National Academies Press: OpenBook
« Previous: 7 RESEARCH AND DECISION-MAKING PROTOCOLS
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 245
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 246
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 247
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 248
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 249
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 250
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 251
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 252
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 253
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 254
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 255
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 256
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 257
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 258
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 259
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 260
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 261
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 262
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 263
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 264
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 265
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 266
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 267
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 268
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 269
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 270
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 271
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 272
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 273
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 274
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 275
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 276
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 277
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 278
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 279
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 280
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 281
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 282
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 283
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 284
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 285
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 286
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 287
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 288
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 289
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 290
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 291
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 292
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 293
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 294
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 295
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 296
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 297
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 298
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 299
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 300
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 301
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 302
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2019. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 303

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

REFERENCES Adams, W. J., R. A. Kimerle and R. G. Mosher. 1985. Aquatic Safety Assessment of Chemicals Sorbed to Sediments. Aquatic Toxicology and Hazard Assessment: Seventh Symposium. R. P. R.D. Cardwell, and R.C. Bahner. Philadelphia PA, ASTM International, STP 854: 429-429-25. Adams, E. E., S. A. Socolofsky, and M. Boufadel. 2013. Comment on “Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport”, in Environmental Science & Technology. Adams, J., K. Charbonneau, D. Tuori, R. S. Brown, and P. V. Hodson. 2017. Review of Methods for Measuring the Toxicity to Aquatic Organisms of the Water Accommodated Fraction (WAF) and Chemically-Enhanced Water Accommodated Fraction (CEWAF) of petroleum. Canadian Science Advisory Secretariat Research Document 64:i-xi, 1-110. Adeyemo, O. K., K. J. Kroll, and N. D. Denslow. 2015. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquatic Toxicology 168:60-71. DOI: 10.1016/j.aquatox.2015.09.012. AEA Technology. 1994. International calibration of laboratory dispersant test methods against sea trials. Oxfordshire, UK: AEA Technology. AEA Technology. 1995. International calibration of laboratory dispersant test methods against sea trials. Field trial report. July 1995 sea trials. Oxfordshire, UK: AEA Technology. Aeppli, C., C. A. Carmichael, R. K. Nelson, K. L. Lemkau, W. M. Graham, M. C. Redmond, D. L. Valentine, and C. M. Reddy. 2012. Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environmental Science & Technology 46(16):8799-8807. DOI: 10.1021/es3015138. Aeppli, C., R. K. Nelson, J. R. Radović, C. A. Carmichael, D. L. Valentine, and C. M. Reddy. 2014. Recalcitrance and Degradation of Petroleum Biomarkers upon Abiotic and Biotic Natural Weathering of Deepwater Horizon Oil. Environmental Science & Technology 48(12):6726-6734. DOI: 10.1021/es500825q. Afshar-Mohajer, N., C. Li, A. M. Rule, J. Katz, and K. Koehler. 2018. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves. Atmospheric Environment 179:177-186. DOI: 10.1016/j.atmosenv.2018.02.017. Aguilera, F., J. Méndez, E. Pásaro, and B. Laffon. 2010. Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology 30(4):291-301. DOI: 10.1002/jat.1521. Ajijolaiya, L. O., P. S. Hill, A. Khelifa, R. M. Islam, and K. Lee. 2006. Laboratory investigation of the effects of mineral size and concentration on the formation of oil–mineral aggregates. Marine Pollution Bulletin 52(8):920-927. DOI: https://doi.org/10.1016/j.marpolbul.2005.12.006. Albers, P. H., and T. Loughlin. 2003. Effects of PAHs on marine birds, mammals and reptiles. In PAHs: an ecotoxicological perspective. Douben, P. E. T., eds. Chichester, England: John Wiley & Sons Ltd. PREPUBLICATION COPY 245

246 The Use of Dispersants in Marine Oil Spill Response Aldenberg, T. and W. Slob. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicology and Environmental Safety 25(1): 48-63. Alexander, M., L. S. Engel, N. Olaiya, L. Wang, J. Barrett, L. Weems, E. G. Schwartz, and J. A. Rusiecki. 2018. The deepwater horizon oil spill coast guard cohort study: A cross- sectional study of acute respiratory health symptoms. Environmental Research 162:196- 202. DOI: 10.1016/j.envres.2017.11.044. Aliseda, A., P. Bommer, P. Espina, O. Flores, J. C. Lasheras, B. Lehr, I. Leifer, A. Possolo, J. Riley, O. Savas, F. Schaffer, S. Wereley, and P. Yapa. 2010. Deepwater Horizon Release Estimate of Rate by PIV. Allen, A. A., D. Jaeger, N. J. Mabile, and D. Costanzo. 2011. The Use of Controlled Burning during the Gulf of Mexico Deepwater Horizon MC-252 Oil Spill Response. International Oil Spill Conference Proceedings 2011(1):abs194. DOI: 10.7901/2169-3358-2011-1-194. American Petroleum Institute (API). 2013. Industry Recommended Subsea Dispersant Monitoring Plan. Version 1.0. API TECHNICAL REPORT 1152. Amrani, A., A. L. Sessions, and J. F. Adkins. 2009. Compoun -Specific δ34S Analysis of Volatile Organics by Coupled GC/Multicollector-ICPMS. Anal. Chem. 81: 9027-9034. Amrani, A., A. Deev, A. L. Sessions, Y. Tang, J. F. Adkins, R. J. Hill, J. M. Moldowan, Z. Wei. 2012. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochimica et Cosmochemica Acta 84: 152- 164. AMSA (Australian Maritime Safety Authority). 2003. Oil Spill Monitoring Handbook. Prepared by Wardrop Consulting and the Cawthron Institute for the Australian Maritime Safety Authority (AMSA) and the Marine Safety Authority of New Zealand (MSA). Published by AMSA, Canberra. Anderson, S. E., J. Franko, E. Lukomska, and B. J. Meade. 2011. Potential immunotoxicological health effects following exposure to COREXIT 9500A during cleanup of the Deepwater Horizon oil spill. Journal of Toxicology and Environmental Health - Part A: Current Issues 74(21):1419-1430. DOI: 10.1080/15287394.2011.606797. Ankley, G. T., R. J. Erickson, G. L. Phipps, V. R. Mattson, P. A. Kosian, B. R. Sheedy, and J. S. Cox. 1995. Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. Environmental Science & Technology 29(11):2828-2833. DOI: 10.1021/es00011a019. Arata, C. M., J. S. Picou, G. D. Johnson, and T. S. McNally. 2000. Coping with Technological Disaster: An Application of the Conservation of Resources Model to the Exxon Valdez Oil Spill. Journal of Traumatic Stress 13(1):23-39. DOI: 10.1023/A:1007764729337. Arfsten, D. P., D. J. Schaeffer, and D. C. Mulveny. 1996. The Effects of Near Ultraviolet Radiation on the Toxic Effects of Polycyclic Aromatic Hydrocarbons in Animals and Plants: A Review. Ecotoxicology and Environmental Safety 33(1):1-24. DOI: http://dx.doi.org/10.1006/eesa.1996.0001. Arp, H. P., S. E. Hale, M. E. Kruså, G. Cornelissen, C. B. Grabanski, D. J. Miller and S. B. Hawthorne. 2015. Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants. Environmental Toxicology and Chemistry 34(4): 710-720. ASCE Task Committee. 1996. "State-of-the-art review of modeling transport and fate of oil spills." Journal of Hydraulic Engineering 122(11): 594-609. PREPUBLICATION COPY

References 247 ASTM. 2013. ASTM Standard Number F2532 - 13: Standard Guide for Determining Net Environmental Benefit of Dispersant Use. ASTM International. ASTM. 2014. Standard Guide for Determining Net Environmental Benefit of Dispersant Use. Designation: F2532-13. ASTM International: Wet Conshohocken, PA. Atlas, R. M. and T. C. Hazen. 2011. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in US History. Environmental Science & Technology 45(16):6709-6715. DOI: 10.1021/es2013227. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Benzene, August, 2007 https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=40&tid=14 (accessed August 21, 2018) Aurand, D.V. 1995. The application of ecological risk principles to dispersant use planning. Spill Science & Technology Bull 2 (4): 241-247. Aurand, D. and G. Coelho (Compilers). 2003. Ecological Risk Assessment: Consensus Workshop. Environmental Tradeoffs Associated With Oil Spill Response Technologies. U.S. and British Virgin Islands. A report to US Coast Guard District 7. Ecosystem Management & Associates, Inc., Lusby, MD 20657. Report 03-03, 34 pages. Aurand, D. and G. M. Coelho. 2005. Cooperative aquatic toxicity testing of dispersed oil and the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF). Technical Report. EM&A Inc., Lusby, MD: 79. Aurand, D., L. Walko, and R. Pond. 2000. Developing Consensus Ecological Risk Assessments: Environmental Protection in Oil Spill Response Planning, A Guidebook. United States Coast Guard. Washington, D.C. 148p. Aurand, D., M. Hitchings, L. Walko, J. Clark, J. Bonner, C. Page, R. Jamail & R. Martin. 2001. Justification for the Proposed Texas General Land Office “Spill of Opportunity” Testing Program. Regional Response Team 6 Review Draft. p.^pp. 66. Ecosystem Management & Assoc., Inc., Lusby, Maryland. Aurand, D., M. Hitchings, L. Walko, J. Clark, J. Bonner, C. Page, R. Jamail & R. Martin. 2004. Texas General Land Office “Spill of Opportunity” Dispersant Demonstration Project Description. Final Report. p.^pp. 156. Ecosystem Management & Assoc., Inc., Lusby, Maryland. Aveyard, R., B. P. Binks, and J. H. Clint. 2003. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 100-102(SUPPL.):503-546. DOI: 10.1016/S0001-8686(02)00069-6. Baca, B. J., and C. D. Getter. 1984. The toxicity of oil and chemically dispersed oil to the seagrass Thalassia testudinum. In Oil spill chemical dispersants: research, experience, and recommendations. Allen, T. E., eds. Philadelphia, PA: American Society for Testing and Materials. Baca, B., E. Rosch, E. D. DeMicco, and P. A. Schuler. 2014. TROPICS: 30-year Follow-up and Analysis of Mangroves, Invertebrates, and Hydrocarbons. International Oil Spill Proceedings (2014) 1: 1734-1748. Bacosa, H. P., et al. 2015. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters. Frontiers in microbiology 6, 1325 DOI: 10.3389/fmicb.2015.01325 Bacosa, H. P., et al. 2015. "Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site." Marine Pollution Bulletin 95(1): 265-272. PREPUBLICATION COPY

248 The Use of Dispersants in Marine Oil Spill Response Bælum, J., S. Borglin, R. Chakraborty, J. L. Fortney, R. Lamendella, O. U. Mason, M. Auer, M. Zemla, M. Bill, M. E. Conrad, S. A. Malfatti, S. G. Tringe, H.-Y. Holman, T. C. Hazen, and J. K. Jansson. 2012. Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology 14(9):2405-2416. DOI: 10.1111/j.1462-2920.2012.02780.x. Bagby, S. C., C. M. Reddy, C. Aeppli, G. B. Fisher, and D. L. Valentinea. 2017. Persistence and biodegradation of oil at the ocean floor following deepwater horizon. Proceedings of the National Academy of Sciences of the United States of America 114(1):E9-E18. DOI: 10.1073/pnas.1610110114. Bagi, A., D. M. Pampanin, O. G. Brakstad, and R. Kommedal. 2013. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q(10) approach. Marine Environmental Research 89:83-90. Ballou, T. G., S. C. Hess, R. E. Dodge, A. H. Knap, and T. D. Sleeter. 1989. Effects of untreated and chemically dispersed oil on tropical marine communities: a long-term field experiment. Presented at International Oil Spill Conference. Bandara, U. C., P. D. Yapa, and H. Xie. 2011. Fate and transport of oil in sediment laden marine waters. Journal of Hydro-Environment Research 5(3):145-156. DOI: 10.1016/j.jher.2011.03.002. Bandele, O. J., M. F. Santillo, M. Ferguson, and P. L. Wiesenfeld. 2012. In vitro toxicity screening of chemical mixtures using HepG2/C3A cells. Food and Chemical Toxicology. Barker, C. 2011. "A statistical outlook for the Deepwater Horizon oil spill." Geophysical Monograph Series 195: 237-244. Barron, M. O. 2003. Photoenhanced toxicity of oil in spill response and impact assessment. Proceedings of the 26 Arctic and Marine Oilspill Program (AMOP) Technical Seminar, (p. 1116). Canada: Environment Canada. Barron, M. G., and E. Holder. 2003. Are exposure and ecological risks of PAHs underestimated at petroleum contaminated sites? Human and Ecological Risk Assessment, 9(6), 1533- 1545. Retrieved from https://search.proquest.com/docview/200044488?accountid=152665 Barron, M. G., and L. Ka’aihue. 2003. Critical evaluation of CROSERF test methods for oil dispersant toxicity testing under subarctic conditions. Marine Pollution Bulletin 46(9):1191-1199. DOI: 10.1016/S0025-326X(03)00125-5. Barron, M. G., M. J. Hemmer, and C. R. Jackson. 2013. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions. Integrated environmental assessment and management 9(4):610-615. DOI: 10.1002/ieam.1420. Beegle-Krause, C. J., H. Simmons, M. McPhee, R. L. Daae, and M. Reed. 2013. The Fate of Dispersed Oil Under Ice. Arctic Response Technology – Oil Spill Preparedness. Bejarano, A. C. 2018. Critical Review and Analysis of Aquatic Toxicity Data on Oil Spill Dispersants. Environmental Toxicology and Chemistry. DOI: 10.1002/etc.4254. Bejarano, A. C., and M. G. Barron. 2014. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species. Environmental Science & Technology 48(8):4564-4572. DOI: 10.1021/es500649v. Bejarano, A. C., and J. Michel. 2016. Oil spills and their impacts on sand beach invertebrate communities: A literature review. Environmental Pollution 218:709-722. DOI: 10.1016/j.envpol.2016.07.065. PREPUBLICATION COPY

References 249 Bejarano, A. C., E. Levine, and A. Mearns. 2013. Effectiveness and potential ecological effects of offshore surface dispersant use during the Deepwater Horizon oil spill: a retrospective analysis of monitoring data. Environmental Monitoring and Assessment 185(12):10281- 10295. DOI: 10.1007/s10661-013-3332-y. Bejarano, A. C., V. Chu, J. Dahlin, and J. Farr. 2014. Development and Application of DTox: A Quantitative Database of the Toxicity of Dispersants and Chemically Dispersed Oil. Presented at International Oil Spill Conference. Bejarano, A. C., J. R. Clark, and G. M. Coelho. 2014. Issues and challenges with oil toxicity data and implications for their use in decision making: a quantitative review. Environmental Toxicology and Chemistry 33(4):732-742. DOI: 10.1002/etc.2501. Bejarano, A. C., J. K. Farr, P. Jenne, V. Chu, and A. Hielscher. 2016. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Environmental Toxicology and Chemistry 35(6):1576-1586. DOI: 10.1002/etc.3289. Bejarano, A. C., W. W. Gardiner, M. G. Barron, and J. Q. Word. 2017. Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity. Marine Pollution Bulletin 122(1-2):316-322. DOI: 10.1016/j.marpolbul.2017.06.064. Belore, R. 2014. Subsea chemical dispersant research. Proceedings of the 37th AMOP Tec. Sem. On Env. Contamination and Response, Environment Canada, Canmore, Alberta, pp 618- 650. Belore, R., A. Lewis, A. Guarino., and J. Mullin. 2008. Dispersant Effectiveness Testing on Viscous, US Outer Continental Shelf Crude Oils and Water-in-Oil Emulsions at Ohmsett. Presented at International Oil Spill Conference Proceedings. Belore, R. C., K. Trudel, J. V. Mullin, and A. Guarino. 2009. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants. Marine Pollution Bulletin 58(1):118-128. DOI: 10.1016/j.marpolbul.2008.08.013. Bence, A. E , K. A. Kvenvolden, and M.C. Kennicutt. 1996. Organic chemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill—A review. Organic Geochemistry 24: 7–42. Benignus, V. A., P. J. Bushnell, and W. K. Boyes. 2011. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations. Risk Analysis 31:1935-1948. Benner Jr, R. A., K. R El Said, E. Jester, R. A. Flurer, B. L. Boyd, B. Gamble, S. Gratz, K. J. Mulligan, D. T. Heitkemper, D. Burrows, D. A. M. Da, M. M. Krahn, W. L. Reichert, G. Ylitalo, S. M. Plakas, V. Seyfert-Margolis, and R. Dickey. 2018. Investigation of Corexit® 9500 Dispersant in Gulf of Mexico Seafood Species. Bera, G., T. Parkerton, A. Redman, N. R. Turner, D. A. Renegar, J. L. Sericano, and A. H. Knap. 2018. Passive dosing yields comparable dissolved aqueous exposures of crude oil as CROSERF water accommodated fraction method. Environmental Toxicology and Chemistry 37: 2810-2819. doi:10.1002/etc.4263 Berdugo-Clavijo, C., and L. M. Gieg. 2014. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Frontiers in Microbiology PREPUBLICATION COPY

250 The Use of Dispersants in Marine Oil Spill Response 5:197. DOI: 10.3389/fmicb.2014.00197. Bianchi, T. S., R. L. Cook, E. M. Perdue, P. E. Kolic, N. Green, Y. Zhang, R. W. Smith, A. S. Kolker, A. Ameen, G. King, L. M. Ojwang, C. L. Schneider, A. E. Normand, and R. Hetland. 2011. Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U.S.A. Marine Environmental Research 72(5):248-257. DOI: 10.1016/j.marenvres.2011.09.007. Bingham et al 1981 “Carcinogenic potential of petroleum hydrocarbons: a critical review of the literature”. J. of Env. Pathology and Toxicology 3(1-2): 483-563 Blackall, P. J., and G. A. Sergy. 1981. The BIOS project—Frontier Oil Spill Countermeasures research. Presented at Proceedings of the 1981 International Oil Spill Conference, Atlanta, Georgia. Blanchard, D. C. and A. H. Woodcock. 1980. “The Production, Concentration, and Vertical Distribution of the Sea-Salt Aerosol*.” Annals of the New York Academy of Sciences 338(1): 330-347. Bobra, M. 1992. A study of the evaporation of petroleum oils, Environment Canada, Environmental Protection Directorate, River Road Environmental Technology Centre. Bocard C, Castaing G, Gatellier C (1984) Chemical oil dispersion in trials at sea and in laboratory tests: the key role of dilution processes. In: Allen TE (ed) Oil spill chemical dispersants, research, experience, and recommendation. American Society for Testing and Materials, Philadelphia, pp 125–142 Bock, M., H. Robinson, R. Wenning, D. French-McCay, J. Rowe, and A. H. Walker. 2018. Comparative risk assessment of oil spill response options for a deepwater oil well blowout: Part II. Relative risk methodology. Marine Pollution Bulletin 133:984-1000. DOI: https://doi.org/10.1016/j.marpolbul.2018.05.032. Boehm, P. D. and P. D. Carragher. 2012. Location of natural oil seep and chemical fingerprinting suggest alternative explanation for deep sea coral observations. Proceedings of the National Academy of Sciences 109(40): E2647. Boehm P.D., M.S. Steinhauer, D.R.Green, B. Fowler, B. Humphrey, D.L. Fiest, W.J. Cretney. 1987. Comparative fate of chemically dispersed and beached crude oil in subtidal sediments of the arctic nearshore. Arctic. 1:133-48 Boehm, P. D., K. J. Murray, and L. L. Cook. 2016. Distribution and Attenuation of Polycyclic Aromatic Hydrocarbons in Gulf of Mexico Seawater from the Deepwater Horizon Oil Accident. Environmental Science & Technology 50(2):584-592. DOI: 10.1021/acs.est.5b03616. Bombardelli, F. A., G. C. Buscaglia, C. R. Rehmann, L. E. Rincon, and M. H. Garcia. 2007. Modeling and scaling of aeration bubble plumes: A two-phase flow analysis. Journal of Hydraulic Research 45(5):617-630. DOI: 10.1080/00221686.2007.9521798. Boufadel, M. C., P. Reeser, M. T. Suidan, B. A. Wrenn, J. Cheng, X. Du, T. L. Huang, and A. D. Venosa. 1999. Optimal Nitrate Concentration for the Biodegradation of n-Heptadecane in a Variably-Saturated Sand Column. Environmental Technology 20(2):191-199. DOI: 10.1080/09593332008616808. Boufadel, M. C., R. D. Bechtel, and J. Weaver. 2006. The movement of oil under non-breaking waves. Marine Pollution Bulletin 52(9):1056-1065. DOI: 10.1016/j.marpolbul.2006.01.012. Boufadel, M. C., K. Du, V. Kaku, and J. Weaver. 2007. Lagrangian simulation of oil droplets transport due to regular waves. Environmental Modelling and Software 22(7):978-986. DOI: 10.1016/j.envsoft.2006.06.009. PREPUBLICATION COPY

