used as an explanation for failures without looking for deeper root causes or factors that lead to mistakes or worse yet, redesigning the system to insure they do not happen in the future. Finding: There is insufficient attention to individual worker and skill development through selection, training, and work process design. Finding: Information sharing and reporting in the oil and gas industry regarding fastener failure incidents and near misses is evolving; this is an essential activity in promoting a safety culture across the industry. 19   NAE/NRC, Macondo Well Deepwater Horizon Blowout, 2012.

S a f e t y C u lt u r e a n d Hu m a n Sys t e m s I n t e g r at i o n 89 Finding: Multiple organizations often have conflicting work processes and share minimal information (rigs, operators, OEMS) Recommendation 4.1: The oil and gas industry should promote an enhanced safety culture across organizations and disciplines that is reflected in work rules and that involves encouragement at all levels of the organization to improve the reliability of subsea bolts. This would include the following: • The creation of a dedicated organizational human systems stakeholder; • Attention to the individual worker and skill development through training, selection and work process sign; • Company and industry-wide sharing of best practices for collecting and disseminating information about fastener performance, failures, and near misses; and • Assessing gaps that could be mitigated by technology developments.

Next: 5 Innovation Opportunities »
High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations Get This Book
×
Buy Paperback | $65.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Commercially significant amounts of crude oil and natural gas lie under the continental shelf of the United States. Advances in locating deposits, and improvements in drilling and recovery technology, have made it technically and economically feasible to extract these resources under harsh conditions. But extracting these offshore petroleum resources involves the possibility, however remote, of oil spills, with resulting damage to the ocean and the coastline ecosystems and risks to life and limb of those performing the extraction. The environmental consequences of an oil spill can be more severe underwater than on land because sea currents can quickly disperse the oil over a large area and, thus, cleanup can be problematic.

Bolted connections are an integral feature of deep-water well operations. High-Performance Bolting Technology for Offshore Oil and Natural Gas Operations summarizes strategies for improving the reliability of fasteners used in offshore oil exploration equipment, as well as best practices from other industrial sectors. It focuses on critical bolting—bolts, studs, nuts, and fasteners used on critical connections.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!