National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

Summary

Water is essential for humans and the environment, yet maintaining and providing water in sufficient quantities and at consistently high quality is a growing challenge. Over the next 25 years, growing populations, climate change, aging water-related infrastructure, and the demands of agriculture, industry, and energy production and use will increase the need for and threaten the available quantity and quality of water supplies. Next-generation tools and technology and collaboration at multiple levels will be needed to understand changes to the water environment and determine how society can ensure clean, safe, and ample water for all uses.

The Water Mission Area (WMA) of the U.S. Geological Survey (USGS) has a long-established reputation for collecting and delivering high-quality, unbiased scientific information related to the nation’s water resources. Federal, state, and local agencies, the private sector, nongovernmental organizations, academia, and the public rely on WMA for information such as water quantity and quality and use this information for several purposes, ranging from rapid responses during emergencies such as hurricanes, floods, and forest fires to the long-term management of water resources. While WMA is the nation’s leader in water-related research and information, needs remain and opportunities exist to improve on the services it provides to the nation.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

REPORT APPROACH

USGS asked the Water Science and Technology Board of the National Academies of Sciences, Engineering, and Medicine to assemble a panel of experts to (1) identify the nation’s highest-priority water science and resources challenges over the next 25 years, (2) summarize WMA’s current water science and research portfolio, and (3) provide recommendations on the strategic water science and research opportunities for WMA that would address the highest-priority national water challenges. The complete Statement of Task is presented in Box 1.1. The Committee on Future Water Resource Needs for the Nation: Water Science and Research at the U.S. Geological Survey developed this consensus study report to inform WMA on the broad, complex, and interdisciplinary challenges facing water science and resources.1 Federal, state, and local agencies, nongovernmental organizations, industry, and other groups that work with WMA will also find this report to be of value.

The committee identified the highest-priority water science and resources challenges over the next 25 years by consulting with a wide variety of experts from the federal, state, local, nongovernmental, and academic communities. The committee agreed that the challenges of the future are likely to be similar to, though likely more urgent than, those of today and that emerging technologies will help advance the response to each of these challenges, which fall into several cross-cutting categories, as noted below. Next, the committee identified 10 overarching science questions that, if addressed, would make the most significant contributions to these water science and resources challenges in the future. This set of questions was further narrowed to five priority questions that would best utilize USGS strategic scientific resources for the benefit of the nation.

WATER SCIENCE AND RESOURCES CHALLENGES

The committee identified the following water science and resources challenges, which are global in scope and encompass many interrelated issues:

  • Understanding the role of water in the Earth system: As water moves through the atmosphere, lithosphere, and biosphere, it facilitates physical, chemical, and biological processes. Understanding how the water cycle responds and feeds back to global change remains a key challenge in Earth system research.

___________________

1 Biographical sketches of the committee members are provided in Appendix B.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
  • Quantifying the water cycle: Effective management of water resources demands knowledge of how much water there is, its state, and where it is located. Quantification of the hydrologic cycle is exceedingly difficult because the stocks, flows, and residence times of water vary spatially and temporally.
  • Developing integrated modeling: Models are essential tools for integrating and synthesizing disparate observations, for understanding complex interactions and testing hypotheses, and for reconstructing past conditions and predicting future trajectories of co-evolving systems.
  • Quantifying change in the socio-hydrological system: Understanding how human activities influence water resources is critical to managing these resources in the United States and globally.
  • Securing reliable and sustainable water supplies: Society is dependent on the availability of clean, reliable, and affordable surface water and groundwater for drinking water, food and energy production, industrial activities, healthy ecosystems, and recreational activities and tourism.
  • Understanding and predicting water-related hazards: Water-related hazards represent some of the world’s costliest natural disasters in both economic and human terms and are increasingly exacerbated by human activities and climate change.

QUESTIONS TO ADDRESS GLOBAL ISSUES AND ADVANCE USGS STRATEGIC SCIENCE

The committee defined 10 questions that can help address these global, interrelated challenges, and then focused on a subset for which USGS science could make the most difference. To narrow these questions, the committee developed and applied a rubric that scored questions based on the following criteria: scientific importance, societal need, relevance to the USGS mission, and relevance to USGS partners. The five questions that would have high potential to benefit USGS strategic science are:

  1. What is the quality and quantity of atmospheric, surface, and subsurface water, and how do these vary spatially and temporally?
  2. How do human activities affect water quantity and quality?
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
  1. How can water accounting be done more effectively and comprehensively to provide data on water availability and use?
  2. How does changing climate affect water quality, quantity, and reliability, as well as water-related hazards and extreme events?
  3. How can long-term water-related risk management be improved?