References 251 Boufadel, M. C., E. Wickley-Olsen, T. King, Z. Li, K. Lee, and A. D. Venosa. 2008. Theoretical foundation for predicting dispersion effectiveness due to waves. Presented at International Oil Spill Conference - IOSC 2008, Proceedings. Boufadel, M. C., A. Abdollahi-Nasab, X. Geng, J. Galt, and J. Torlapati. 2014. Simulation of the landfall of the deepwater horizon oil on the shorelines of the Gulf of Mexico. Environmental Science and Technology 48(16):9496-9505. DOI: 10.1021/es5012862. Boufadel, M. C., Z. Pan, B. Wartell, and T. Steffek. 2017. Chemical Characterization of the Ohmsett tank water: Filtration and potential impact on dispersion effectiveness. Presented at Proceedings of the 40th Arctic and Marine Oil Spill, Alberta, Canada, October 2017. Boufadel, M., Z. Pan, B. Wartell, T. Steffek, and A. Guarino. 2017. Chemical characterization of the ohmsett tank water: Filtration and potential impact on dispersion effectiveness. Presented at 40th AMOP Technical Seminar on Environmental Contamination and Response. Boufadel, M. C., F. Cui, J. Katz, T. Nedwed, and K. Lee. 2018. On the transport and modeling of dispersed oil under ice. Marine Pollution Bulletin 135:569-580. DOI: 10.1016/j.marpolbul.2018.07.046. Boufadel, M. C., F. Gao, L. Zhao, T. Özgökmen, R. Miller, T. King, B. Robinson, K. Lee, and I. Leifer. 2018. Was the Deepwater Horizon Well Discharge Churn Flow? Implications on the Estimation of the Oil Discharge and Droplet Size Distribution. Geophysical Research Letters 45(5):2396-2403. DOI: 10.1002/2017GL076606. Boxall, J. A., C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu. 2012. Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir 28(1):104-110. DOI: 10.1021/ la202293t Bragg, J. R. and E. H. Owens. 1995. "Shoreline Cleansing by Interactions Between Oil and Fine Mineral Particles.” International Oil Spill Conference Proceedings 1995(1): 219-227. Bragg, J. R., and S. H. Yang. 1995. Clay-oil flocculation and its role in natural cleansing in Prince William Sound following the Exxon Valdez oil spill. United States: American Society for Testing and Materials. Brakstad, O. G., et al. 2014. "Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin." Marine Pollution Bulletin 84(1-2): 125-134. Brakstad, O. G., T. Nordtug, and M. Throne-Holst. 2015. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine Pollution Bulletin 93(1):144-152. DOI: https://doi.org/10.1016/j.marpolbul.2015.02.006. Brakstad, O.G., A. Lewis, and C.J. Beegle-Krause. 2018. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Marine Pollution Bulletin 135: 346-356. Brakstad, O. G., U. Farooq, D. Ribicic, and R. Netzer. 2018. Dispersibility and biotransformation of oils with different properties in seawater. Chemosphere 191:44-53. DOI: 10.1016/j.chemosphere.2017.10.012. Brandvik, P. J., J. L. M. Resby, P. S. Daling, F. Leirvik, and J. Fritt-Rasmussen. 2010. Meso- scale weathering of oil as a function of ice conditions - Oil properties, dispersibility and in situ burnability of weathered oil as a function of time SINTEF. (19). Brandvik, P. J., Ø. Johansen, F. Leirvik, U. Farooq, and P. S. Daling. 2013. Droplet breakup in subsurface oil releases – Part 1: Experimental study of droplet breakup and effectiveness of dispersant injection. Marine Pollution Bulletin 73(1):319-326. DOI: PREPUBLICATION COPY

252 The Use of Dispersants in Marine Oil Spill Response https://doi.org/10.1016/j.marpolbul.2013.05.020. Brandvik, P. J., O. Johansen, U. Farooq, G. Angell, and F. Leirvik. 2014a. Sub-surface oil releases – Experimental study of droplet distributions and different dispersant injection techniques – Version 2, SINTEF Report A26122, unrestricted distribution, Trondheim, Norway. Brandvik, P. J., O. Johansen, U. Farooq, E. Davies, D. Krause, and F. Leirvik. 2014b. Subsurface oil releases – experimental study of droplet size distributions Phase II, SINTEF Report 102001616, unrestricted distribution, Trondheim, Norway. Brandvik, P. J., E. Davies, D. F. Krause, P. A. Beynet, M. Agrawal, and P. Evans. 2016. Subsea Mechanical Dispersion, Adding to the Toolkit of Oil Spill Response Technology. Society of Petroleum Engineers Conference on Health, Safety, Security, Environment and Social Responsibility Proceedings (Norway). doi:10.2118/179331-MS Brandvik, P. J., E. Davies, C. Storey, F. Leirvik, and D. Krause. 2017a. Subsurface oil releases – Verification of dispersant effectiveness under high pressure using combined releases of live oil and natural gas, SINTEF Report OC2017 A-090, unrestricted distribution, SINTEF, Trondheim Norway. Brandvik, P. J., E. Davies, O. Johansen, F. Leirvik, and R. Belore. 2017b. Subsea Dispersant Injection – Large-scale experiments to improve algorithms for initial droplet formation (modified Weber scaling), SINTEF Report OC2017 A-087, unrestricted distribution, SINTEF, Trondheim, Norway. Brandvik, P. J., O. Johansen, F. Leirvik, D. F. Krause, and P. S. Daling. 2018. Subsea dispersants injection (SSDI), effectiveness of different dispersant injection techniques – an experimental approach, Mar. Poll. Bull. 136, 385-393, https://doi.org/10.1016/j.marpolbul.2018.09.021 Brandvik, P. J., C. Storey, E. J. Davies, and F. Lervik. 2019a. Quantification of oil droplets under high pressure laboratory experiments simulating deep water oil releases and subsea dispersants injection (SSDI), Marine Pollution Bulletin 138, 520-525, https://doi.org/10.1016/j.marpolbul.2018.11.020 Brandvik, P. J., C. Storey, E. J. Davies, and O. Johansen, 2019b, Combined Releases of Oil and Gas Under Pressure: The Influence of Live Oil and Natural Gas on Initial Oil Droplet Formation, in press, Marine Pollution Bulletin. Brezonik, P. L. 1993. Chemical Kinetics and Process Dynamics in Aquatic Systems: 1st Edition. CRC Press. Brock, C. A., D. M. Murphy, R. Bahreini, and A. M. Middlebrook. 2011. Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill. Geophysical Research Letters 38(17). DOI: 10.1029/2011GL048541. Broje, V., and A. A. Keller. 2006. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environmental Science & Technology 40(24):7914- 7918. DOI: 10.1021/es061842m. Brooks, G. R., R. A. Larson, P. T. Schwing, I. Romero, C. Moore, G. J. Reichart, T. Jilbert, J. P. Chanton, D. W. Hastings, W. A. Overholt, K. P. Marks, J. E. Kostka, C. W. Holmes, and D. Hollander. 2015a. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10(7):e0132341. DOI: 10.1371/journal.pone.0132341. Brooks, J. P., C. P. Gerba, and I. L. Pepper. 2015b. Chapter 26 - Land Application of Organic Residuals: Municipal Biosolids and Animal Manures. In Environmental Microbiology PREPUBLICATION COPY

References 253 (Third Edition). Pepper, I. L., C. P. Gerba and T. J. Gentry, eds. San Diego: Academic Press. Brutsaert, W. 1982. Evaporation into the atmosphere: Theory, History, and Applications. Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-017-1497-6. Available at: https://www.springer.com/us/book/9789027712479 Budnitz, R. J., G. Apostolakis, D. M. Boore, L. S. Cluff, K. J. Coppersmith, C. A. Cornell, and P. A. Morris. 1998. Use of technical expert panels: applications to probabilistic seismic hazard analysis. Risk Analysis 18(4):463-469. Buist, I., S. Potter, L. Zabilansky, A. Guarino, and J. Mullin. 2008. Recent Mid-Scale Research on Using Oil Herding Surfactants to Thicken Oil Slicks in Pack Ice for In-Situ Burning. Presented at Oil Spill Response: A Global Perspective, Dordrecht, 2008. Buist, I., S. Potter, T. Nedwed, and J. Mullin. 2011. Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology 67(1):3- 23. DOI: https://doi.org/10.1016/j.coldregions.2011.02.004. Burgess, R. M., W. J. Berry, D. R. Mount and D. M. Di Toro. 2012. Mechanistic sediment quality guidelines based on contaminant bioavailability: Equilibrium partitioning sediment benchmarks. Environmental Toxicology and Chemistry 32(1): 102-114. Burmaster, D. E., and P. D. Anderson. 1994. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis 14(4): 477-481. Butler, J. D., T. F. Parkerton, A. D. Redman, D. J. Letinski, and K. R. Cooper. 2016. Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models. Environmental Science & Technology 50(15):8305-8315. DOI: 10.1021/acs.est.6b01758. Butler, J. D., T. F. Parkerton, D. J. Letinski, G. E. Bragin, M. A. Lampi, and K. R. Cooper. 2013. A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish. Science of the Total Environment 463:952-958. DOI: 10.1016/j.scitotenv.2013.06.079. Caetano, C. and D. White. 2017. The Evolution of a Dispersant Spraying Platform from Turboprop to Jet Engine Aircraft, IOSC Proceedings. Cai, Z., J. Fu, W. Liu, K. Fu, S. E. O'Reilly, and D. Zhao. 2017. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components. Marine Pollution Bulletin 114(1):408-418. DOI: https://doi.org/10.1016/j.marpolbul.2016.09.057. Calabrese, R. V., et al. 1986. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE Journal 32(4): 657-666. Calabrese, R. V., et al. 1986. Drop breakup in turbulent stirred-tank contactors. Part III: Correlations for mean size and drop size distribution. AIChE Journal 32(4): 677-681. Calvert, J. G., and J. N. Pitts. 1966. Photochemistry. John Wiley and Sons, Inc. New York. Camilli, R., C. M. Reddy, D. R. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva, and J. V. Maloney. 2010. Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science 330(6001):201-204. DOI: 10.1126/science.1195223. Campbell, D., D. Cox, J. Crum, K. Foster, P. Christie, and D. Brewster. 1993. Initial effects of the grounding of the tanker Braer on health in Shetland. The Shetland Health Study PREPUBLICATION COPY

254 The Use of Dispersants in Marine Oil Spill Response Group. British Medical Journal 307(6914):1251. Campbell, D., D. Cox, J. Crum, K. Foster, and A. Riley. 1994. Later effects of grounding of tanker Braer on health in Shetland. BMJ : British Medical Journal 309(6957):773-774. Campo, P., A. D. Venosa, and M. T. Suidan. 2013. Biodegradability of Corexit 9500 and Dispersed South Louisiana Crude Oil at 5 and 25 °C. Environmental Science & Technology 47(4):1960-1967. DOI: 10.1021/es303881h. Cao, Y., R. A. Chastain, E. A. Eloe, Y. Nogi, C. Kato, and D. H. Bartlett. 2014. Novel psychropiezophilic oceanospirillales species profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the puerto rico trench. Applied and Environmental Microbiology 80(1):54-60. DOI: 10.1128/AEM.02288-13. Carls, M. G., S. D. Rice, and J. E. Hose. 1999. Sensitivity to fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry 18(3):481-493. DOI: 10.1002/etc.5620180317. Carls, M. G., L. Holland, M. Larsen, T. K. Collier, N. L. Scholz, and J. P. Incardona. 2008. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquatic Toxicology 88(2):121-127. Carrasco, J. M., B. Pérez-Gómez, M. J. García-Mendizábal, V. Lope, N. Aragonés, M. J. Forjaz, P. Guallar-Castillón, G. López-Abente, F. Rodríguez-Artalejo, and M. Pollán. 2007. Health-related quality of life and mental health in the medium-term aftermath of the Prestige oil spill in Galiza (Spain): a cross-sectional study. BMC Public Health 7(1):245. DOI: 10.1186/1471-2458-7-245. Carter-Groves, M. 2014. Global Dispersant Stockpile: Part of the Industry Solution to Worst Case Scenario Readiness, IOSC Proceedings. Castro, M. C., G. R. Krieger, M. Z. Balge, M. Tanner, J. Utzinger, M. Whittaker, and B. H. Singer. 2016. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces. Proceedings of the National Academy of Sciences 113(51):14528. DOI: 10.1073/pnas.1605678113. Chakraborty, R., S. E. Borglin, E. A. Dubinsky, G. L. Andersen, and T. C. Hazen. 2012. Microbial Response to the MC-252 Oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology 3:357. DOI: 10.3389/fmicb.2012.00357. Chan, G. K. Y., A. C. Chow, and E. E. Adams. 2015. Effects of droplet size on intrusion of sub- surface oil spills. Environmental Fluid Mechanics 15(5):959-973. DOI: 10.1007/s10652- 014-9389-5. Chanton, J. P., J. Cherrier, R. M. Wilson, J. Sarkodee-Adoo, S. Bosman, A. Mickle, and W. M. Graham. 2012. Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environmental Research Letters 7(4):4. DOI: 10.1088/1748-9326/7/4/045303. Chanton, J., T. Zhao, B. E. Rosenheim, S. Joye, S. Bosman, C. Brunner, K. M. Yeager, A. R. Diercks, and D. Hollander. 2015. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the deepwater horizon oil spill. Environmental Science and Technology 49(2):847-854. DOI: 10.1021/es5046524. Chapman, P. M., and M. J. Riddle. 2005. Toxic effects of contaminants in polar marine environments. Environmental Science and Technology 39(9):200A-206A. DOI: 10.1021/es0532537. PREPUBLICATION COPY

References 255 Chazot, C., and A. Rhodes. 2017. The Development of Trans-Boundary Spill Response Cooperation Across West, Central and Southern Africa, IOSC Proceedings. Chen, Z., C. S. Zhan, K. Lee, Z. K. Li, and M. Boufadel. 2009. Modeling oil droplet formation and evolution under breaking waves. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 31(5):438-448. DOI: 10.1080/15567030701531295. Chen, L., Y. Zhou, X. Wang, T. Zwicker, and J. Lu. 2013. Enhanced oil-mineral aggregation with modified bentonite. Water Science and Technology 67(7):1581-1589. DOI: 10.2166/wst.2013.013. Cheong, H.-K., M. Ha, J. S. Lee, H. Kwon, E.-H. Ha, Y.-C. Hong, Y. Choi, W.-C. Jeong, J. Hur, S.-M. Lee, E.-J. Kim, and H. Im. 2011. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities. Environmental Health and Toxicology 26:e2011007. DOI: 10.5620/eht.2011.26.e2011007. Chopra, A., and T. S. Coolbaugh. 2016. Recent Technology Advances for Effective Oil Spill Response. AMOP Technical Seminar on Environmental Contamination and Response. Clark, J. R., G. E. Bragin, R. Febbo, and D. J. Letinski. 2001. Toxicity of physically and chemically dispersed oils under continuous and environmentally realistic exposure conditions: Applicability to dispersant use decisions in spill response planning. Presented at Proceedings of the 2001 International Oil spill Conference, American Petroleum Institute, Tampa, FL, USA, March 26-29, 2001 Coastal Response Research and Centern (CRRC) and Center for Spills and Environmental Hazards. 2016. State-of-Science for Dispersant Use in Arctic Waters. CRRC, a partnership between NOAA and the University of New Hampshire. Coastal Response Research Center (CRRC). 2017. State-of the Science of Dispersants and Dispersed Oil (DDO) in U.S. Arctic Waters: Degradation and Fate. Vol. 3 p.^pp. University of New Hampshire, Coastal Response Research Center. Coelho, G. 2014. Subsea Dispersant Injection NEBA and Monitoring: Evolution of the Process. Invited Speaker In: 2014 CCA-OSRL Technical Forum "Understanding Dispersants in Oil Spill Response". Fort Lauderdale, FL. November 2014. Coelho, G. M., D. V. Aurand, G. S Petch, and D. M. Jones. 1998. Toxicity bioassays on dispersed oil in the North Sea: June 1996 field trials. Ecosystem Management & Associates, Inc., Purcellville, VA. EM&A Report 96-02. Coelho, G. M., D. V. Aurand, A. Slaughter, L. Robinson, and B. C. Jones. 2011. Rapid Toxicity Evaluations of Several Dispersants: A Comparison of Results. Presented at International Oil Spill, February 22, 2011. Coelho, G., J. Clark, and D. Aurand. 2013. Toxicity testing of dispersed oil requires adherence to standardized protocols to assess potential real world effects. Environmental Pollution 177:185-188. DOI: 10.1016/j.envpol.2013.02.004. Coelho, G., D. Aurand, J. Staves, E. Miller, and A. Slaughter. 2015. Net Environmental Benefit Analysis in Support of the Shelburne Basin Venture Exploration Drilling Project. Coelho, G., A. Slaughter, and J. Staves. 2017a. Spill Impact Mitigation Assessment in Support of Statoil Canada Ltd Drilling Program in the Flemish Pass. Sponson Group Inc. Technical Report 17-02. Mansfield, TX, USA. Coelho, G., J. Staves ad D. Fritz. 2017b. Putting Oil Spill Impact Mitigation Assessment (SIMA) into Action for Spill Response Planning, In: 2017 IOSC, Long Beach, CA, USA Cole, J., D. M. Beare, A. P. W. Waugh, E. Capulas, K. E. Aldridge, C. F. Arlett, M. H. L. Green, J. E. Crum, D. Cox, R. C. Garner, K. H. Dingley, E. A. Martin, K. Podmore, R. Heydon, PREPUBLICATION COPY

