National Academies Press: OpenBook
« Previous: 10. Choosing the Secondary Method of Detection
Page 57
Suggested Citation:"11. Conclusion." National Academies of Sciences, Engineering, and Medicine. 2018. A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems. Washington, DC: The National Academies Press. doi: 10.17226/25063.
×
Page 57
Page 58
Suggested Citation:"11. Conclusion." National Academies of Sciences, Engineering, and Medicine. 2018. A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems. Washington, DC: The National Academies Press. doi: 10.17226/25063.
×
Page 58

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SECTION 11  57  Conclusion  Many mass transit agencies are now using or considering CBTC technology to equip their new lines or to  upgrade their existing systems. Among the numerous benefits of CBTC, the main attractive feature for  agencies  is  the possibility  to  increase  their  system  capacity by  reducing  the headway between  trains.  This capacity increase is accompanied by other benefits such as continuous speed control, more flexible  operation, and  less equipment  installed on the roadbed and thus  less wayside maintenance. Although  conventional signaling systems could  technically provide similar headway  to CBTC, they would require  more  wayside  equipment  to  be  deployed  which  results  in  more  installation  work  and  wayside  maintenance needed. Minimizing wayside equipment  is hence  an additional  factor  in  the decision  to  implement CBTC technology.   This guide has been developed for transit agencies which have already decided or are considering CBTC  technology. Attention should be given  to  the need  for a possible secondary system because a system  that  includes both CBTC and a secondary system may result  in an overly complicated system harder to  deploy and to maintain than anticipated.   The guide describes the different levels of secondary systems used in CBTC projects. Some projects have  successful  operation without  any  secondary  system  at  all.  Some  have  secondary  systems  capable  of  managing  a  single  non‐CBTC  train  (train with  CBTC  failure  or  non‐equipped work  train) while  other  projects are capable of some  level of revenue service. Choosing more capabilities  from  the secondary  system  results  in  more  adverse  effects  on  the  deployment  effort  and  maintenance,  and  on  the  availability of the CBTC system.   On the other hand, having no STD/PS requires the transit agency to rely on operating procedures alone  during system failures and further restricts the operation of unequipped work trains.   The work train  issue may be  included as a factor for secondary system selection, or the secondary system  selection may  be  a  factor  on whether  to  equip  the work  trains.  There  are  examples  of projects  without  a  secondary  system  where  non‐equipped  work  trains  have  been  managed successfully.  Equipping  work  trains  is  recommended  when  there  is  no  secondary  system  and revenue service operation  is 24/7;  this avoids  frequent operation of CBTC and non‐CBTC  trains at the same time. In summary, the proposed decision process is as follows.   Acknowledge that there are several successful CBTC projects without STD/PS and recognize that the ideal solution to minimize deployment and maintenance is the lowest level of STD/PS.  Evaluate the need for mixed‐fleet operation with CBTC trains and non‐CBTC trains. If mixed‐fleet is needed, an STD/PS capable of revenue service is needed, at least temporarily. Transit modernization programs, often combining rolling stock and signaling system replacement, should be managed  to avoid the need for mixed‐fleet operation.  Decide whether  the  STD/PS  should have  the  capabilities  to  run  peak  revenue  service.  The  guide showed  that  this need  is present only  in a very particular case where non‐CBTC  trains  from other lines are using the CBTC territory.  Evaluate the need for the STD/PS to provide a back‐up for revenue service, i.e. to be capable of off‐ peak revenue service. Trade‐off analysis between the frequency of use and the effort of deployment and maintenance should be performed. The industry survey showed that in most cases, the effort of deployment and maintenance is too large to justify a full back‐up system.

SECTION 11 – CONCLUSION  58   When  it  is decided that no back‐up for revenue service  is needed, assess the need for managing a single  train with  CBTC  failure  and/or  non‐equipped work  train.  The  industry  survey  showed  that there  is a  recent  trend  to be able  to manage a  single  train and/or non‐equipped work  train with STD/PS.  There are different methods of implementation based on the performance of the STD/PS to manage non‐CBTC  trains.  The  STD/PS  can  manage,  with  limited  operating  procedure,  one  train  per interstation, or one train between interlockings; or it can simply track the non‐CBTC trains for other trains to continue running in CBTC mode around the train with CBTC failure. For agencies selecting a secondary system, track circuits or axle counters may be used as the method of  train detection. Although  track circuits have been more commonly used  in  the past and agencies are  very familiar with them, recent trends  in CBTC projects around the world show that axle counters are  becoming  the norm  in CBTC projects. One of  the major  reasons  is  that most new CBTC projects  are  signaling upgrades where axle counters may be  installed  independently from the existing track circuits  and  traction  current  return  system.  Another  reason  is  that  the  length  of  a  section  defined  by  axle  counters is not limited, which matches well with certain CBTC requirements, whereas track circuits have  a  limited  length. However, axle counters, unlike  track circuits, do not provide any  level of broken  rail  detection.  This  is  an  issue  which  needs  to  be  addressed  by  agencies  who  have  relied  upon  and  benefitted  from the track circuit’s ability to detect a complete non‐conducting  fracture of the running  rail.  The goal of this guide is to provide all information which should be considered in evaluating the need for  an STD/PS. In addition to the information about existing systems, failure management, and whether to  equip work trains, the guide proposes a list of major considerations to be assessed by the transit agency  to  define  if  a  secondary  system  is  needed  and,  if  needed,  which  level  of  secondary  system  is  the  minimum necessary. While performing this assessment, agencies should keep in mind that the minimum  level  of  STD/PS  is  the  desired  one,  to  avoid  its  adverse  effects  on  complexity,  maintenance,  and  availability, and  that any added  functionality comes with additional consequences on  the deployment  and future operation of the system. 

Next: 12. Case Studies »
A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems Get This Book
×
 A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB's Transit Cooperative Research Program (TCRP) Web-Only Document 71: A Transit Agency Guide to Evaluating Secondary Train Detection/Protection Systems in Communications-Based Train Control Systems provides a practical approach to evaluating the appropriate level of secondary train detection/protection systems (STD/PS) for a given communications-based train control system application. In terms of detection, track circuits and axle counters are both considered and compared, including the broken rail detection capabilities of track circuits and the possibility of having no secondary detection at all.

The first part of this guide presents different technologies, and discusses communications-based train control deployment trends and feedback on operations from rail transit agencies around the world. The second part provides guidance for selection of an appropriate level of STD/PS, in terms of candidate technologies, product maturity, and potential risks. The document is accompanied by a PowerPoint presentation.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!