The other five questions, while still highly important, may be addressed by the broader water research and resources communities, including USGS, as resources allow. These are:

  1. How does the hydrologic cycle respond to changes in the atmosphere, the lithosphere, and the biosphere through Earth’s history and in the near future? And how do the hydrologic responses feed back to and hence accelerate or dampen the initial changes in the atmosphere, the lithosphere, and the biosphere?
  2. How can short-term forecasting for climate, hydrology, water quality, and associated social systems be improved?
  3. How do institutions and governance and institutional resilience impact the quantity and quality of water?
  4. How can understanding of the connections between water-related hazards and human health be improved?
  5. How can competing uses for water resources be managed and maintained to sustain healthy communities and ecosystems in a changing world?

EMERGING AND INNOVATIVE TECHNOLOGIES

Over the next 25 years, new opportunities will emerge that will allow for observations that come from an array of sources, are more affordable, offer data from previously inaccessible locations, provide “fit-for-purpose” temporal and spatial resolution, and deliver measurements of new parameters. Associated with the wide adoption of those technologies is a need to develop systems (e.g., hardware, software, management frameworks, protocols) that can rapidly collect data from disparate sources, assess those data for quality, store and process them, and share them in near real-time in formats that are informative and accessible for users.

New space- and ground-based sensors, from drones to “lab-on-a-chip”

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

sensors, will advance observations and analyses of water resources, but many technical challenges exist with respect to measuring and monitoring water quality. Microsensors remain an area of research and development that shows great promise, and the technology in this realm will continue to develop, improve, and become more affordable. Environmental DNA (eDNA) methods can already detect invasive species from a single sample of water; new insights into environmental health and resilience will follow. Developments in managing “big data” and integrating data from multiple sources and of different types will support improved scientific understanding, development of improved models, and interdisciplinary model integration. An area of great interest is improved coupled modeling of the natural-human water system. Projections of future human impacts and water-related risks, however, are inevitably associated with large uncertainties; therefore, a need exists to develop improved models to support decision-making under uncertainty. Improvements in water-resources data access and presentation will continue to be needed, as will the expansion of opportunities for citizen scientists to fill data gaps and supplement existing data networks through collection of basic water-quality measurements or water sampling for later analysis.

RECOMMENDATIONS FOR WMA

Based on the cross-cutting water science and resources challenges and the overarching and high-priority questions identified above, the committee arrived at the following recommendations, which are not presented in any order of importance. The committee also presents recommendations to help WMA align with USGS strategic directions and provide opportunities for collaborations among WMA and other USGS mission areas, other federal agencies, and state and local partners. These recommendations provide a framework to help guide the evolution of WMA, so that USGS can effectively address the current and future water resources challenges that will face the nation over the next 25 years. Recommendations 1.1–5.1 are numbered to reflect their relevance to the five priority questions above (e.g., Recommendation 2.1 is associated with priority question 2: “How do human activities affect water quantity and quality?”). Recommendations 6–8 are additional, overarching recommendations.

Recommendation 1.1: Enhance data collection, include citizen science, and develop Web-based analytical tools.

To enable the nation to meet future water resources challenges, WMA should (1) strategically enhance the temporal and spatial collection of water quantity, quality, and water-use data using robust, innova

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

tive technologies to develop readily accessible “fit-for-purpose” information; (2) further infuse citizen science into USGS data-collection activities to augment traditional monitoring networks; and (3) develop innovative, intuitive Web-based data analysis and visualization tools for the nation to better understand the status and trends of its water resources.

Recommendation 1.2: Coordinate with agencies and organizations on data delivery.

As part of the national effort to deliver water quantity and quality data and information, WMA should coordinate with other agencies and relevant organizations to co-develop accessible, open, and codified data formats, protocols, interoperability, and software tools. This will allow integration across data streams and encourage synthesis of multiple observations in order to detect trends, patterns, and changes in water quantity and quality.