256 The Use of Dispersants in Marine Oil Spill Response and P. B. Farmer. 1997. Biomonitoring of possible human exposure to environmental genotoxic chemicals: Lessons from a study following the wreck of the oil tanker Braer. Environmental and Molecular Mutagenesis 30(2):97-111. DOI: 10.1002/(SICI)1098- 2280(1997)30:2<97::AID-EM2>3.0.CO;2-9. Conmy, R. N., P. G. Coble, J. Farr, A. M. Wood, K. Lee, W. S. Pegau, I. D. Walsh, C. R. Koch, M. I. Abercrombie, M. S. Miles, M. R. Lewis, S. A. Ryan, B. J. Robinson, T. L. King, C. R. Kelble, and J. Lacoste. 2014. Submersible Optical Sensors Exposed to Chemically Dispersed Crude Oil: Wave Tank Simulations for Improved Oil Spill Monitoring. Environmental Science & Technology 48(3):1803-1810. DOI: 10.1021/es404206y. Conmy, R. N., T. King, B. Robinson, S. Ryan, Y. Lu, M. Abercrombie, M. Boufadel, and H. Niu. 2016. Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option and Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. U.S. Environmental Protection Agency, Washington, DC. Conmy, R. N., B. Robinson, T. King, M. Boufadel, S. Ryan, C. McIntyre, M. I. Abercrombie, and K. Lee. 2017. Oil plume simulations: Tracking oil droplet size distribution and fluorescence within high-pressure release jets. International Oil Spill Conference Proceedings 2017(1):1230-1250. DOI: 10.7901/2169-3358-2017.1.1230. Coolbaugh, T., et al. 2014. The IMO/IPIECA Global Initiative: Expanding Government and Industry Cooperation into New Regions, IOSC Proceedings. Coolbaugh, T., et al. 2017. Global Dispersant Approvals in Asia Pacific – Current Status and On Going Challenges, IOSC Proceedings. Cooper, C., D. Danmeier, S. Frolov, G. Stuart, S. Zuckerman, S. Anderson, and N. Sharma. 2016. Real time observing and forecasting of Loop/Eddy currents in 2015, Proc. Off. Tech. Conf, OTC-25920-MS. Coughlin, S. S. 1990. Recall bias in epidemiologic studies. Journal of Clinical Epidemiology 43(1):87-91. DOI: https://doi.org/10.1016/0895-4356(90)90060-3. Crespo-Medina, M., C. D. Meile, K. S. Hunter, A. R. Diercks, V. L. Asper, V. J. Orphan, P. L. Tavormina, L. M. Nigro, J. J. Battles, J. P. Chanton, A. M. Shiller, D. J. Joung, R. M. W. Amon, A. Bracco, J. P. Montoya, T. A. Villareal, A. M. Wood, and S. B. Joye. 2014. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 7(6):423. DOI: 10.1038/ngeo2156 Crespo-Medina, M., C. D. Meile, K. S. Hunter, A. R. Diercks, V. L. Asper, V. J. Orphan, P. L. Tavormina, L. M. Nigro, J. J. Battles, J. P. Chanton, A. M. Shiller, D. J. Joung, R. M. W. Amon, A. Bracco, J. P. Montoya, T. A. Villareal, A. M. Wood, and S. B. Joye. 2015. Addendum: The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 8:490. DOI: 10.1038/ngeo2447 https://www.nature.com/articles/ngeo2447#supplementary-information. Cronin, M. A., and J. W. Bickham. 1998. A Population Genetic Analysis of the Potential for a Crude Oil Spill to Induce Heritable Mutations and Impact Natural Populations. Ecotoxicology 7(5):259-278. DOI: 10.1023/A:1008887712459. Crowley, D., D. French-McCay, L. Santos, B. Chowdhury, and R. Markussen. 2018. Modeling atmospheric volatile organic compound concentrations resulting from a deepwater oil well blowout – Mitigation by subsea dispersant injection. Marine Pollution Bulletin 136:152-163. DOI: https://doi.org/10.1016/j.marpolbul.2018.09.001. Curd, H. 2011. The use of dispersant for the control of volatile organic compounds. Presented at, PREPUBLICATION COPY

References 257 Proceedings of the 2011 International Oil Spill Conference. D’Andrea, M. A., and G. K. Reddy. 2013. Health Consequences among Subjects Involved in Gulf Oil Spill Clean-up Activities. The American Journal of Medicine 126(11):966-974. DOI: 10.1016/j.amjmed.2013.05.014. D’Andrea, M. A., and G. K. Reddy. 2018. The Development of Long-Term Adverse Health Effects in Oil Spill Cleanup Workers of the Deepwater Horizon Offshore Drilling Rig Disaster. Frontiers in Public Health 6(117):117. DOI: 10.3389/fpubh.2018.00117. D’Asaro, E. A., A. Y. Shcherbina, J. M. Klymak, J. Molemaker, G. Novelli, C. M. Guigand, A. C. Haza, B. K. Haus, E. H. Ryan, G. A. Jacobs, H. S. Huntley, N. J. M. Laxague, S. Chen, F. Judt, J. C. McWilliams, R. Barkan, A. D. Kirwan, Jr., A. C. Poje, and T. M. Özgökmen. 2018. Ocean convergence and the dispersion of flotsam. Proceedings of the National Academy of Sciences of the United States of America 115(6):1162-1167. DOI: 10.1073/pnas.1718453115. D’Auria, M., Emanuele, L., Racioppi, R., Velluzzi, V. 2009. Photochemical degradation of crude oil: comparison between direct irradiation, photocatalysis, and photocatalysis on zeolite. Journal of Hazardous Materials 164 (1), 32–38. Dabestani, R., and I. N. Ivanov. 1999. A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochemistry and photobiology 70(1):10-34. Daling, P., A. Holumsnes, C. Rasmussen, P. J. Brandvik, and F. Leirvik. 2010. Development and field testing of a flexible system for application of dispersants on oil spills in ice. Daly, K. L., U. Passow, J. Chanton, and D. Hollander. 2016. Assessing the impacts of oil- associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18-33. DOI: 10.1016/j.ancene.2016.01.006. Danaei, G., S. Vander Hoorn, A. D. Lopez, C. J. Murray, M. Ezzati, and Comparative Risk Assessment collaborating group (Cancers). 2005. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. The Lancet 366(9499): 1784-1793. Davies, E., P. J. Brandvik, O. Johansen, I. Nagamine, D. Dunnebier, S. Masutani, and F. Leirvik. 2016. Fate of subsea dispersed oil droplets, SINTEF Report 102004240, unrestricted distribution, SINTEF, Trondheim Norway. Davis, E. J., D. A. E. Engelbertha Dunnebier, O. Johansen, P. J. Brandvik, S. Masutani, and I. Nagamine. 2017. Shedding from chemically-treated oil droplets rising in sea water, unrestricted distribution, SINTEF, Trondheim Norway. de Gouw, J. A., A. M. Middlebrook, C. Warneke, R. Ahmadov, E. L. Atlas, R. Bahreini, D. R. Blake, C. A. Brock, J. Brioude, D. W. Fahey, F. C. Fehsenfeld, J. S. Holloway, M. Le Henaff, R. A. Lueb, S. A. McKeen, J. F. Meagher, D. M. Murphy, C. Paris, D. D. Parrish, A. E. Perring, I. B. Pollack, A. R. Ravishankara, A. L. Robinson, T. B. Ryerson, J. P. Schwartz, J. R. Spackman, A. Srinivasan, and L. A. Watts. 2011. Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill. Science 331(6022):1295- 1299. DOI: 10.1126/science.1200320. de Hoop, L., A. M. Schipper, R. S. Leuven, M. A. Huijbregts, G. H. Olsen, M. G. Smit, and A. J. Hendriks. 2011. Sensitivity of polar and temperate marine organisms to oil components. Environmental Science & Technology 45(20):9017-9023. DOI: 10.1021/es202296a. Decker, J. A., D. G. DeBord, B. Bernard, G. S. Dotson, J. Halpin, C. J. Hines, M. Kiefer, K. PREPUBLICATION COPY

258 The Use of Dispersants in Marine Oil Spill Response Myers, E. Page, P. Schulte, and J. Snawder. 2013. Recommendations for Biomonitoring of Emergency Responders: Focus on Occupational Health Investigations and Occupational Health Research. Military medicine 178(1):68-75. Deepwater Horizon Natural Resource Damage Assessment Trustees. 2016. Deepwater Horizon oil spill: Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental Impact Statement. Retrieved from http://www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan. Delvigne, G. A. L., and C. E. Sweeney. 1988. Natural dispersion of oil. Oil and Chemical Pollution 4(4):281-310. DOI: https://doi.org/10.1016/S0269-8579(88)80003-0. Dembe A. E., J. B. Erickson, R. G. Delbos, and S. M. Banks. 2005. The impact of overtime and long work hours on occupational injuries and illnesses: New evidence from the United States. Occupational and Environmental Medicine. BMJ Publishing Group Ltd. 62(9):588-597. DeMicco, E., P. A. Schuler, T. Omer, and B. Baca. 2011. Net Environmental Benefit Analysis (NEBA) of Dispersed Oil on Nearshore Tropical Ecosystems: Tropics–the 25th Year Research Visit. Presented at International Oil Spill Conference Proceedings (IOSC). Det norske Veritas (DnV) and O. K. Bjerkemo. 2013. Recommended practices for Arctic oil spill prevention. Emergency Prevention, Preparedness and Response (EPPR) working group. Narayana Press, Denmark. DF Dickins Associates Ltd. 2004. Advancing Oil Spill Response in Ice- Covered Waters. Prepared for the Prince William Sound Oil Spill Recovery Institute (PWS-OSRI) and the United States Arctic Research Commission (USARC), March 2014. Di Toro, D. M., and J. A. McGrath. 2000. Technical Basis for Narcotic Chemicals and Polycyclic Aromatic Hydrocarbon Criteria. II. Mixtures and Sediments. Environ Toxicol Chem 19(8):1971-1982. DOI: 10.1002/etc.5620190804. Di Toro, D. M., et al. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry 10(12): 1541-1583. Di Toro, D. M., J. A. McGrath, and D. J. Hansen. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environmental Toxicology and Chemistry 19(8):1951-1970. Di Toro, D. M., J. A. McGrath, and W. A. Stubblefield. 2007. Predicting the Toxicity of Neat and Weathered Crude Oil: Toxic Potential and the Toxicity of Saturated Mixtures. Environ Toxicol Chem 26(1):24-36. DOI: 10.1897/06174R.1. Diamante, G., G. do Amaral e Silva Müller, N. Menjivar-Cervantes, E. G. Xu, D. C. Volz, A. C. Dias Bainy, and D. Schlenk. 2017. Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. Aquatic Toxicology 189:77-86. DOI: https://doi.org/10.1016/j.aquatox.2017.05.013. Diamond, S. A. 2003. Photoactivated toxicity in aquatic environments. UV Effects in Aquatic Organisms and Ecosystems.New York: Johm Wiley & Sons, Inc:219-250. Dickey, R. W. 2012. FDA Risk Assessment of Seafood Contamination after the BP Oil Spill. Environmental Health Perspectives 120(2):a54-a55. DOI: 10.1289/ehp.1104539. Dickey, R. W., and W. W. Dickhoff. 2012. Dispersants and Seafood Safety Assessment of the potential impact of COREXIT oil dispersants on seafood safety. Díez, S., E. Jover, J. M. Bayona, and J. Albaigés. 2007. Prestige oil spill. III. Fate of a heavy oil in the marine environment. Environmental science & technology, 41(9), 3075-3082. PREPUBLICATION COPY

References 259 Dissanayake, A. L., J. Gros, and S. A. Socolofsky. 2018. Integral models for bubble, droplet and multiphase plume dynamics in stratification and crossflow. Environ Fluid Mech:1-36. DOI: 10.1007/s10652-018-9591-y. DIVER. 2017. Web Application: Data Integration Visualization Exploration and Reporting Application, National Oceanic and Atmospheric Administration. Retrieved: [September, 20, 2017], from https://www.diver.orr.noaa.gov. Douglas, P. M. J., D. A. Stolper, J. M. Eiler, A. L. Sessions, M. Lawson, Y. Shuai, A. Bishop, O. G. Podlaha, A. A. Ferreira, E. V. Santos Neto, M. Niemann, A. S. Steen, L. Huang, L. Chimiak, D. L. Valentine, J. Fiebig, A. J. Luhmann, W. E. Seyfried, G. Etiope, M. Schoell, W. P. Inskeep, J. J. Moran, and N. Kitchen. 2017. Methane clumped isotopes: Progress and potential for a new isotopic tracer. Organic Geochemistry 113:262-282. DOI: https://doi.org/10.1016/j.orggeochem.2017.07.016. Drieu, M., et al. 2017. One Gulf – Commitment to Preparedness. IOSC Proceedings. Du, M., and J. D. Kessler. 2012. Assessment of the Spatial and Temporal Variability of Bulk Hydrocarbon Respiration Following the Deepwater Horizon Oil Spill. Environmental Science and Technology 46(19):10499-10507. DOI: 10.1021/es301363k. Dubinsky, E. A., M. E. Conrad, R. Chakraborty, M. Bill, S. E. Borglin, J. T. Hollibaugh, O. U. Mason, Y. M. Piceno, F. C. Reid, W. T. Stringfellow, L. M. Tom, T. C. Hazen, and G. L. Andersen. 2013. Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the Deepwater Horizon Oil Spill in the Gulf of Mexico. Environmental Science & Technology 47(19):10860-10867. DOI: 10.1021/es401676y. Duerr, R. S., J. G. Massey, M. H. Ziccardi, and Y. N. Addassi. 2011. Physical effects of Prudhoe Bay crude oil water accommodated fractions (WAF) and Corexit 9500 chemically enhanced water accommodated fractions (CEWAF) on common murre feathers and California sea otter hair. Presented at, Proceedings of the 2011 International Oil spill Conference. Duke, N. C. 2016. Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Marine Pollution Bulletin 109(2):700-715. Eames, I. 2008. Settling of particles beneath water waves. Journal of Physical Oceanography 38(12):2846-2853. DOI: 10.1175/2008JPO3793.1. Ebert, T.A., et al. 2018. Summary of Studies of Corexit Dispersant Impact Behavior into Oil Slicks and Dispersant Droplet Evaporation. IOSC Proceedings. Ebrahimi, D., J. Li, and D.B. Hibbert. (2007). Classification of weathered petroleum oils by multi-way analysis of gas chromatography–mass spectrometry data using PARAFAC2 parallel factor analysis. Journal of Chromatography A, 1166(1), 163-170. Echols, B., C. Langdon, W. Stubblefield, G. Rand, and P. Gardinali. 2018. A Comparative Assessment of the Aquatic Toxicity of Corexit 9500 to Marine Organisms. Archives of Environmental Contamination and Toxicology. Edwards, B. R., C. M. Reddy, R. Camilli, C. A. Carmichael, K. Longnecker, and B. A. S. Van Mooy. 2011. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environmental Research Letters 6(3). DOI: 10.1088/1748-9326/6/3/035301. Ehrenhauser, F.S., P. Avij, X. Shu, V. Dugas, I. Woodson, T. Liyana-Arachchi, Z. Zhang, F.R. Hung, and K.T. Valsaraj. 2014. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway. Environmental Science: Processes & Impacts, 16(1), pp.65-73. PREPUBLICATION COPY

260 The Use of Dispersants in Marine Oil Spill Response El Said, K., E. Jester, R. Flurer, B. Boyd, B. Gamble, S. Gratz, K. Mulligan, D. Heitkemper, and D. Burrows. 2010. Investigation of Corexit® 9500 Dispersant in Gulf of Mexico Seafood Species. Elliott, A. J., N. Hurford, and C. J. Penn. 1986. Shear diffusion and the spreading of oil slicks. Marine Pollution Bulletin 17(7):308-313. DOI: 10.1016/0025-326X(86)90216-X. Engelhardt, R. R. 1983. Petroleum effects on marine mammals. Aquatic Toxicology 4(3):199- 217. Esbaugh, A. J., E. M. Mager, J. D. Stieglitz, R. Hoenig, T. L. Brown, B. L. French, T. L. Linbo, C. Lay, H. Forth, N. L. Scholz, J. P. Incardona, J. M. Morris, D. D. Benetti, and M. Grosell. 2016. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. Science of the Total Environment 543(Pt A):644-651. DOI: 10.1016/j.scitotenv.2015.11.068. B.P. Exploration and Production. 2014. Gulf Science Data, Water Chemistry Data File: Directory: Water; subdirectory: Water Chemistry; filename: WaterChemistry_W-01v02- 01.csv (zipped). Last modified May 2014. [cited 2015 July 28]. Available from: http://gulfsciencedata. bp.com. Hernandez, Jr., F. J., J. E. Filbrun, J. Fang, and J. T. Ransom. 2016. Condition of larval red snapper (Lutjanus campechanus ) relative to environmental variability and the Deepwater Horizon oil spill. Environmental Research Letters 11(9):094019. Fabisiak, J. P., and B. D. Goldstein. 2011. Oil Dispersants and Human Health Effects. Department of Environmental & Occupational Health, Center for Healthy Environments & Communities (CHEC), University of Pittsburgh Graduate School of Public Health. Retrieved from: https://crrc.unh.edu/sites/crrc.unh.edu/files/media/docs/Workshops/dispersant_forum_13/ HumanHealthEffects.pdf Fabregat, A., W. K. Dewar, T. M. Ozgokmen, A. C. Poje, and N. Wienders. 2015. Numerical simulations of turbulent thermal, bubble and hybrid plumes. Ocean Modelling 90:16-28. DOI: 10.1016/j.ocemod.2015.03.007. Fabregat, A., A. C. Poje, T. M. Öygökmen, and W. K. Dewar. 2016. Dynamics of turbulent plumes with mixed buoyancy sources in thermally stratified environments Physics of Fluids. FAO/WHO. 1991. Toxicological evaluation of certain food additives and contaminants. WHO Food Additives Series, No. 28, 1991, no. 723 on INCHEM. Geneva, Switzerland:Food and Agricultural Organization of the United Nations/World Health Organization. FAO/WHO. 1995. Toxicological evaluation of certain food additives with a review of general principles and of specifications. In: 44th Report of the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 859. Geneva, Switzerland: Food and Agricultural Organization of the United Nations/World Health Organization. Farwell, C., C. M. Reddy, E. Peacock, R. K. Nelson, L. Washburn, and D. L. Valentine. 2009. Weathering and the fallout plume of heavy oil from strong petroleum seeps near Coal Oil Point, CA. Environmental Science and Technology 43(10):3542-3548. DOI: 10.1021/es802586g. Fathalla, E. M., and J. T. Andersson. 2011. Products of polycyclic aromatic sulfur heterocycles in oil spill photodegradation. Environmental Toxicology and Chemistry, 30(9):2004- 2012. PREPUBLICATION COPY

References 261 Fay, J. A. 1969. The Spread of Oil Slicks on a Calm Sea. In Oil on the Sea: Proceedings of a symposium on the scientific and engineering aspects of oil pollution of the sea, sponsored by Massachusetts Institute of Technology and Woods Hole Oceanographic Institution and held at Cambridge, Massachusetts, May 16, 1969. Hoult, D. P., eds. Boston, MA: Springer US. The Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team. 2010. Oil budget calculator deepwater Horizon. Findlay, G. M. 1928. Ultra-violet light and skin cancer. The Lancet 212(5491):1070-1073. Fingas, M. 2001. Oil Spill Dispersants: A Technical Summary. Oil Spill Science and Technology – Chapter 15. Gulf Professional Publishing. Pages 435-582. DOI: 10.1016/B978-1- 85617-943-0.10015-2 Fingas, M. 2011. Chapter 15 - Oil Spill Dispersants: A Technical Summary. Oil Spill Science and Technology. M. Fingas. Boston, Gulf Professional Publishing: 435-582. Fingas, M. 2013. A review of natural dispersion models. International Oil Spill Conference Proceedings p. 207-224. DOI: 10.7901/2169-3358-2014-1-285471.1. Fingas, M. 2015. A Review of Natural Dispersion Models. Handbook of Oil Spill Science and Technology. Fiocco, R. J., and A. Lewis. 1999. Oil spill dispersants. Pure and Applied Chemistry 71(1): 27- 42. Fisher, C. R., P. Y. Hsing, C. L. Kaiser, D. R. Yoerger, H. H. Roberts, W. W. Shedd, E. E. Cordes, T. M. Shank, S. P. Berlet, M. G. Saunders, E. A. Larcom, and J. M. Brooks. 2014. Footprint of deepwater horizon blowout impact to deep-water coral communities. Proceedings of the National Academy of Sciences of the United States of America 111(32):11744-11749. DOI: 10.1073/pnas.1403492111. Fitzgerald, T. P., and J. M. Gohlke. 2014. Contaminant Levels in Gulf of Mexico Reef Fish after the Deepwater Horizon Oil Spill As Measured by a Fishermen-Led Testing Program. Environmental Science & Technology 48(3):1993-2000. DOI: 10.1021/es4051555. Fitzpatrick, F. A., M. C. Boufadel, R. Johnson, K. W. Lee, T. P. Graan, A. C. Bejarano, Z. Zhu, D. Waterman, D. M. Capone, E. Hayter, S. K. Hamilton, T. Dekker, M. H. Garcia, and J. S. Hassan. 2015. Oil-particle interactions and submergence from crude oil spills in marine and freshwater environments: review of the science and future research needs. Reston, VA: 44. Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks Jr JG, Shank RC, Slaga TJ, Snyder PW. Safety Assessment of Dialkyl Sulfosuccinate Salts as Used in Cosmetics. International journal of toxicology. 2016 Nov;35(3_suppl):34S- 46S. Flurer, R. A., B. L. Boyd, B. Gamble, S. Gratz, K. J. Mulligan, R. A. Benner Jr., K. R. El Said, E. L. E. Jester, D. G. Burrows, D. A. M. da Silva, M. M. Krahn, W. L. Reichert, and G. M. Ylitalo. 2010. Determination of Dioctylsulfosuccinate in Select Seafoods Using a QuEChERS Extraction with Liquid Chromatography- Triple Quadrupole Mass Spectrometry. FDA/ORA/DFS Laboratory Information Bulletin. pp. 1-19. Fodrie F.J., K.W. Able, F. Galvez, K.L. Heck Jr., O.P. Jensen, P.C. López-Duarte, C.W. Martin, R.E. Turner, A. Whitehead. Integrating organismal and population responses of estuarine fishes in Macondo spill research. BioScience. 2014 Aug 29;64(9):778-88. Fogaca, F., C. Soares, M. Oliveira, R. Alves, A. Maulvault, V. Barbosa, P. Anacleto, J. Avelar Magalhães, N. Bandarra, M. Ramalhosa, S. Morais, and A. Marques. 2018. Polycyclic PREPUBLICATION COPY

262 The Use of Dispersants in Marine Oil Spill Response aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure. Forth, H. P., C. L. Mitchelmore, J. M. Morris, and J. Lipton. 2017. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment. Environmental Toxicology and Chemistry 36(6):1450-1459. DOI: 10.1002/etc.3672. Forth, H. P., C. L. Mitchelmore, J. M. Morris, C. R. Lay, and J. Lipton. 2017. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment. Environmental Toxicology and Chemistry 36(6):1460-1472. DOI: 10.1002/etc.3803. Fraga, B., T. Stoesser, C. C. K. Lai, and S. A. Socolofsky. 2016. A LES-based Eulerian- Lagrangian approach to predict the dynamics of bubble plumes. Ocean Modelling 97:27- 36. DOI: 10.1016/j.ocemod.2015.11.005. Frelichowska, J., M. A. Bolzinger, and Y. Chevalier. 2010. Effects of solid particle content on properties of o/w Pickering emulsions. Journal of Colloid and Interface Science 351(2):348-356. DOI: 10.1016/j.jcis.2010.08.019. French McCay, D. P. 2002. Development and application of an oil toxicity and exposure model, OilToxEx. Environmental Toxicology and Chemistry 21(10):2080-2094. French-McCay, D. 2003. Development and Application of Damage Assessment Modeling: Example Assessment for the North Cape Oil Spill. Marine Pollution Bulletin 47(9- 12):341-359. DOI: 10.1016/s0025-326x(03)00208-x French McCay, D. 2004. Oil spill impact modeling development and validation. Environ Toxicol Chem 23(10):2441-2456. French-McCay, D. and D. Crowley. 2018. Sensitivity Analysis for Oil Fate and exposure Modeling of a Subsea Blowout – Data Report, open source report available from American Petroleum Inst. French-McCay, D. P., C. Mueller, J. Payne, E. Terrill, M. Otero, S. Y. Kim, M. Carter, W. Nordhausen, M. Lampinen, and C. Ohlmann. 2008. Dispersed Oil Transport Modeling Calibrated By Field-Collected Data Measuring Fluorescein Dye Dispersion. International Oil Spill Conference Proceedings 2008(1):527-536. DOI: 10.7901/2169-3358-2008-1- 527. French McCay, D., K. Jayko, Z. Li, M. Horn, Y. Kim, T. Isaji, D. Crowley, M. Spaulding, L. Decker, C. Turner, S. Zamorski, J. Fontenault, R. Shmookler, and J. Rowe. 2015. WC_TR.14: Modeling Oil Fate and Exposure Concentrations in the Deepwater Plume and Rising Oil Resulting from the Deepwater Horizon Oil Spill. 14. French-McCay, D. P., M. Horn, Z. Li, K. Jayko, M. L. Spaulding, D. Crowley, and D. Mendelsohn. 2018. Modeling Distribution, Fate, and Concentrations of Deepwater Horizon Oil in Subsurface Waters of the Gulf of Mexico.683-735. DOI: 10.1016/b978-0- 12-804434-6.00031-8. French-McCay, D., and D. Crowley. 2018. Sensitivity Analysis for Oil Fate and Exposure Modeling of a Subsea Blowout – Data Report to API, unrestricted access. June, Project 2015-110161 (has been submitted for publication) French-McCay, D., D. Crowley, J. J. Rowe, M. Bock, H. Robinson, R. Wenning, A. H. Walker, J. Joeckel, T. J. Nedwed, and T. F. Parkerton. 2018. Comparative Risk Assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling. PREPUBLICATION COPY

References 263 Marine Pollution Bulletin 133:1001-1015. DOI: https://doi.org/10.1016/j.marpolbul.2018.05.042. Friedman, P. D., and J. Katz. 2002. Mean rise rate of droplets in isotropic turbulence. Physics of Fluids 14(9):3059-3073. DOI: 10.1063/1.1497377. Frometa, J., M. E. DeLorenzo, E. C. Pisarski, and P. J. Etnoyer. 2017. Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Marine Pollution Bulletin 122(1-2):91-99. DOI: 10.1016/j.marpolbul.2017.06.009. Fu, J., Y. Gong, X. Zhao, S. E. O’Reilly, and D. Zhao. 2014. Effects of Oil and Dispersant on Formation of Marine Oil Snow and Transport of Oil Hydrocarbons. Environmental Science & Technology 48(24):14392-14399. DOI: 10.1021/es5042157. Fu, J., Y. Gong, Z. Cai, S. E. O'Reilly, and D. Zhao. 2017. Mechanistic investigation into sunlight-facilitated photodegradation of pyrene in seawater with oil dispersants. Mar. Pollut. Bull. 114: 751-758. Gallacher, J., K. Bronstering, S. Palmer, D. Fone, and R. Lyons. 2007. Symptomatology attributable to psychological exposure to a chemical incident: a natural experiment. Journal of Epidemiology and Community Health 61(6):506. Gallaway BJ, Konkel WJ, Norcross BL. Some thoughts on estimating change to Arctic cod populations from hypothetical oil spills in the eastern Alaska Beaufort Sea. Arctic Science. 2017 Jun 7;3(4):716-29 Gam, K. B., R. K. Kwok, L.S. Engel, M.D. Curry, P.A. Stewart, M.R. Stenzel, J.A. McGrath, W.B. Jackson II, R.L. Jensen, A.P. Keil, M.Y. Lichtveld, A.K. Miller, and D.P. Sandler. 2018. Lung Function in Oil Spill Response Workers 1–3 Years After the Deepwater Horizon Disaster. Epidemiology 29(3):315-322. DOI: 10.1097/ede.0000000000000808. Gam, K.B., R. K. Kwok, L. S. Engel, M. D. Curry, P. A. Stewart, M. Stenzel, J. A. McGrath, W. Braxton Jackson, R. L. Jensen, M. Lichtveld, A. K. Miller, and D. P. Sandler. 2018. Exposure to Oil Spill Chemicals and Lung Function in Deepwater Horizon Disaster Response Workers. Journal of Occupational and Environmental Medicine 60(6):e312- e318. DOI: 10.1097/JOM.0000000000001292. Garcia, M. T., E. Campos, A. Marsal and I. Ribosa. 2009. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Research 43: 295-302. Gardiner, W. W., J. Q. Word, J. D. Word, R. A. Perkins, K. M. McFarlin, B. W. Hester, L. S. Word, and C. M. Ray. 2013. The acute toxicity of chemically and physically dispersed crude oil to key Arctic species under Arctic conditions during the open water season. Environ Toxicol Chem 32(10):2284-2300. DOI: 10.1002/etc.2307. Garneau, M.-È., C. Michel, G. Meisterhans, N. Fortin, T. L. King, C. W. Greer, and K. Lee. 2016. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiology Ecology 92(10):fiw130-fiw130. DOI: 10.1093/femsec/fiw130. Garrett, R.M., I.J. Pickering, C.E. Haith and R.C. Prince. 1998. Photooxidation of Crude Oils. Environmental Science and Technology 32(23):3719–3723. Geng, X., M. C. Boufadel, Y. R. Personna, K. Lee, D. Tsao, and E. D. Demicco. 2014. BIOB: A mathematical model for the biodegradation of low solubility hydrocarbons. Marine Pollution Bulletin 83(1):138-147. DOI: https://doi.org/10.1016/j.marpolbul.2014.04.007. Geng, X., M. C. Boufadel, K. Lee, S. Abrams, and M. Suidan. 2015. Biodegradation of PREPUBLICATION COPY

264 The Use of Dispersants in Marine Oil Spill Response subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry. Water Resources Research 51(5):3193-3218. DOI: 10.1002/2014WR016870. Geng, X., M. C. Boufadel, T. Ozgokmen, T. King, K. Lee, Y. Lu, and L. Zhao. 2016. Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients. Marine Pollution Bulletin 104(1-2):279-289. DOI: 10.1016/j.marpolbul.2016.01.007. George, S.E., G.M. Nelson, M.J. Kohan, S.H. Warren, B.T. Eischen and L.R. Brooks. 2001. Oral treatment of Fischer 344 rats with weathered crude oil and a dispersant influences intestinal metabolism and microbiota. Journal of Toxicology and Environmental Health, Part A 63:297–316 Geraci, J., and D. Aubin. 1988. Synthesis of effects of oil on marine mammals. Department of the Interior, Minerals Management Service Atlantic OCS Region:99-0049. Gerhard, L., and J. A. Anello. 1969. Effect of Polysorbate Hydrolysis Products on Biologic Membrane Permeability. Journal of Pharmaceutical Sciences 58(4):494-495. DOI: https://doi.org/10.1002/jps.2600580426 Gieg, L. M., and C. R. A. Toth. 2018. Anaerobic Biodegradation of Hydrocarbons: Metagenomics and Metabolomics. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Steffan, R., eds. Cham: Springer International Publishing. Giesy, J. P., J. L. Newsted, and J. T. Oris. 2013. Photo Enhanced Toxicity: Serendipity of a Prepared Mind And Flexible Program Management. Environmental Toxicology and Chemistry 32(5):969-971. Gilfillan, E. S., D. Page, and J. Foster. 1986. Tidal area dispersant project: fate and effects of chemically dispersed oil in the nearshore benthic environment. Final Report, Publication Number 4440. American Petroleum Institute, Washington, D.C. American Petroleum Institute. Gilson D. Report on the Non-Mechanical Response for the T/V Exxon Valdez Oil Spill. Submitted for the Oil Spill Prevention and Response Committee(OSPR) of the Prince William Sound Regional Citizens’ Advisory Council. 2006 Aug 30. Glover, C.M., S. P. Mezyk, K. G. Linden, and F. L. Rosario-Ortiz. 2014. Photochemical degradation of Corexit components in ocean water. Chemosphere 111:596-602. Gohlke, J. M., D. Doke, M. Tipre, M. Leader, and T. Fitzgerald. 2011. A Review of Seafood Safety after the Deepwater Horizon Blowout. Environmental Health Perspectives 119(8):1062-1069. DOI: 10.1289/ehp.1103507. Goldstein, B. D. 2010. Benzene as a cause of lymphoproliferative disorders. Chemico-Biological Interactions 184(1):147-150. DOI: https://doi.org/10.1016/j.cbi.2009.12.021. Goldstein, B. D. 2010. Understanding the Effects of Oil Spills on Human Health: In Assessing the Effects of the Gulf of Mexico Oil Spill on Human Health, A Summary of the June 2010 Workshop. Goldstein, B. D. 2016. Relevance of Transparency to Sustainability and to Pennsylvania’s Marcellus Shale Act 13: In J.C. Dernbach & J.R. May (Eds.) Shale Gas and the Future of Energy: Law and Policy for Sustainability. Goldstein, B. D., H. J. Osofsky, and M. Y. Lichtveld. 2011. The Gulf Oil Spill. New England Journal of Medicine 364(14):1334-1348. DOI: 10.1056/NEJMra1007197. PREPUBLICATION COPY

References 265 Golshan, R., A. E. Tejada-Martínez, M. J. Juha, and Y. Bazilevs. 2017. LES and RANS simulation of wind- and wave-forced oceanic turbulent boundary layers in shallow water with wall modeling. Computers and Fluids 142:96-108. DOI: 10.1016/j.compfluid.2016.05.016. Golshan, R., M. C. Boufadel, V. A. Rodriguez, X. Geng, F. Gao, T. King, B. Robinson, and A. E. Tejada-Martínez. 2018. Oil droplet transport under non-breaking waves: An eulerian RANS approach combined with a lagrangian particle dispersion model. Journal of Marine Science and Engineering 6(1). DOI: 10.3390/jmse6010007. Gong, Y., X. Zhao, Z. Cai, S. E. O'Reilly, X. Hao and D. Zhao. 2014. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin 79(1-2): 16-33. DOI: 10.1016/j.marpolbul.2013.12.024. Gong, Y., J. Fu, S.E. O’Reilly and D. Zhao. 2015. Effects of oil dispersants on photodegradation of pyrene in marine water. J. Hazardous Materials. 287: 142-150. Gopalan, B., and J. Katz. 2010. Turbulent Shearing of Crude Oil Mixed with Dispersants Generates Long Microthreads and Microdroplets. Physical Review Letters 104(5):054501. DOI: 10.1103/PhysRevLett.104.054501. Goss, K. U. 2005. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibria 233(1): 19-22. Gräbsch, C. 2015. Health effects of mineral oil, dispersants and oil-dispersant-mixtures. In The Use of Dispersants to Combat Oil Spills in Germany at Sea. Grote, M., A. Nagel, N. Hartmut, J. Rauterberg, D.-S. Wahrendorf (eds.) Federal Institute for Risk Assessment, Berlin, Germany. Grace, H. P. 1982. Dispersion Phenomena in High Viscosity Immiscible Fluid Systems and Application Of Static Mixers As Dispersion Devices In Such Systems. Chemical Engineering Communications 14(3-6):225-277. DOI: 10.1080/00986448208911047. Granger, M. M. 2014. "Use (and abuse) of expert elicitation in support of decision making for public policy." Proceedings of the National Academy of Sciences 201319946. Gratz, S., A. Mohrhaus, B. Gamble, J. Gracie, D. Jackson, J. Roetting, L. Ciolino, H. McCauley, G. Schneider, D. Crockett, W. Krol, T. Arsenault, J. White, M. Flottmeyer, Y. Johnson, D. Heitkemper, and F. Fricke. 2010. Screen For The Presence Of Polycyclic Aromatic Hydrocarbons In Select Seafoods Using LC-Fluorescence. FDA/ORA/DFS 4475:1-39. Grenvald, J. C., T. G. Nielsen, and M. Hjorth. 2013. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods. Ecotoxicology 22(1):184-198. Gros, J., C. M. Reddy, R. K. Nelson, S. A. Socolofsky, and J. S. Arey. 2016. Simulating Gas– Liquid−Water Partitioning and Fluid Properties of Petroleum under Pressure: Implications for Deep-Sea Blowouts. Environmental Science & Technology 50(14):7397- 7408. DOI: 10.1021/acs.est.5b04617. Gros, J., S. A. Socolofsky, A. L. Dissanayake, I. Jun, L. Zhao, M. C. Boufadel, C. M. Reddy, and J. S. Arey. 2017. Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proceedings of the National Academy of Sciences 114(38):10065-10070. DOI: 10.1073/pnas.1612518114. Grote, M., G. Schüürmann, and R. Altenburger. 2005. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environmental Science & Technology 39(11):4141- 4149. Grote, M., W. Brack, H. A. Walter, and R. Altenburger. 2005. Light as a Confounding Factor for PREPUBLICATION COPY

266 The Use of Dispersants in Marine Oil Spill Response Toxicity Assessment of Complex Contaminated Sediments. Environmental Toxicology and Chemistry 24 (12): 3143–52. https://doi.org/10.1897/04-550r.1. Grote, M., C. van Bernem, B. Böhme, U. Callies, I. Calvez, B. Christie, K. Colcomb, H.-P. Damian, H. Farke, C. Gräbsch, A. Hunt, T. Höfer, J. Knaack, U. Kraus, S. Le Floch, G. Le Lann, H. Leuchs, A. Nagel, H. Nies, W. Nordhausen, J. Rauterberg, D. Reichenbach, G. Scheiffarth, F. Schwichtenberg, N. Theobald, J. Voß, and D.-S. Wahrendorf. 2018. The potential for dispersant use as a maritime oil spill response measure in German waters. Marine Pollution Bulletin 129(2):623-632. DOI: https://doi.org/10.1016/j.marpolbul.2017.10.050. Gründger, F., N. Jiménez, T. Thielemann, N. Straaten, T. Lüders, H.-H. Richnow, and M. Krüger. 2015. Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany. Frontiers in Microbiology 6:200. DOI: 10.3389/fmicb.2015.00200. Gullett, B. K., M. D. Hays, D. Tabor, and R. V. Wal. 2016. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns. Marine Pollution Bulletin 107(1):216-223. DOI: https://doi.org/10.1016/j.marpolbul.2016.03.069. Guo, F., D. M. L. Stebbins, T. Peng, R. Falahat, W. Zhao, S. Thomas, R. Toomey, and N. Alcantar. 2014. Effect of a Natural Cactus-Based Mucilage Dispersant on the Surface Tension and Droplet Size of Dispersed Crude Oil. AIChE Proceedings. Gustitus, S. A., and T. P. Clement. 2017. Formation, Fate, and Impacts of Microscopic and Macroscopic Oil-Sediment Residues in Nearshore Marine Environments: A Critical Review. Reviews of Geophysics 55(4):1130-1157. DOI: 10.1002/2017RG000572. Gustitus, S. A., G. F. John, and T. P. Clement. (2017). Effects of weathering on the dispersion of crude oil through oil-mineral aggregation. Science of the Total Environment 587-588: 36- 46. Guyomarch, J., F. X. Merlin, and P. Bernanose. 1999. Oil interaction with mineral fines and chemical dispersion: behaviour of the dispersed oil in coastal or estuarine conditions. In Arctic and Marine Oilspill Program Technical Seminar (Vol. 1, pp. 137-150). Ministry of Supply and Services, Canada. Guyomarch, J., S. L. Floch, and R. Jézéquel. 2012. Oil Weathering, Impact Assessment and Response Option Studies at the Pilot Scale: Improved Methodology and Design of a New Dedicated Flume Test. Presented at Proceedings of the Thirty-fifth AMOP Technical Seminar on Environmental Contamination and Response, Ottawa, Canada. Ha, M., H. Kwon, H.-K. Cheong, S. Lim, S. J. Yoo, E.-J. Kim, S. G. Park, J. Lee, and B. C. Chung. 2012. Urinary metabolites before and after cleanup and subjective symptoms in volunteer participants in cleanup of the Hebei Spirit oil spill. Science of the Total Environment 429:167-173. DOI: https://doi.org/10.1016/j.scitotenv.2012.04.036. Hall, R., A. Belisle, and L. Sileo. 1983. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill. Journal of Wildlife Diseases 19(2):106. Hall, G. J., G. S. Frysinger, C. Aeppli, C. A. Carmichael, J. Gros, K. L. Lemkau, R. K. Nelson, and C. M. Reddy. 2013. Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Marine Pollution Bulletin, 75(1):140-149. Hansel, T. C., H. Osofsky, E. Baumgartner, S. Bradberry, L. Brown, K. Kirkland, J. Langhinrichsen-Rohling, J. Osofsky, A. H. Speier, and B. D. Goldstein. 2017. Social and Environmental Justice as a Lens to Approach the Distribution of $105 Million of Directed Funding in Response to the Deepwater Horizon Oil Disaster. Environmental PREPUBLICATION COPY