Recommendation 2.1: Increase focus on the relationships between human activities and water.

WMA should prioritize investigations of the relationships between human activities and changes in surface water and groundwater quantity, quality, and water-related hazards through a careful synthesis of observations and coupled natural-human systems models forced by climate and socioeconomic factors.

Recommendation 3.1: Develop a robust water accounting system.

WMA should conduct studies to understand how to best and most efficiently execute water accounting and how to assess and present uncertainty in the reported data. Water accounting should go beyond measurement of the resource itself to consider the biophysical and societal constraints on water use and should include estimates of consumptive versus non-consumptive water use.

Recommendation 3.2: Collaborate with agencies and organizations on water-data standards and categories of use.

As part of the national effort to collect water-use data and information, WMA should collaborate with other agencies and relevant organizations to co-develop standards, protocols, and clear definitions for categories of water use, and should adhere to common format standards across states, counties, and watersheds.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

Recommendation 4.1: Ensure that monitoring networks provide adequate information to assess changing conditions.

USGS should periodically assess the state of surface water and groundwater monitoring networks to ensure that these networks can provide data for hydrologic impact analyses as environmental conditions change due to climate, agriculture and other land uses, and urbanization.

Recommendation 5.1: Focus on long-term prediction and risk assessment of extreme water conditions.

WMA should prioritize activities that address long-term prediction and risk related to hydrologic causes such as floods, droughts, and waterborne contaminants. WMA should seek to understand how climate change, land-cover and land-use change, and other biophysical and socio-economic factors affect the nation’s water resources, including water quantity and quality, extreme events, and other hydrologic hazards. USGS should further develop integrative models that can help predict future hydrologic conditions under these changing climate conditions. These activities will require integrative studies with other USGS mission areas and should include resource managers, decision-makers, and social scientists.

Recommendation 6: Develop multiscale, integrated, dynamic models that encompass the full water cycle.

WMA should prioritize multiscale and integrated modeling efforts that dynamically couple above- and below-ground hydrologic stores and fluxes, water quantities and qualities, and natural and human drivers and interactions, and utilize diverse observations ranging from ground-based sensing to Earth observations from airborne and space-borne platforms.

Recommendation 7: Collaborate as appropriate both within and outside of USGS, including agencies and the private sector.

Given that water resources challenges are inherently interdisciplinary, WMA should continue to build and maintain strong collaborations. WMA should maintain and strengthen ties with other USGS mission areas to maximize the impact of its work on observing, understanding, predicting, and delivering water data and issues. WMA should maintain and strengthen ties with other federal and state agencies, and as appropriate, international agencies (especially

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×

regarding transboundary water issues) to meet these water resources challenges. WMA should also evaluate and, where deemed advantageous, engage in private-sector collaborations to develop new data sources and platforms, and in the dissemination of data and information, models, and other products.

Recommendation 8: Build a workforce who are ready to take on new water challenges.

WMA should align its current and future workforce to meet critical strategic needs, specifically building capacity for improved water monitoring; coupled natural-human systems modeling; and data analysis, analytics, visualization, and delivery using reliable, accurate, robust, and innovative methods.

Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 1
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 2
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 3
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 4
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 5
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 6
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 7
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2018. Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press. doi: 10.17226/25134.
×
Page 8
Next: 1 Introduction »
Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area Get This Book
×
 Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area
Buy Paperback | $50.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Solving problems related to use of water resources will be of paramount importance in coming decades as increasing pressure from growing populations, climate change, extreme weather, and aging water-related infrastructure threaten water availability and quality.

The Water Mission Area (WMA) of the U.S. Geological Survey (USGS) has a long-established reputation for collecting and delivering high-quality, unbiased scientific information related to the nation's water resources. WMA observations help inform decisions ranging from rapid responses during emergencies such as hurricanes, floods, and forest fires, to the long-term management of water resources.

Produced at the request of USGS, this report identifies the nation's highest-priority water science and resources challenges over the next 25 years. Future Water Priorities for the Nation summarizes WMA's current water science and research portfolio, and recommends strategic opportunities for WMA to more effectively address the most pressing challenges.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!