References 267 Justice 10(4):119-127. DOI: 10.1089/env.2016.0039. Hansen, B. H., D. Altin, S. F. Rørvik, I. B. Øverjordet, A. J. Olsen, and T. Nordtug. 2011. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Science of the Total Environment 409(4):704-709. Hansen, B. H., D. Altin, A. J. Olsen, and T. Nordtug. 2012. Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod Calanus finmarchicus. Ecotoxicology and Environmental Safety 86:38-46. DOI: 10.1016/j.ecoenv.2012.09.009. Hansen, B. H., D. Altin, I. B. Øverjordet, T. Jager, and T. Nordtug. 2013. Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: Effects on survival and biomarker response. Science of the Total Environment 449:276-284. Harms, H., et al. 2011. "Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals." Nature Reviews Microbiology 9(3): 177-192. Hastings, D. W., et al. 2016. "Changes in sediment redox conditions following the BP DWH blowout event." Deep-Sea Research Part II: Topical Studies in Oceanography 129: 167- 178. Hatcher, P. G., W. Obeid, A. S. Wozniak, C. Xu, S. Zhang, P. H. Santschi, and A. Quigg. 2018. Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state 13C NMR spectroscopy. Marine Pollution Bulletin 126:159-165. DOI: 10.1016/j.marpolbul.2017.11.004. Hayworth JS, Clement TP. Provenance of Corexit-related chemical constituents found in nearshore and inland Gulf Coast waters. Marine pollution bulletin. 2012 Oct 1;64(10):2005-14. Hazen, T. C. 1997. Bioremediation. In Microbiology of the Terrestrial Subsurface. Amy, P. and D. Haldeman, eds. Boca Raton: CRC Press. Hazen, T. C. 2010. Biostimulation. In Handbook of Hydrocarbon Microbiology: Microbial interactions with hydrocarbons, oils, fats and related hydrophobic substrates and products. Timmis, K. N.: Springer Verlag. Hazen, T. C. 2010. Cometabolic Bioremediation. In Handbook of Hydrocarbon and Lipid Microbiology: Microbial interactions with hydrocarbons, oils, fats and related hydrophobic substrates and products. Timmis, K. N., eds. Berlin, Germany: Springer Verlag. Hazen, T. C. 2010. In Situ Groundwater Bioremediation. In Handbook of Hydrocarbon Microbiology: Microbial interactions with hydrocarbons, oils, fats and related hydrophobic substrates and products. Timmis, K. N.: Springer Verlag. Hazen, T. C. 2018. Cometabolic Bioremediation. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Steffan, R., eds. Cham: Springer International Publishing. Hazen, T. C., and G. S. Sayler. 2015. Environmental Systems Microbiology of Contaminated Environments.5.1.6-1-5.1.6-10. DOI: 10.1128/9781555818821.ch5.1.6. Hazen, T. C., and G. S. Sayler. 2016. Environmental Systems Microbiology of Contaminated Environments. In Manual of Environmental Microbiology, Fourth Edition: American Society of Microbiology. Hazen, T. C., and S. M. Techtmann. 2018. Oil Biodegradation in Deep Marine Basins. In Handbook of Hydrocarbon and Lipid Microbiology. Steffan, R., eds. Springer, Cham: PREPUBLICATION COPY

268 The Use of Dispersants in Marine Oil Spill Response Springer. Hazen, T. C., R. Chakraborty, J. M. Fleming, I. R. Gregory, J. P. Bowman, L. Jimenez, D. Zhang, S. M. Pfiffner, F. J. Brockman, and G. S. Sayler. 2009. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch Microbiol 191(3):221-232. DOI: 10.1007/s00203-008-0445-8. Hazen, T. C., E. A. Dubinsky, T. Z. DeSantis, G. L. Andersen, Y. M. Piceno, N. Singh, J. K. Jansson, A. Probst, S. E. Borglin, J. L. Fortney, W. T. Stringfellow, M. Bill, M. E. Conrad, L. M. Tom, K. L. Chavarria, T. R. Alusi, R. Lamendella, D. C. Joyner, C. Spier, J. Baelum, M. Auer, M. L. Zemla, R. Chakraborty, E. L. Sonnenthal, P. D'Haeseleer, H. Y. N. Holman, S. Osman, Z. M. Lu, J. D. Van Nostrand, Y. Deng, J. Z. Zhou, and O. U. Mason. 2010. Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science 330(6001):204-208. DOI: 10.1126/science.1195979. Hazen, T. C., A. M. Rocha, and S. M. Techtmann. 2013. Advances in monitoring environmental microbes. Current Opinion in Biotechnology 24(3):526-533. DOI: 10.1016/j.copbio.2012.10.020. Hazen, T. C., R. C. Prince, and N. Mahmoudi. 2016. Marine Oil Biodegradation. Environmental Science & Technology 50(5):2121-2129. DOI: 10.1021/acs.est.5b03333. Head, I. M., N. D. Gray, and S. R. Larter. 2014. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Frontiers in Microbiology 5(566). DOI: 10.3389/fmicb.2014.00566. Heintz, R. A., J. W. Short, and S. D. Rice. 1999. Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environmental Toxicology and Chemistry 18(3):494-503. Helton, J. C. 2011. Quantification of margins and uncertainties: Conceptual and computational basis. Reliability Engineering & System Safety, 96(9), 976-1013. Hemmer, M. J., M. G. Barron, and R. M. Greene. 2010. Comparative Toxicity of Eight Oil Dispersant Products on Two Gulf of Mexico Aquatic Test Species. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-11/113, 2010. Hemmer, M. J., M. G. Barron, and R. M. Greene. 2011. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ Toxicol Chem 30(10):2244-2252. DOI: 10.1002/etc.619. Herdter, E. S., D. P. Chambers, C. D. Stallings, and S. A. Murawski. 2017. Did the Deepwater Horizon oil spill affect growth of Red Snapper in the Gulf of Mexico? Fisheries Research 191:60-68. DOI: https://doi.org/10.1016/j.fishres.2017.03.005. Hermens, J. L. 1989. Quantitative structure-activity relationships of environmental pollutants. In Handbook of EnvironmentalChemistry, Vol 2E, Reactions and Processes. Hutzinger O: Springer-Verlag, Berlin, Germany. Hernandez, F. J., J. E. Filbrun, J. Fang and J. T. Ransom. 2016. Condition of larval red snapper (Lutjanus campechanus) relative to environmental variability and the Deepwater Horizon oil spill. Environmental Research Letters 11(9): 094019. Hill, A. B. 1965. The Environment and Disease: Association or Causation? Proceedings of the Royal Society of Medicine 58(5):295-300. Hill, P. S., A. Khelifa, and K. Lee. 2002. Time Scale for Oil Droplet Stabilization by Mineral Particles in Turbulent Suspensions. Spill Science & Technology Bulletin 8(1):73-81. DOI: https://doi.org/10.1016/S1353-2561(03)00008-2. PREPUBLICATION COPY

References 269 Hill, T. M., J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Robert, and L. Beaufort. 2006. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Proceedings of the National Academy of Sciences of the United States of America 103(37):13570-13574. DOI: 10.1073/pnas.0601304103. Hinze, J. O. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal 1(3):289-295. DOI: 10.1002/aic.690010303. Hjorth, M., and T. G. Nielsen. 2011. Oil exposure in a warmer Arctic: potential impacts on key zooplankton species. Marine Biology 158(6):1339-1347. Hodson, P. V., Adams, J. and Brown, R. S. 2018. Oil toxicity test methods must be improved. Environ Toxicol Chem. doi:10.1002/etc.4303 Hoffman, F. O., and J. S. Hammonds. 1994. Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Analysis 14(5): 707-712. Hokstad J. N., P. S. Daling, S. Johnsen, and M. Buffagni. 1998. Chemical and toxicological characterisation of water accommodated fractions relevant for oil spill situations. Computational Mechanics Publications Ltd, Southampton. Holland-Bartels, L., and B. Pierce. 2011. An Evaluation of the Science Needs to Inform Decisions on Outer Continental Shelf Energy Development in the Chukchi and Beaufort Seas, Alaska. Hoult, D. P. 1972. Oil Spreading on the Sea. Annual Review of Fluid Mechanics 4(1):341-368. DOI: 10.1146/annurev.fl.04.010172.002013. https://www.nature.com/articles/nmicrobiol201793#supplementary-information. Houma ICP Aerial Dispersant Group. 2010. After Action Report: Deepwater Horizon MC252 Aerial Dispersant Response. Hsu, C. S., C. L. Hendrickson, R. P. Rodgers, A. M. McKenna, and A. G. Marshall. 2011. Petroleomics: advanced molecular probe for petroleum heavy ends. Journal of Mass Spectrometry 46(4): 337-343 Hu P., E. A. Dubinsky, A. J. Probst, J. Wang, C. M. K. Sieber, L. M. Tom, P. R. Gardinali, J. F. Banfield, R. M. Atlas and G. L. Andersen. 2017. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proceedings of the National Academy of Sciences of the United States of America 114: 7432-7437. Hu, C., R. H. Weisberg, Y. Liu, L. Zheng, K. L. Daly, D. C. English, J. Zhao, and G. A. Vargo. 2011. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters 38(9). DOI: 10.1029/2011GL047184. Huang M., I. A. Blair, and T. M. Penning. 2014. Metabolism of a representative alkylated petrogenic polycyclic aromatic hydrocarbon (PAH) 6-ethyl-chrysene associated with the Deepwater Horizon oil spill in human hepatoma (HepG2) cells. Abstracts of Papers of the American Chemical Society 248:1. Huang, X. D., S. N. Krylov, L. Ren, B. J. McConkey, D. G. Dixon, and B. M. Greenberg. 1997. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G 3. Environmental Toxicology and Chemistry 16(11):2296-2303. PREPUBLICATION COPY

270 The Use of Dispersants in Marine Oil Spill Response Huijbregts, M. A. J., Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, and R. van Zelm. 2017. "ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level." The International Journal of Life Cycle Assessment 22(2): 138-147. Hunt, J. S. Petroleum Geochemistry and Geology;W.H.Freeman: New York, 1996 Incardona, J. P., T. K. Collier, and N. L. Scholz. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196(2):191-205. Incardona, J. P., T. K. Collier, and N. L. Scholz. 2011. Oil spills and fish health: exposing the heart of the matter. Journal of Exposure Science and Environmental Epidemiology 21(1):3-4. Incardona, J. P., T. L. Swarts, R. C. Edmunds, T. L. Linbo, A. Aquilina-Beck, C. A. Sloan, L. D. Gardner, B. A. Block, and N. L. Scholz. 2013. Exxon Valdez to Deepwater Horizon: Comparable toxicity of both crude oils to fish early life stages. Aquatic Toxicology 142:303-316. DOI: 10.1016/j.aquatox.2013.08.011 Incardona, J. P., L. D. Gardner, T. L. Linbo, T. L. Brown, A. J. Esbaugh, E. M. Mager, J. D. Stieglitz, B. L. French, J. S. Labenia, C. A. Laetz, M. Tagal, C. A. Sloan, A. Elizur, D. D. Benetti, M. Grosell, B. A. Block, and N. L. Scholz. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences U. S. A.:E1510-E1518. International Agency for Research on Cancer. 2012a. Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100F-Benzene, International Agency for Research on Cancer, World Health Organization. Pgs. 249-294. 2930 pages International Agency for Research on Cancer. 2012b. Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100F-Benzo(a)pyrene, International Agency for Research on Cancer, World Health Organization. Pgs. 111-144. 2930 pages IPIECA. 2000. Choosing spill response options to minimize damage. Net Environmental Benefit Analysis. IPIECA Report Series Volume 10. London, UK. 20 pp. IPIECA. 2015. Dispersants: Subsea Application - Good practice guidelines for incident management and emergency response personnel. IOGP Report 533. London, UK. 70 pp. IPIECA-IOGP. 2014. Regulatory approval of dispersant products and authorization for their use. IPIECA-IOGP. 2015. Response strategy development using net environmental benefit analysis (NEBA): Good practice guidelines for incident management and emergency response personnel. Available at: http://www.oilspillresponseproject.org/wp- content/uploads/2017/01/NEBA_2016-2.pdf IPIECA-IOGP. 2016. Guidelines on oil characterization to inform spill planning and decision making. IPIECA-IOGP. 2017. Guidelines on implementing spill impact mitigation assessment (SIMA): A technical support document to accompany the IPIECA-IOGP guidance on net environmental benefit analysis (NEBA). Jaggi, A., R. W. Snowdon, A. Stopford, J. R. Radović, T. B. P. Oldenburg, and S. R. Larter. 2017. Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Organic Geochemistry 108:1-8. DOI: 10.1016/j.orggeochem.2017.03.006. Jaligama, S., Z. Chen, J. Saravia, N. Yadav, S. M. Lomnicki, T. R. Dugas, and S. A. Cormier. PREPUBLICATION COPY

References 271 2015. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response. Environmental Science & Technology 49(14):8769-8776. DOI: 10.1021/acs.est.5b01439. Jamur, M. C., and C. Oliver. 2010. Permeabilization of Cell Membranes. In Immunocytochemical Methods and Protocols. Oliver, C. and M. C. Jamur, eds. Totowa, NJ: Humana Press. Janjua, N. Z., P. M. Kasi, H. Nawaz, S. Z. Farooqui, U. B. Khuwaja, H. Najam ul, S. N. Jafri, S. A. Lutfi, M. M. Kadir, and N. Sathiakumar. 2006. Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health 6:84-84. DOI: 10.1186/1471-2458-6-84. Jensen, L. K., and J. Carroll. 2010. Experimental studies of reproduction and feeding for two Arctic-dwelling Calanus species exposed to crude oil. Aquatic Biology 10(3):261-271. DOI: 10.3354/ab00286. Jensen, M. H., T. G. Nielsen, and I. Dahllöf. 2008. Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland. Aquatic Toxicology 87(2):99-107. Jenssen, B. M. 1994. Review article: Effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds. Environmental Pollution 86(2):207-215. Jenssen, B. M., and M. Ekker. 1991. Effects of plumage contamination with crude oil dispersant mixtures on thermoregulation in common eiders and mallards. Archives of Environmental Contamination and Toxicology 20(3):398-403. Jernelov, A., and O. Linden. 1981. Ixtoc I: A case study of the world's largest oil spill. Ambio 10(6):299-306. Jézéquel, R., J. Receveur, T. Nedwed, and S. Le Floch. 2018. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions. Marine Pollution Bulletin 127:626-636. DOI: https://doi.org/10.1016/j.marpolbul.2017.12.034. Johansen, Ø. 2003. Development and verification of deep-water blowout models. Marine Pollution Bulletin 47(9):360-368. DOI: https://doi.org/10.1016/S0025-326X(03)00202-9. Johansen, Ø., H. Rye, A. G. Melbye, H. V. Jensen, B. Serigstad, and T. Knutsen. 2001. DeepSpill JIP – Experimental Discharges of Gas and Oil at Helland Hansen – June 2000. Technical Report, DeepSpill JIP, SINTEF, Report No. STF66 F01082. Johansen, Ø., H. Rye, and C. Cooper. 2003. "DeepSpill-Field study of a simulated oil and gas blowout in deep water." Spill Science and Technology Bulletin 8(5-6): 433-443. Johansen, O., P. J. Brandvik, and U. Farooq. 2013. Droplet breakup in subsea oil releases - Part 2: Prediction of droplet size distributions with and without injection of chemical dispersants. Marine Pollution Bulletin 73:327-335. Johansen, Ø., M. Reed and N. R. Bodsberg (2015). Natural dispersion revisited. Marine Pollution Bulletin 93(1): 20-26. Johansson, S., U. Larsson, and P. Boehm. 1980. The Tsesis oil spill. Impact on the pelagic ecosystem. Marine Pollution Bulletin 11(10):284-293. DOI: 10.1016/0025- 326X(80)90166-6. Jolliet, O., M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, and R. Rosenbaum. 2003. IMPACT 2002+: a new life cycle impact assessment methodology. The international journal of life cycle assessment 8(6): 324. Jones, R. K. 1997. A simplified pseudo-component oil evaporation model. Presented at PREPUBLICATION COPY

272 The Use of Dispersants in Marine Oil Spill Response Conference Proceedings, Canada. Jones, B. C. 2010. Dispersant Studies of the Deepwater Horizon Oil Spill Response Volume 3. Technical Report for BP Gulf of Mexico Spill Response Unit. 25 pp. Jones, M., and S. Petch. 1995. A report on the analysis of hydrocarbons in sea waters and associated samples from trial oil spills off eastern England, July 1995. Newcastle upon Tyne, UK: University of Newcastle upon Tyne. Joye, S. B., I. R. MacDonald, I. Leifer, and V. Asper. 2011. Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nature Geoscience 4(3):160- 164. DOI: 10.1038/ngeo1067. https://www.nature.com/articles/ngeo1067#supplementary-information. Judson, R. S., M. T. Martin, D. M. Reif, K. A. Houck, T. B. Knudsen, D. M. Rotroff, M. Xia, S. Sakamuru, R. Huang, P. Shinn, C. P. Austin, R. J. Kavlock, and D. J. Dix. 2010. Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity. Environmental Science & Technology 44(15):5979-5985. DOI: 10.1021/es102150z. Jung, S.-C., K.-M. Kim, K.-S. Lee, S. Roh, W.-C. Jeong, S.-J. Kwak, I.-J. Lee, Y.-H. Choi, S. R. Noh, J.-I. Hur, and Y.-K. Jee. 2013. Respiratory Effects of the Hebei Spirit Oil Spill on Children in Taean, Korea. Allergy, Asthma & Immunology Research 5(6):365-370. DOI: 10.4168/aair.2013.5.6.365. Kasperson, R. E., O. Renn, P. Slovic, H. S. Brown, J. Emel, R. Goble, J. X. Kasperso, and S. Ratick. 1988. The Social Amplification of Risk: A Conceptual Framework. Risk Analysis 8(2):177–87. Katepalli, H., V. T. John, A. Tripathi, and A. Bose. 2017. Microstructure and Rheology of Particle Stabilized Emulsions: Effect of Particle Shape and Inter-particle Interactions. Colloid Interfacial Science 485:11-17. Kessler, J. D., W. S. Reeburgh, D. L. Valentine, F. S. Kinnaman, E. T. Peltzer, P. G. Brewer, J. Southon, and S. C. Tyler. 2008. A survey of methane isotope abundance (C-14, C-13, H- 2) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters. Journal of Geophysical Research-Oceans 113(C12):13. DOI: 10.1029/2008jc004822. Kessler, R. C., S. Galea, M. J. Gruber, N. A. Sampson, R. J. Ursano, and S. Wessely. 2008. Trends in mental illness and suicidality after Hurricane Katrina. Mol Psychiatry 13(4):374-384. DOI: 10.1038/sj.mp.4002119. Kessler, J. D., D. L. Valentine, M. C. Redmond, and M. Du. 2011. Response to Comment on “A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico”. Science 332(6033):1033. DOI: 10.1126/science.1203428 Kessler, J. D., D. L. Valentine, M. C. Redmond, M. Du, E. W. Chan, S. D. Mendes, E. W. Quiroz, C. J. Villanueva, S. S. Shusta, L. M. Werra, S. A. Yvon-Lewis, and T. C. Weber. 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312-315. DOI: 10.1126/science.1199697. Khelifa, A., P. Stoffyn-Egli, P. S. Hill, and K. Lee. 2002. Characteristics of Oil Droplets Stabilized by Mineral Particles: Effects of Oil Type and Temperature. Spill Science & Technology Bulletin 8(1):19-30. DOI: https://doi.org/10.1016/S1353-2561(02)00117-2. Khelifa, A., P. S. Hill, and K. Lee. 2003. A stochastic model to predict the formation of oil- mineral aggregates. Presented at Proceedings of the 26 Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Canada. PREPUBLICATION COPY

References 273 Khelifa, A., P. S. Hill, and K. Lee. 2005. A Comprehensive Numerical Approach to Predict Oil- Mineral Aggregate (Oma) Formation Following Oil Spills in Aquatic Environments. International Oil Spill Conference Proceedings 2005(1):873-877. DOI: 10.7901/2169- 3358-2005-1-873. Khelifa, A., B. Fieldhouse, Z. Wang, C. Yang, M. Landriault, C. E. Brown, and M. Fingas. 2008. Effects of Chemical Dispersant on Oil Sedimentation Due to Oil-Spm Flocculation: Experiments With The Nist Standard Reference Material 1941? International Oil Spill Conference Proceedings 2008(1):627-631. DOI: 10.7901/2169-3358-2008-1-627. Kimes, N., A. Callaghan, D. Aktas, W. Smith, J. Sunner, B. Golding, M. Drozdowska, T. Hazen, J. Suflita, and P. Morris. 2013. Metagenomic analysis and metabolite profiling of deep– sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology 4(50). DOI: 10.3389/fmicb.2013.00050. Kimes, N. E., A. V. Callaghan, J. M. Suflita, and P. J. Morris. 2014. Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives. Frontiers in Microbiology 5(603). DOI: 10.3389/fmicb.2014.00603. King, B. S., and J. D. Gibbins. 2011. Health Hazard Evaluation of Deepwater Horizon Response Workers. Health Hazard Evaluation Report. HETA 2010-0115 & 2010-0129-3138. August 2011. King, G. E. and D. E. King. 2013. Environmental risk arising from well construction failure: Difference between barrier and well failure, and estimates of failure frequency across common well types, locations and well age. King, S. M., P. A. Leaf, A. C. Olson, P. Z. Ray, and M.A. Tarr. 2014. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill. Chemosphere, 95:415-422. King, T. L., B. Robinson, M. Boufadel, and K. Lee. 2014. Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea. Marine Pollution Bulletin 83(1):32- 37. DOI: 10.1016/j.marpolbul.2014.04.042. King, G. M., J. E. Kostka, T. C. Hazen, and P. A. Sobecky. 2015. Microbial Responses to the Deepwater Horizon Oil Spill: From Coastal Wetlands to the Deep Sea. Annual Review of Marine Science 7(1):377-401. DOI: 10.1146/annurev-marine-010814-015543. King, T. L., B. Robinson, C. McIntyre, P. Toole, S. Ryan, F. Saleh, M. C. Boufadel, and K. Lee. 2015. Fate of Surface Spills of Cold Lake Blend Diluted Bitumen Treated with Dispersant and Mineral Fines in a Wave Tank. Environmental Engineering Science 32(3):250-261. DOI: 10.1089/ees.2014.0459. King, T. L., B. Robinson, F. Cui, M. Boufadel, K. Lee, and J. A. C. Clyburne. 2017. An oil spill decision matrix in response to surface spills of various bitumen blends. Environmental Science-Processes & Impacts 19(7):928-938. DOI: 10.1039/c7em00118e. King, T. L., B. Robinson, S. Ryan, Y. Lu, Q. Zhou, L. Ju, P. Sun, and K. Lee. 2015. Fate of Chinese and Canadian oils treated with dispersants in a wave tank. Presented at Proceedings of the 38th Arctic and Marine Oil Spill Program, Vancouver, British Columbia, Canada. Kinner, N. E., L. Belden, and P. Kinner. 2014. Unexpected sink for deepwater horizon oil may influence future spill response: Town Hall: Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA); Mobile, Alabama, 27 January 2014. Eos 95(21): 176. Kitaigorodskii, S. A., M. A. Donelan, J. L. Lumley, and E. A. Terray. 1983. Wave-Turbulence PREPUBLICATION COPY

274 The Use of Dispersants in Marine Oil Spill Response Interactions in the Upper Ocean. Part II. Statistical Characteristics of Wave and Turbulent Components of the Random Velocity Field in the Marine Surface Layer. Journal of Physical Oceanography 13(11):1988-1999. DOI: 10.1175/1520- 0485(1983)013<1988:WTIITU>2.0.CO;2. Klasing, S. A., and R. K. Brodberg. 2013. Protocol For Seafood Risk Assessment to Support Fisheries Re-Opening Decisions for Aquatic Oil Spills in California. Kleindienst, S., J. H. Paul, and S. B. Joye. 2015. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nature Reviews Microbiology 13(6):388-396. DOI: 10.1038/nrmicro3452. Kleindienst, S., M. Seidel, K. Ziervogel, S. Grim, K. Loftis, S. Harrison, S. Y. Malkin, M. J. Perkins, J. Field, M. L. Sogin, T. Dittmar, U. Passow, P. M. Medeiros, and S. B. Joye. 2015. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences 112(48):14900. Knap, A., N. R. Turner, G. Bera, D. A. Renegar, T. Frank, J. Sericano, and B. M. Riegl. 2017. Short-term toxicity of 1-methylnaphthalene to Americamysis bahia and 5 deep-sea crustaceans. Environmental Toxicology and Chemistry 36(12):3415-3423. Kover, S. C., F. L. Rosario-Ortiz, F. L., and K. G. Linden., K. G. (2014). Photochemical fate of solvent constituents of Corexit oil dispersants. Water Res. 50, 408–419. doi: 10.1016/j.watres.2013.12.013 Krajnak, K., H. Kan, S. Waugh, G. R. Miller, C. Johnson, J. R. Roberts, W. T. Goldsmith, M. Jackson, W. McKinney, D. Frazer, M. L. Kashon, and V. Castranova. 2011. Acute Effects of COREXIT EC9500A on Cardiovascular Functions in Rats. Journal of Toxicology and Environmental Health, Part A 74(21):1397-1404. DOI: 10.1080/15287394.2011.606795. Krasnec, M. O., H. P. Forth, M. W. Carney, R. Takeshita, A. K. McFadden, I. Lipton, B. Wallace, K. Dean, C. R. Lay, D. Cacela, J. V. Holmes, J. Lipton and J. M. Morris. 2016. General Laboratory Procedures and Practices: Deepwater Horizon Laboratory Toxicity Testing. DWH NRDA Toxicity Technical Working Group. Prepared for National Oceanic and Atmospheric Administration by Abt Associates, Boulder, CO. Krewitt, W. 2002. External costs of energy—Do the answers match the questions?: Looking back at 10 years of ExternE. Energy Policy 30(10):839-848. Krylov, S. N., X. D. Huang, L. F. Zeiler, D. G. Dixon, and B. M. Greenberg. 1997. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a two compartment system. Environmental Toxicology and Chemistry 16(11):2283-2295. Kujawinski, E. B., M. C. Kido Soule, D. L. Valentine, A. K. Boysen, K. Longnecker, and M. C. Redmond. 2011. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environmental Science & Technology 45(4):1298-1306. DOI: 10.1021/es103838p. Kwok, R. K., J. A. McGrath, S. R. Lowe, L. S. Engel, W. B. Jackson, M. D. Curry, J. Payne, S. Galea, and D. P. Sandler. 2017. Mental health indicators associated with oil spill response and clean-up: cross-sectional analysis of the GuLF STUDY cohort. The Lancet Public Health 2(12):e560-e567. DOI: https://doi.org/10.1016/S2468-2667(17)30194-9. Kwok, R. K., L. S. Engel, A. K. Miller, A. Blair, M. D. Curry, W. B. Jackson, P. A. Stewart, M. R. Stenzel, L. S. Birnbaum, D. P. Sandler, and GuLF STUDY Research Team. 2017. The GuLF STUDY: A Prospective Study of Persons Involved in the Deepwater Horizon Oil Spill Response and Clean-Up. Environmental Health Perspectives 125(4):570-578. DOI: PREPUBLICATION COPY

References 275 10.1289/EHP715. Laffon, B., E. Pásaro, and V. Valdiglesias. 2016. Effects of exposure to oil spills on human health: Updated review. Journal of Toxicology and Environmental Health - Part B: Critical Reviews 19(3-4):105-128. DOI: 10.1080/10937404.2016.1168730. Lampi, M. A., J. Gurska, X. D. Huang, D. G. Dixon, and B. M. Greenberg. 2007. A predictive quantitative structure activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification. Environmental Toxicology and Chemistry 26(3):406-415. Langmuir, I. 1938. Surface Motion of Water Induced By Wind. Science 87(2250):119. Laso-Pérez, R., G. Wegener, K. Knittel, F. Widdel, K. J. Harding, V. Krukenberg, D. V. Meier, M. Richter, H. E. Tegetmeyer, D. Riedel, H.-H. Richnow, L. Adrian, T. Reemtsma, O. J. Lechtenfeld, and F. Musat. 2016. Thermophilic archaea activate butane via alkyl- coenzyme M formation. Nature 539:396. DOI: 10.1038/nature20152 https://www.nature.com/articles/nature20152#supplementary-information. Law, R., J. Brant, M. Kirby, J. Lee, D. Morris, and J. Rees. 2014. Guidelines for the environmental monitoring and impact assessment associated with subsea oil releases and dispersant use in UK waters. Le Floch, S., J. Guyomarch, F.-X. Merlin, P. Stoffyn-Egli, J. Dixon, and K. Lee. 2002. The Influence of Salinity on Oil–Mineral Aggregate Formation. Spill Science & Technology Bulletin 8(1):65-71. DOI: https://doi.org/10.1016/S1353-2561(02)00124-X. Le Floch, S., S. Van Ganse, R. Mauge, and A. Laurent. 2013. Influence of dispersant addition on the rise of oil droplets contribution to modeling. Presented at Proceedings of the 36th AMOP Technical Seminar on Environmental Contamination and Response, Ottawa, Canada. Leahy J.G., R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiological reviews. Ledwell, J. R., R. He, Z. Xue, S. F. DiMarco, L. J. Spencer, and P. Chapman. 2016. Dispersion of a tracer in the deep Gulf of Mexico. Journal of Geophysical Research: Oceans 121(2):1110-1132. DOI: 10.1002/2015JC011405. Lee, K. 2002. Oil–Particle Interactions in Aquatic Environments: Influence on the Transport, Fate, Effect and Remediation of Oil Spills. Spill Science & Technology Bulletin 8(1):3-8. DOI: https://doi.org/10.1016/S1353-2561(03)00006-9. Lee, R. F. 2003. Photo-oxidation and photo-toxicity of crude and refined oils. Spill Science & Technology Bulletin, 8(2):157-162. Lee, K., T. Lunel, P. Wood, R. Swannell, and P. Stoffyn-Egli. 1997. Shoreline Cleanup by Acceleration of Clay-Oil Flocculation Processes. International Oil Spill Conference Proceedings 1997(1):235-240. DOI: 10.7901/2169-3358-1997-1-235. Lee, K., P. Stoffyn-Egli, P. A. Wood, and T. Lunel. 1998. Formation and structure of oil-mineral fines aggregates in coastal environments. Presented at Environment Canada Arctic and Marine Oil Spill Program Technical Seminar (AMOP) Proceedings. Lee, K., P. Stoffyn-Egli, G. H. Tremblay, E. H. Owens, G. A. Sergy, C. C. Guénette, and R. C. Prince. 2003. Oil–Mineral Aggregate Formation on Oiled Beaches: Natural Attenuation and Sediment Relocation. Spill Science & Technology Bulletin 8(3):285-296. DOI: https://doi.org/10.1016/S1353-2561(03)00042-2. Lee, K., Z. Li, B. Robinson, P. E. Kepkay, X. Ma, S. E. Cobanli, T. King, M. Blouin, and B. PREPUBLICATION COPY

276 The Use of Dispersants in Marine Oil Spill Response Doyon. 2009. In situ remediation of oil spills in ice-packed waters: Enhanced dispersion and biodegradation of petroleum hydrocarbons. Lee, C. H., Y. A. Kang, K. J. Chang, C. H. Kim, J. I. Hur, J. Y. Kim, and J. K. Lee. 2010. Acute Health Effects of the Hebei Oil Spill on the Residents of Taean, Korea. J Prev Med Public Health 43(2):166-173. DOI: 10.3961/jpmph.2010.43.2.166. Lee, Y.-g., M. M. Rahman, G. Kim, and S. Han. 2011. Mass Balance of Total Mercury and Monomethylmercury in Coastal Embayments of a Volcanic Island: Significance of Submarine Groundwater Discharge. Environmental Science & Technology 45(23): 9891- 9900. Lee, K., Y. Zheng, F. Merlin, Z. Li, H. Niu, and T. King. 2012. Combining Mineral Fines with Chemical Dispersants to Disperse Oil in Low Temperature and Low Mixing Environments, Including the Arctic. Lee, K. W., W. J. Shim, U. H. Yim, and J. H. Kang. 2013. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere 92(9):1161-1168. DOI: 10.1016/j.chemosphere.2013.01.080. Lee, K., T. Nedwed, R. C. Prince, and D. Palandro. 2013. Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Marine Pollution Bulletin 73(1):314-318. DOI: https://doi.org/10.1016/j.marpolbul.2013.06.005. Lehr, W. J., R. J. Fraga, and H. M. Cekirge. 1984. A new technique to estimate initial spill size using a modified fay-type spreading formula. Marine Pollution Bulletin 15(9): 326-329. Leibovich, S. 1980. "On wave-current interaction theories of Langmuir circulations." Journal of Fluid Mechanics 99(04): 715-724. Leibovich, S. 2006. On wave-current interaction theories of Langmuir circulations. Journal of Fluid Mechanics 99(4):715-724. DOI: 10.1017/S0022112080000857. Leifer, I., G. de Leeuw, and L. H. Cohen. 2000. Secondary bubble production from breaking waves: The bubble burst mechanism. Geophysical Research Letters 27(24): 4077-4080. Leslie, H. A., A. J. P. Oosthoek, F. J. M. Busser, M. H. S. Kraak, and J. L. M. Hermens. 2002. Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environmental Toxicology and Chemistry 21(2):229-234. DOI: 10.1002/etc.5620210202. Lester, R. R., L. C. Green, and I. Linkov. 2007. Site specific applications of probabilistic health risk assessment: Review of the literature since 2000. Risk Analysis: An International Journal 27(3): 635-658. Letinski, D., T. Parkerton, A. Redman, R. Manning, G. Bragin, E. Febbo, D. Palandro, and T. Nedwed. 2014. Use of passive samplers for improving oil toxicity and spill effects assessment. Marine Pollution Bulletin 86(1-2):274-282. DOI: 10.1016/j.marpolbul.2014.07.006. Lewan, M. D., A. Warden, R. F. Dias, Z. K. Lowry, T. L. Hannah, P. G. Lillis, R. F. Kokaly, T. M. Hoefen, G. A. Swayze, C. T. Mills, S. H. Harris and G. S. Plumlee. 2014. Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days. Organic Geochemistry, 75, 54-60. Lewis, A. and D. Aurand. 1997. “Putting Dispersants to Work: Overcoming Obstacles.” API Publication No. 4652A. Washington, D. C. PREPUBLICATION COPY

References 277 Li, Z., P. Kepkay, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2007. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Marine Pollution Bulletin 54(7), pp.983-993. Li, Z., K. Lee, T. King, M. Boufadel, and A. Venosa. 2008. Oil droplet size distribution as a function of energy dissipation rate in an experimental wave tank. International Oil Spill Conference Proceedings: May 2008, Vol. 2008(1):621-626. Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2008. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Marine Pollution Bulletin 56(5):903-912. DOI: https://doi.org/10.1016/j.marpolbul.2008.01.031. Li, Z., K. Lee, T. King, P. Kepkay, M. C. Boufadel, and A. D. Venosa. 2009. Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 1, Dispersant Effectiveness as a Function of Energy Dissipation Rate. Environmental Engineering Science 26(6):1139-1148. DOI: 10.1089/ees.2008.0377. Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2009. Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 2—Significant Factors Determining In Situ Oil Droplet Size Distribution. Environmental Engineering Science 26(9):1407- 1418. DOI: 10.1089/ees.2008.0408. Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2009. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions. Marine Pollution Bulletin 58(5):735-744. DOI: https://doi.org/10.1016/j.marpolbul.2008.12.014. Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2010. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank. Marine Pollution Bulletin 60(9):1550-1559. DOI: 10.1016/j.marpolbul.2010.04.012. Li, P., L. Weng, H. Niu, B. Robinson, T. King, R. Conmy, K. Lee, and L. Liu. 2016. Reynolds number scaling to predict droplet size distribution in dispersed and undispersed subsurface oil releases. Marine Pollution Bulletin 113(1-2):332-342. DOI: 10.1016/j.marpolbul.2016.10.005. Li, C., J. Miller, J. Wang, S. S. Koley, and J. Katz. 2017. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks. Journal of Geophysical Research: Oceans 122(10):7938-7957. DOI: 10.1002/2017JC013193. Li, Z., M. L. Spaulding, and D. French-McCay. 2017. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions. Marine Pollution Bulletin 119(1):145-152. DOI: 10.1016/j.marpolbul.2017.03.048. Li, Z., M. Spaulding, D. French McCay, D. Crowley, and J. R. Payne. 2017. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects. Marine Pollution Bulletin 114(1):247-257. DOI: 10.1016/j.marpolbul.2016.09.008. Libre, J.-M., C. Collin-Hansen, G. Kjeilen-Eilertsen, T. W. Rogstad, C. Stephansen, O. W. Brude, A. Bjorgesaeter, and U. Brönner. 2018. ERA Acute-Implementation of a New Method for Environmental Risk Assessment of Acute Offshore Oil Spills. Presented at SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, Abu Dhabi, UAE, 2018/4/16/. PREPUBLICATION COPY

278 The Use of Dispersants in Marine Oil Spill Response Linton, T. and C.B. Koons. 1983. Oil dispersant field evaluation Ixtoc 1 Blowout, Bay of Campeche, Mexico. Oil and Petrochemical Pollution 1:183-188. Liu, Y.-Z., A. M. Roy-Engel, M. C. Baddoo, E. K. Flemington, G. Wang, and H. Wang. 2016. The impact of oil spill to lung health—Insights from an RNA-seq study of human airway epithelial cells. Gene 578(1):38-51. DOI: https://doi.org/10.1016/j.gene.2015.12.016. Liu, Y.-Z., L. Zhang, A. M. Roy-Engel, S. Saito, J. A. Lasky, G. Wang, and H. Wang. 2017. Carcinogenic effects of oil dispersants: A KEGG pathway-based RNA-seq study of human airway epithelial cells. Gene 602:16-23. DOI: https://doi.org/10.1016/j.gene.2016.11.028. Liu, J., S. M. Techtmann, H. L. Woo, D. Ning, J. L. Fortney, and T. C. Hazen. 2017. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil. Scientific Reports 7(1):5762. DOI: 10.1038/s41598-017-05958-x. Loh, A., W. J. Shim, S. Y. Ha, and U. H. Yim. 2014. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment. Ocean Science Journal 49(4):329-341. DOI: 10.1007/s12601-014-0031-8. Long, E. R. 2006. Calculation and uses of mean sediment quality guideline quotients: A critical review. Environmental Science and Technology 40(6): 1726-1736. Long, E. R., D. D. Macdonald, S. L. Smith, and F. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1): 81-97. Long, E. R., L. J. Field, and D. D. Macdonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4): 714-727. Lu, Z. M., Y. Deng, J. D. Van Nostrand, Z. L. He, J. Voordeckers, A. F. Zhou, Y. J. Lee, O. U. Mason, E. A. Dubinsky, K. L. Chavarria, L. M. Tom, J. L. Fortney, R. Lamendella, J. K. Jansson, P. D'Haeseleer, T. C. Hazen, and J. Z. Zhou. 2012. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal 6(2):451-460. DOI: 10.1038/ismej.2011.91. Lubchenco, J., M. K. McNutt, G. Dreyfus, S. A. Murawski, D. M. Kennedy, P. T. Anastas, S. Chu, and T. Hunter. 2012. Science in support of the Deepwater Horizon response. Proceedings of the National Academy of Sciences 109(50):20212. Lunel, T., R. Swannell, J. Rusin, P. Wood, N. Bailey, C. Halliwell, L. Davies, M. Sommerville, A. Dobie, D. Mitchell, M. McDonagh, and K. Lee. 1995. Monitoring the effectiveness of response operations during the Sea Empress incident: a key component of the successful counter-pollution response. Spill Science & Technology Bulletin 2(2):99-112. DOI: https://doi.org/10.1016/S1353-2561(96)00011-4. Lutcavage, M., P. Lutz, G. Bossart, and D. Hudson. 1995. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Archives of Environmental Contamination and Toxicology 28(4):417-422. Lutz, P., and M. Lutcavage. 1989. The effects of petroleum on sea turtles: Applicability to Kemp's ridley. Lyons, R. A., J. M. Temple, D. Evans, D. L. Fone, and S. R. Palmer. 1999. Acute health effects of the Sea Empress oil spill. Journal of Epidemiology and Community Health 53(5):306- 310. Ma, X., A. Cogswell, Z. Li, and K. Lee. 2008. Particle Size Analysis of Dispersed Oil and Oil Mineral Aggregates With An Automated Ultraviolet Epi Fluorescence Microscopy PREPUBLICATION COPY

References 279 System. Environmental Technology 29(7):739-748. DOI: 10.1080/09593330801987111. MacDonald, I. R., et al. 2015. Natural and unnatural oil slicks in the Gulf of Mexico, J. Geophys. Res. Oceans, 120, 8364–8380, doi:10.1002/ 2015JC011062. MacFadyen, A., W. G., C. Barker, and C. Beegle-Krause. 2013. Tactical Modeling of Surface Oil Transport During the Deepwater Horizon Spill Response. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Vol. 195. Mackay, D., and K. Hossain. 1982. An exploratory study of naturally and chemically dispersedf oil. Macys, D., R. Carpenter, J. Risher, A. Vinegar, D. Dodd, and H. Wall. 1992. Results Of A Workshop On Health Effects Of Crude Oil Exposures Related To Operation Desert Storm.1-227. Mager, E. M., A. J. Esbaugh, J. D. Stieglitz, R. Hoenig, C. Bodinier, J. P. Incardona, N. L. Scholz, D. D. Benetti, and M. Grosell. 2014. Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). Environmental Science & Technology 48(12):7053-7061. Major, D., Q. Zhang, G. Wang, and H. Wang. 2012. Oil-dispersant mixtures: understanding chemical composition and its relation to human toxicity. Toxicological & Environmental Chemistry 94(9):1832-1845. DOI: 10.1080/02772248.2012.730202. Major, D., R. S. Derbes, H. Wang, and A. Engel. 2016. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B. Mallakin, A., B.J. McConkey, G. Miao, B. McKibben, V. Snieckus, D.G. Dixon and B.M. Greenberg. 1999. Impacts of Structural Photomodification on the Toxicity of Environmental Contaminants: Anthracene Photooxidation Products. Ecotoxicology and Environmental Safety 43: 204-212. Malone, K., S. Pesch, M. Schluter, and D. Krause. 2018. Oil droplet size distributions in deep- sea blowouts: influence of pressure and dissolved gases. Environmental Science & Technology. 52 (11):6326–6333. DOI: 10.1021/acs.est.8b00587. Marietou, A., R. Chastain, F. Beulig, A. Scoma, T. C. Hazen, and D. H. Bartlett. 2018. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill. Frontiers in Microbiology 9:808. DOI: 10.3389/fmicb.2018.00808. Marzooghi, S., and D. M. Di Toro. 2017. A critical review of polycyclic aromatic hydrocarbon phototoxicity models. Environmental Toxicology and Chemistry 36(5):1138-1148. Marzooghi, S., B. E. Finch, W. A. Stubblefield, and D. M. Di Toro. 2018. Predicting phototoxicity of alkylated PAHs, mixtures of PAHs, and water accommodated fractions (WAF) of neat and weathered petroleum with the phototoxic target lipid model. Environmental Toxicology and Chemistry 37: 2165-2174. doi:10.1002/etc.4173 Marzooghi, S., B. E. Finch, W. A. Stubblefield, O. Dmitrenko, S. L. Neal, and D. M. Di Toro. 2017. Phototoxic target lipid model of single polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry 36(4):926-937. DOI: 10.1002/etc.3601. Mason, O. U., T. C. Hazen, S. Borglin, P. S. G. Chain, E. A. Dubinsky, J. L. Fortney, J. Han, H. Y. N. Holman, J. Hultman, R. Lamendella, R. Mackelprang, S. Malfatti, L. M. Tom, S. G. Tringe, T. Woyke, J. H. Zhou, E. M. Rubin, and J. K. Jansson. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater PREPUBLICATION COPY

280 The Use of Dispersants in Marine Oil Spill Response Horizon oil spill. ISME Journal 6(9):1715-1727. DOI: Doi 10.1038/Ismej.2012.59. Mason, O. U., N. M. Scott, A. Gonzalez, A. Robbins-Pianka, J. Bælum, J. Kimbrel, N. J. Bouskill, E. Prestat, S. Borglin, D. C. Joyner, J. L. Fortney, D. Jurelevicius, W. T. Stringfellow, L. Alvarez-Cohen, T. C. Hazen, R. Knight, J. A. Gilbert, and J. K. Jansson. 2014. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. The Isme Journal 8(7):1464-1475. DOI: 10.1038/ismej.2013.254. Masutani, S.M. and E.E. Adams. 2000. Experimental study of multiphase plumes and application to deep ocean oil spills. Final report to the U.S. Department of Interior, Minerals Management Service, contract No. 1435-01-98-CT-30946. Mauer, M. P., K. R. Cummings, and R. Hoen. 2010. Long-term respiratory symptoms in World Trade Center responders. Occupational Medicine 60(2):145-151. DOI: 10.1093/occmed/kqp176. Maxey, M. R., and J. J. Riley. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids 26(4):883-889. DOI: 10.1063/1.864230. Mayer, P., T. F. Parkerton, R. G. Adams, J. G. Cargill, J. Gan, T. Gouin, P. M. Gschwend, S. B. Hawthorne, P. Helm, G. Witt, J. You, and B. I. Escher. 2014. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated environmental assessment and management 10(2):197-209. DOI: 10.1002/ieam.1508. McConville, M. M., J. P. Roberts, M. Boulais, B. Woodall, J. D. Butler, A. D. Redman, T. F. Parkerton, W. R. Arnold, J. Guyomarch, and S. LeFloch. 2018. The sensitivity of a deep sea fish species (Anoplopoma fimbria) to oil associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. Environmental Toxicology and Chemistry. McDaniel, L.D., J. Basso, E. Pulster, J.H. Paul. 2015. Sand patties provide evidence for the presence of Deepwater Horizon oil on the beaches of the West Florida Shelf. Marine Pollution Bulletin 97(1-2): 67-77. McFarlin, K. M., R. A. Perkins, W. W. Gardiner, J. D. Word, and J. Q. Word. 2011. Toxicity of physically and chemically dispersed oil to selected Arctic species. Presented at International Oil Spill Conference Proceedings (IOSC). McFarlin, K. M., R. C. Prince, R. Perkins, and M. B. Leigh. 2014. Biodegradation of dispersed oil in Arctic seawater at -1°C. PLoS One 9(1). DOI: 10.1371/journal.pone.0084297. McFarlin, K. M., M. J. Perkins, J. A. Field, and M. B. Leigh. 2018. Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater. Frontiers in Microbiology 9(1788). DOI: 10.3389/fmicb.2018.01788. McGenity, T. J. (ed) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbe. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham https://doi.org/10.1007/978-3-319-60053-6 McGowan, C. J., R. K. Kwok, L. S. Engel, M. R. Stenzel, P. A. Stewart, and D. P. Sandler. 2017. Respiratory, Dermal, and Eye Irritation Symptoms Associated with Corexit™ EC9527A/EC9500A following the Deepwater Horizon Oil Spill: Findings from the GuLF STUDY. Environmental Health Perspectives 125(9):097015. DOI: 10.1289/EHP1677. McGrath, J. A., and D. M. Di Toro. 2009. Validation of the target lipid model for toxicity assessment of residual petroleum constituents: Monocyclic and polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry 28(6):1130-1148. PREPUBLICATION COPY

References 281 McGrath, J. A., T. F. Parkerton, F. L. Hellweger and D. M. Di Toro. 2005. Validation of the narcosis target lipid model for petroleum products: Gasoline as a case study. Environmental Toxicology and Chemistry 24(9): 2382. McGrath, J. A., C. J. Fanelli, D. M. Toro, T. F. Parkerton, A. D. Redman, M. L. Paumen, M. Comber, C. V. Eadsforth, and K. Haan. 2018. Re evaluation of Target Lipid Model Derived HC5 Predictions for Hydrocarbons. Environmental Toxicology and Chemistry. McKinney, K. 2017. The Effect of Dispersants on Mechanical Containment and Recovery. Presented at Clean Gulf 2017. McNutt, M. K., S. Chu, J. Lubchenco, T. Hunter, G. Dreyfus, S. A. Murawski, and D. M. Kennedy. 2012. "Applications of science and engineering to quantify and control Deepwater Horizon oil spill." Proceedings of the National Academy of Sciences 109(50): 20222. Mearns, A., G.Watabayashi, and J. Lankford. 2001. Dispersing oil near shore in the California current region. Rep. CA Coop. Ocean. Fish. Invest. 42, 97–109. Mearns, A., G. Watabayashi, C. O’Connor. 2003. Using a new dispersed oil model to support ecological risk assessment. In: International Oil Spill Conference, American Petroleum Institute, pp. 523–530. Mekenyan, O. G., G. T. Ankley, G. D. Veith, and D. J. Call. 1994. QSARs for photoinduced toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere 28(3):567-582. Meo, S. A., A. M. Al-Drees, I. M. U. Meo, M. M. Al-Saadi, and M. A. Azeem. 2008. Lung function in subjects exposed to crude oil spill into sea water. Marine Pollution Bulletin 56(1):88-94. DOI: https://doi.org/10.1016/j.marpolbul.2007.09.039. Meo, S. A., A. M. Al-Drees, S. Rasheed, I. M. Meo, M. M. Khan, M. M. Al-Saadi, and J. R. Alkandari. 2009. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. Int J Occup Med Environ Health 22(1):35-41. DOI: 10.2478/v10001-009-0007-6. Meo, S., A. Al-Drees, S. Rasheed, I. Meo, M. Al-Saadi, H. Ghani, and J. Alkandari. 2009. Health complaints among subjects involved in oil cleanup operations during oil spillage from a Greek tanker "tasman Spirit". International Journal of Occupational Medicine and Environmental Health 22(2):143-148. DOI: 10.2478/v10001-009-0011-x. Michel, J., and N. Rutherford. 2014. Impacts, recovery rates, and treatment options for spilled oil in marshes. Marine Pollution Bulletin 82(1-2):19-25. Middlebrook, A. M., D. M. Murphy, R. Ahmadov, E. Atlas, R. Bahreini, D. R. Blake, J. Brioude, J. A. De Gouw, F. C. Fehsenfeld, G. J. Frost, J. S. Holloway, D. A. Lack, J. M. Langridge, R. A. Lueb, S. A. McKeen, J. F. Meagher, S. Meinardi, J. A. Neuman, J. B. Nowak, D. D. Parrish, J. Peischl, A. E. Perring, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. P. Schwartz, J. R. Spackman, C. Warneke, and A. R. Ravishankara. 2012. Air quality implications of the Deepwater Horizon Oil Spill. Proceedings of the National Academy of Sciences of the United States of America 109(50). DOI: 10.1073/pnas.1110052108. Milgram, J. H. 1983. Mean flow in round bubble plumes. Journal of Fluid Mechanics 133(AUG): 345-376. Mitchelmore, C., C. Bishop, and T. Collier. 2017. Toxicological estimation of mortality of oceanic sea turtles oiled during the Deepwater Horizon oil spill. Endangered Species Research 33:39-50. PREPUBLICATION COPY

282 The Use of Dispersants in Marine Oil Spill Response Montagna, P. A., J. G. Baguley, C. Cooksey, I. Hartwell, L. J. Hyde, J. L. Hyland, R. D. Kalke, L. M. Kracker, M. Reuscher, and A. C. E. Rhodes. 2013. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS One 8(8). DOI: 10.1371/journal.pone.0070540. Morgan, D. D., and D. Warshawsky. 1977. The photodynamic immobilization of Artemia salina nauplii by polycyclic aromatic hydrocarbons and its relationship to carcinogenic activity. Photochemistry and photobiology 25(1):39-46. Morgan, D. D., D. Warshawsky, and T. Atkinson. 1977. The relationship between carcinogenic activities of polycyclic aromatic hydrocarbons and their singlet, triplet, and singlet-triplet splitting energies of phosphorescence lifetimes. Photochemistry and photobiology 25(1):31-38. Morita, A., Y. Kusaka, Y. Deguchi, A. Moriuchi, Y. Nakanaga, M. Iki, S. Miyazaki, and K. Kawahara. 1999. Acute Health Problems among the People Engaged in the Cleanup of the Nakhodka Oil Spill. Environmental Research 81(3):185-194. DOI: https://doi.org/10.1006/enrs.1999.3979. Morris, J.M., M.Gielazyn, M.O. Krasnec, R. Takeshita, H.P. Forth, J.S. Labenia, T.L. Linbo, B.L. French, J.A. Gill, D.H. Baldwin, and N.L.Scholz. 2018. Crude oil cardiotoxicity to red drum embryos is independent of oil dispersion energy. Chemosphere, 213, pp.205- 214. Murphy, D. W., X. Xue, K. Sampath, and J. Katz. 2016. Crude oil jets in crossflow: Effects of dispersant concentration on plume behavior. Journal of Geophysical Research: Oceans 121(6): 4264-4281. Murphy, D., B. Gemmell, L. Vaccari, C. Li, H. Bacosa, M. Evans, C. Gemmell, T. Harvey, M. Jalali, and T. H. Niepa. 2016. An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon. Mar Pollut Bull 113(1-2):371- 379. DOI: 10.1016/j.marpolbul.2016.10.028. Murray, J. A., L. C. Sander, S. A. Wise, and C. M. Reddy. 2016. Gulf of Mexico Research Initiative 2014/2015 Hydrocarbon Intercalibration Experiment: Description and Results for SRM 2779 Gulf of Mexico Crude Oil and Candidate SRM 2777 Weathered Gulf of Mexico Crude Oil. DOI: 10.6028/NIST.IR.8123 Nagamine, S.I. 2014. The effects of chemical dispersants on buoyant oil droplets. Master of Science, Dept. of Mechanical Engineering. (Honolulu, HI: University of Hawaii) NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Spills of Diluted Bitumen from Pipelines: A Comparative Study of Environmental Fate, Effects, and Response – Chapter 5: Comparing Properties Affecting Transport, Fate, Effects, and Response. Washington, DC: The National Academies Press. National Commission (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling). 2011. Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling. Washington, DC. Nedwed, T., G. P. Canevari, R. Belore, J. Clark, T. Coolbaugh, A. Tidwell. 2011. New Dispersant Gel Effective on Cold, Viscous Oils. IOSC Proceedings (March 2011) 2011(1) pp. abs109. Nel, A., T. Xia, and N. Li. 2006. Toxic Potential of Materials at the Nanolevel. Science 311(5761): 622. Nelson, RK, KM Gosselin, DJ Hollander, SA Murawski, A Gracia , CM Reddy, JR Radović 2019. Exploring the Complexity of Two Iconic Crude Oil Spills in the Gulf of Mexico (Ixtoc I and Deepwater Horizon) Using Comprehensive Two-dimensional Gas PREPUBLICATION COPY

References 283 Chromatography (GC×GC). Energy & Fuels (in press). Newsted, J. L., and J. P. Giesy. 1987. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea). Environmental Toxicology and Chemistry 6(6):445-461. Norwegian ResearchCouncil. 2012. Long term environmentalimpact of discharges from the Norwegian petroleum industry. Review of a 10-year research program. The Norwegian Research Council, February 2012, Oslo, ISBN 978-82-12-03027-5 (pdf). Nicol, J.-P., W. R. Wise, F. J. Molz, and L. D. Benefield. 1994. Modeling biodegradation of residual petroleum in a saturated porous column. Water Resources Research 30(12):3313-3325. DOI: 10.1029/94WR01879. NIEHS (National Institute of Environmental Health Sciences). 2018. NIH Disaster Research Response (DR2). https://dr2.nlm.nih.gov/ Nissanka, I. D., and P.D. Yapa. 2016. Calculation of oil droplet size distribution in an underwater oil well blowout. Journal of Hydraulic Research 54(3):307-320. Niu, H., Z. Li, K. Lee, P. Kepkay, and J. V. Mullin. 2011. Modelling the Transport of Oil– Mineral-Aggregates (OMAs) in the Marine Environment and Assessment of Their Potential Risks. Environmental Modeling & Assessment 16(1):61-75. DOI: 10.1007/s10666-010-9228-0. NOAA. 2012. Review of Subsurface Dispersed Oil and Oxygen Levels Associated with the Deepwater Horizon MC252 Spill of National Significance. NOAA Technical Report NOS OR&R 27, pp. 95. Joint Analysis Group, Deepwater Horizon Oil Spill. NOAA/ERD (National Oceanic and Atmospheric Administration, Emergency Response Division). 2015. Chemical Aquatic Fate and Effects (CAFE) Database. Version 1.1 [Computer Software]. NOAA/ERD, Office of Response and Restoration, Seattle, WA. NOAA/FDA (National Oceanic and Atmospheric Administration/Food and Drug Administration). 2010. Protocol for Interpretation and Use of Sensory Testing and Analytical Chemistry Results for Re-opening Oil-impacted Areas Closed to Seafood Harvesting. Available: https://www.fda.gov/Food/ucm217601.htm Noh, S. R., H.-K. Cheong, M. Ha, S.-Y. Eom, H. Kim, Y.-H. Choi, and D. Paek. 2015. Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill. Science of the Total Environment 515-516:207-214. DOI: https://doi.org/10.1016/j.scitotenv.2015.02.039. Nordtug, T., A. J. Olsen, D. Altin, S. Meier, I. Overrein, B. H. Hansen, and Ø. Johansen. 2011. Method for generating parameterized ecotoxicity data of dispersed oil for use in environmental modelling. Marine Pollution Bulletin 62(10):2106-2113. North, E. W., E. E. Adams, A. E. Thessen, Z. Schlag, R. He, S. A. Socolofsky, S. M. Masutani, and S. D. Peckham. 2015. The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon spill: A model sensitivity study. Environmental Research Letters 10(2). DOI: 10.1088/1748- 9326/10/2/024016. NPC (National Petroleum Council). 2015. Arctic Potential: Realizing the Promise of U.S. Arctic Oil and Gas Resources. NRC (National Research Council). 1983. Risk assessment in the federal government: managing the process. Washington, DC: National Academy Press. NRC. 1989. Using oil spill dispersants on the sea. Washington, DC: National Academy Press. PREPUBLICATION COPY

284 The Use of Dispersants in Marine Oil Spill Response NRC. 1994. Science and judgment in risk assessment. Washington, DC: National Academy Press. NRC. 2003. Oil in the Seda III.Washington, DC: National Academies Press. NRC. 2005. Oil spill dispersants: efficacy and effects. Washington, DC: National Academy Press. NRC. 2013. An ecosystem services approach to assessing the impacts of the Deepwater Horizon oil spill in the Gulf of Mexico. Washington, DC: National Academy Press. NRC. 2014. Responding to Oil Spills in the U.S. Arctic Marine Environment. Washington, DC: National Academy Press. DOI: 10.17226/18625. NRT (National Response Team). 2013. Environmental Monitoring for Atypical Dispersant Operations. O’Connor, B. S., F. E. Muller-Karger, R. W. Nero, C. Hu, E. B. Peebles. 2016. The role of Mississippi River discharge in offshore phytoplankton blooming in the northeastern Gulf of Mexico during August 2010. Remote Sensing of Environment 173: 133–44. https://doi.org/10.1016/j.rse.2015.11.004. O’Hara, P. D., and L. A. Morandin. 2010. Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds. Marine Pollution Bulletin 60(5):672-678. O'Laughlin, C. M., B. A. Law, V. S. Zions, T. L. King, B. Robinson, and Y. Wu. 2017. Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling. Marine Pollution Bulletin 124(1):292-302. DOI: 10.1016/j.marpolbul.2017.07.042. O'Laughlin, C. M., B. A. Law, V. S. Zions, T. L. King, B. Robinson, and Y. Wu. 2017. The dynamics of diluted bitumen derived oil-mineral aggregates, Part II. Canadian Technical Report of Fisheries and Aquatic Sciences 3209:1-49. Oldenburg, C. M., B. M. Freifeld, K. Pruess, L. Pan, S. Finsterle, and G. J. Moridis. 2012. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas. Proceedings of the National Academy of Sciences 109(50):20254-20259. DOI: 10.1073/pnas.1105165108. Olsen, G. H., M. G. Smit, J. Carroll, I. Jæger, T. Smith, and L. Camus. 2011. Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Marine Environmental Research 72(4):179-187. Olsen, G. H., N. Coquille, S. Le Floch, P. Geraudie, M. Dussauze, P. Lemaire, and L. Camus. 2016. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil. Environ Sci Pollut Res Int 23(7):6497-6505. DOI: 10.1007/s11356-015-5869-5. Omotoso, O. E., V. A. Munoz, and R. J. Mikula. 2002. Mechanisms of Crude Oil–Mineral Interactions. Spill Science & Technology Bulletin 8(1):45-54. DOI: https://doi.org/10.1016/S1353-2561(02)00116-0. Oris, J. T., and J. P. Giesy Jr. 1985. The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology 6(2):133-146. OSAT (Operational Science Advisory Team). 2010. Unified Area Command. Summary report for sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Retrieved 15 April 2017, from http://www.restorethegulf.gov/sites/default/files/documents/pdf/OSAT_Report_FINAL_1 7DEC.pdf. PREPUBLICATION COPY

References 285 OSHA (Occupational Safety and Health Administration). 2018. Occupational Safety and Health Administration (OSHA) Activities During the Deepwater Horizon Oil Spill. OSHA Combined Sampling Results and Coast Guard Laboratory Analysis Results OSHA Archived websites: https://web.archive.org/web/20170428151739/https://www.osha.gov/ oilspills/index_sampling.html Owens, E. H., and K. Lee. 2003. Interaction of oil and mineral fines on shorelines: review and assessment. Marine Pollution Bulletin 47(9):397-405. DOI: https://doi.org/10.1016/S0025-326X(03)00209-1. Owens, E. H., and G. A. Sergy. 1997. Application of Recent Technical Advances to the Decision Process for Shoreline Treatment. International Oil Spill Conference Proceedings 1997(1):289-295. DOI: 10.7901/2169-3358-1997-1-289. Palinkas, L. A., J. S. Petterson, J. Russell, and M. A. Downs. 1993. Community patterns of psychiatric disorders after the Exxon Valdez oil spill. The American Journal of Psychiatry 150(10):1517-1523. DOI: 10.1176/ajp.150.10.1517. Palinkas, L. A., M. A. Downs, J. S. Petterson, and J. Russell. 1993. Social, Cultural, and Psychological Impacts of the "Exxon Valdez" Oil Spill. Human Organization 52(1):1-13. Panetta, P. D., L. G. Bland, G. Cartwright, and C. T. Friedrichs. 2012. Acoustic scattering to measure dispersed oil droplet size and sediment particle size. Presented at 2012 Oceans, 14-19 Oct. 2012. Panetta, P. D., D. McElhone, L. Carr, K. Winfield, G. G. Cartwright, and C. T. Friedrichs. 2013. Acoustic Assessment of Subsea Chemical Dispersant Efficacy. US Department of the Interior Bureau of Safety and Environmental Enforcement (BSEE), Washington, DC. Paris, C. B., M. L. Hénaff, Z. M. Aman, A. Subramaniam, J. Helgers, D. P. Wang, V. H. Kourafalou, and A. Srinivasan. 2012. Evolution of the Macondo well blowout: Simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environmental Science and Technology 46(24):13293-13302. DOI: 10.1021/es303197h. Parkerton, T. F., M. A. Stone, and D. J. Letinski. 2000. Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicology letters 112:273-282. DOI: 10.1016/s0378-4274(99)00237-4. Passow, U. 2014. Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Research II: doi:10.1016/j.dsr2.2014.10.001 Passow, U. 2016. Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Research Part II: Topical Studies in Oceanography 129:232-240. DOI: 10.1016/j.dsr2.2014.10.001. Passow, U. and K. Ziervogel. 2016. Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29(3): 118-125. Passow, U., K. Ziervogel, V. Asper, and A. Diercks. 2012. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Research Letters 7(3):035301. Passow, U., J. Sweet, and A. Quigg. 2017. How the dispersant Corexit impacts the formation of sinking marine oil snow. Marine Pollution Bulletin 125(1-2):139-145. DOI: 10.1016/j.marpolbul.2017.08.015. Payne, J. R., & Phillips, C. R. 1985. Photochemistry of petroleum in water. Environmental Science & Technology, 19(7):569-579. Payne, J., B. Kirstein, J. Clayton, C. Clary, R. Redding, D. McNabb, and G. Farmer. 1987. PREPUBLICATION COPY

286 The Use of Dispersants in Marine Oil Spill Response Integration of suspended particulate matter and oil transportation study, final report to the Minerals Management Service. Payne, J. R., J. John R. Clayton, J. G. Daniel McNabb, B. E. Kirstein, C. L. Clary, R. T. Redding, J. S. Evans, E. Reimnitz, and E. W. Kempema. 1989. Oil-ice Sediment Interactions During Freeze-up and Break-up: Final Report. Payne, J. R. 1989. Oil-ice Sediment Interactions During Freeze-up and Break-up: Final Report, US Department of Commerce, National Oceanic and Atmospheric Administration, Ocean Assessments Division, Alaska Office. Payne, J. R., J. R. Clayton, and B. E. Kirstein. 2003. Oil/Suspended Particulate Material Interactions and Sedimentation. Spill Science & Technology Bulletin 8(2):201-221. DOI: https://doi.org/10.1016/S1353-2561(03)00048-3. Pegau, W.S., J. Garron, L. Zabilansky, C. Bassett, J. Bello, J. Bradford, R. Carns, Z. Courville, H. Eicken, B. C. Elder, P. Eriksen, A. C. Lavery, B. Light, T. Maksym, H.-P. Marshall, M. Oggier, D. Perovich, P. Pocwiardowski, H. Singh, D. Tang, C. Wiggins, and J. Wilkinson. 2017. Detection of oil in, with, and under ice. IOSC Proceedings. Pepper, I., C. Gerba, and T. Gentry. 2015. Environmental Microbiology (Third Edition). Pepper, I. L., C. P. Gerba and T. J. Gentry, eds. San Diego: Academic Press. Perez-Cadahia, B., B. Laffon, M. Porta, A. Lafuente, T. Cabaleiro, T. Lopez, A. Caride, J. Pumarega, A. Romero, E. Pasaro, and J. Mendez. 2008. Relationship between blood concentrations of heavy metals and cytogenetic and endocrine parameters among subjects involved in cleaning coastal areas affected by the 'Prestige' tanker oil spill. Chemosphere 71(3):447-455. DOI: 10.1016/j.chemosphere.2007.10.053. Pérez-Cadahía, B., B. Laffon, V. Valdiglesias, E. Pásaro, and J. Méndez. 2008. Cytogenetic effects induced by Prestige oil on human populations: The role of polymorphisms in genes involved in metabolism and DNA repair. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 653(1):117-123. DOI: https://doi.org/10.1016/j.mrgentox.2008.04.002. Perkins, M. J., S. B. Joye, and J. A. Field. 2017. Selective quantification of DOSS in marine sediment and sediment-trap solids by LC-QTOF-MS. Analytical and bioanalytical chemistry, 409, 971-978. Perkins, R. A., S. Rhoton, and C. Behr-Andres. 2005. Comparative marine toxicity testing: A cold-water species and standard warm-water test species exposed to crude oil and dispersant. Cold Regions Science and Technology 42(3):226-236. DOI: 10.1016/j.coldregions.2005.02.001. Pesch, S., P. Jaeger, A. Jaggi, K. Malone, M. Hoffman, D. Krause, T. B. P. Oldenburgm and M. Schlüter. 2017. Rise Velocity of Live-Oil Droplets in Deep-Sea Oil Spills. Environmental Engineering Science 35(4): 289-299. doi: 10.1089/ees.2017.0319. Peters, K. K., C. C. Walters, and J. M. Moldowan. 2005. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. 2(2nd Edition). Pew Charitable Trusts. 2013. Arctic standards: Recommendations on oil spill prevention, response, and safety in the U.S. Arctic Ocean. Pew Environment Group. 2010. Oil Spill Prevention and Response in the U.S. Arctic Ocean Unexamined Risks, Unacceptable Consequences. Piacentino, J., S. Silver, B. Bernard, D. G. DeBord, R. Funk, and J. Decker. 2014. Study Methodology Prevents Interpretation of Findings in Workers Involved in Gulf Oil Spill Cleanup Activities. The American Journal of Medicine 127(9):e25-e26. DOI: PREPUBLICATION COPY

References 287 https://doi.org/10.1016/j.amjmed.2013.11.028. Picou, S., D. Gill, C. L. Dyer, and E. W. Curry. 1992. Disruption and Stress in an Alaskan Fishing Community: Initial and Continuing Impacts of the Exxon Valdez Oil Spill. Place, B., B. Anderson, A. Mekebri, E. T. Furlong, J. L. Gray, R. Tjeerdema, J. Field. 2010. A role for analytical chemistry in advancing our understanding of the occurrence, fate, and effects of Corexit oil dispersants. Environ. Sci. Technol. 44, 6016e6018. Place, B. J., M. J. Perkins, E. Sinclair, A. L. Barsamian, P. R. Blakemore, and J. A. Field. 2016. Trace analysis of surfactants in Corexit oil dispersant formulations and seawater. Deep Sea Research Part II: Topical Studies in Oceanography 129:273-281. DOI: https://doi.org/10.1016/j.dsr2.2014.01.015. Popovech, M. 2017. Analysis of Hazards of Dispersant Constituents and Review of Toxicological Studies. International Oil Spill Conference Proceedings: May 2017, Vol. 2017, No. 1, pp. 311-330. Prince, R. C., and J. D. Butler. 2014. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environmental Science and Pollution Research 21(16):9506-9510. DOI: 10.1007/s11356-013-2053-7. Prince, R. C., R. M. Garrett, R. E. Bare, M. J. Grossman, T. Townsend, J. M. Suflita, K. Lee, E. H. Owens, G. A. Sergy, J. F.Braddock, J. E. Lindstrom, and R. R. Lessard. 2003. The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Science and Technology Bulletin 8(2): 145-156. Prince, R. C., K. M. McFarlin, J. D. Butler, E. J. Febbo, F. C. Y. Wang, and T. J. Nedwed. 2013. The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521- 526. DOI: 10.1016/j.chemosphere.2012.08.020. Prince, R. C., T. S. Coolbaugh, and T. F. Parkerton. 2016. Oil dispersants do facilitate biodegradation of spilled oil. Proceedings of the National Academy of Sciences of the United States of America 113(11):E1421. DOI: 10.1073/pnas.1525333113. Rabl, A., and J. V. Spadaro. 1999. Damages and costs of air pollution: an analysis of uncertainties. Environment International 25(1): 29-46. Radović, J. R., C. Aeppli, R. K. Nelson, N. Jimenez, C. M. Reddy, J. M. Bayona, and J. Albaigés. 2014. "Assessment of photochemical processes in marine oil spill fingerprinting." Marine Pollution Bulletin 79(1-2): 268-277. Rand, G. M., and S. R. Petrocelli. 1985. Fundamentals of aquatic toxicology: Methods and applications. Washington: Hemisphere Pub. Corp. Rangwala, A.S., et al. 2015. A Novel Experimental Approach to Enhance Burning of Oil-Water Emulsions by Immersed Objects, BSEE Final Report OSRR-1049. (Available at: https://www.bsee.gov/research-record/osrr-1049-novel-experimental-approach-enhance- burning-oil-water-emulsions-immersed Accessed 10/10/18) Reddy, C. M., J. S. Arey, J. S. Seewald, S. P. Sylva, K. L. Lemkau, R. K. Nelson, C. A. Carmichael, C. P. McIntyre, J. Fenwick, G. T. Ventura, B. A. Van Mooy, and R. Camilli. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20229-20234. DOI: 10.1073/pnas.1101242108. Reddy, C. M., S. A. Wise, L. C. Sander, and J. A. Murray. 2015. Summary of results from the 2014/2015 Hydrocarbon Intercalibration Experiment (HIE). Reddy C, S.A. Wise, L.C. Sander, and J.A. Murray. 2016. Summary of results from the 2014/2015 Hydrocarbon Intercalibration Experiment (HIE). p.^pp. PREPUBLICATION COPY

288 The Use of Dispersants in Marine Oil Spill Response Redman, A. D., and T. F. Parkerton. 2015. Guidance for improving comparability and relevance of oil toxicity tests. Marine Pollution Bulletin 98(1-2):156-170. DOI: 10.1016/j.marpolbul.2015.06.053. Redmond, M. C., and D. L. Valentine. 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109(50):20292-20297. DOI: 10.1073/pnas.1108756108. Redman, A. D., J. A. McGrath, W. A. Stubblefield, A. W. Maki, and D. M. Di Toro. 2012. Quantifying the concentration of crude oil microdroplets in oil–water preparations. Environmental Toxicology and Chemistry 31(8):1814-1822. Redman, A. D., T. F. Parkerton, J. A. McGrath, and D. M. Di Toro. 2012. PETROTOX: An aquatic toxicity model for petroleum substances. Environmental Toxicology and Chemistry 31(11):2498-2506. DOI: 10.1002/etc.1982. Redman, A. D., T. F. Parkerton, D. J. Letinski, R. G. Manning, J. E. Adams, and P. V. Hodson. 2014. Evaluating toxicity of heavy fuel oil fractions using complementary modeling and biomimetic extraction methods. Environmental Toxicology and Chemistry 33(9):2094- 2104. Redman, A. D., J. D. Butler, D. J. Letinski, and T. F. Parkerton. 2017. Investigating the role of dissolved and droplet oil in aquatic toxicity using dispersed and passive dosing systems. Environmental Toxicology and Chemistry 36(4):1020-1028. DOI: 10.1002/etc.3624. Redman, A. D., J. D. Butler, D. J. Letinski, D. M. Di Toro, M. Leon Paumen, and T. F. Parkerton. 2018. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. Chemosphere 199:585-594. DOI: 10.1016/j.chemosphere.2018.02.024. Reed, M., and B. Hetland. 2002. DREAM: a dose-related exposure assessment model technical description of physical-chemical fates components, S. Petrol. Engr., SPE 73856. Reed, M., and H. Rye. 1995. A Three-Dimensional Oil and Chemical Spill Model for Environmental Impact Assessment. International Oil Spill Conference Proceedings 1995(1):61-66. DOI: 10.7901/2169-3358-1995-1-61. Reed, M., Ø. Johansen, P. J. Brandvik, P. Daling, A. Lewis, R. Fiocco, D. Mackay, and R. Prentki. 1999. Oil Spill Modeling towards the Close of the 20th Century: Overview of the State of the Art. Spill Science & Technology Bulletin 5(1):3-16. DOI: https://doi.org/10.1016/S1353-2561(98)00029-2. Rehder, G., I. Leifer, P. G. Brewer, G. Friederich, and E. T. Peltzer. 2009. Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. Marine Chemistry 114(1-2):19-30. DOI: 10.1016/j.marchem.2009.03.004. Reilly, T. I., and R. K. York. 2001. Guidance on Sensory Testing and Monitoring of Seafood for Presence of Petroleum Taint Following an Oil Spill. Reissman, D. B., and J. Howard. 2008. Responder safety and health: Preparing for future disasters. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine 75(2):135-141. DOI: 10.1002/msj.20024. Renegar, D. A., N. R. Turner, B. M. Riegl, R. E. Dodge, A. H. Knap, and P. A. Schuler. 2017. Acute and subacute toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to the shallow-water coral Porites divaricata: Application of a novel exposure protocol. Environmental Toxicology and Chemistry 36(1):212-219. DOI: 10.1002/etc.3530. Renegar, D. A., P. Schuler, N. Turner, R. Dodge, B. Riegl, A. Knap, G. Bera, R. Jézéquel, and B. PREPUBLICATION COPY

References 289 Benggio. 2017. Tropics Field Study (Panama), 32-Year Site Visit: Observations and Conclusions for Near Shore Dispersant Use Neba and Tradeoffs. International Oil Spill Conference Proceedings 2017(1):3030-3050. DOI: 10.7901/2169-3358-2017.1.3030. Ribicic, D., R. Netzer, T. C. Hazen, S. M. Techtmann, F. Drablos, and O. G. Brakstad. 2018. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Marine Pollution Bulletin 129(1):370-378. DOI: 10.1016/j.marpolbul.2018.02.034. Rich, V. I., and R. M. Maier. 2015. Chapter 6 - Aquatic Environments. In Environmental Microbiology (Third Edition). Pepper, I. L., C. P. Gerba and T. J. Gentry, eds. San Diego: Academic Press. Rivers, A. R., S. Sharma, S. G. Tringe, J. Martin, S. B. Joye, and M. A. Moran. 2013. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME Journal 7(12):2315-2329. DOI: 10.1038/ismej.2013.129. Roberts, J. R., J. S. Reynolds, J. A. Thompson, E. J. Zaccone, M. J. Shimko, W. T. Goldsmith, M. Jackson, W. McKinney, D. G. Frazer, A. Kenyon, M. L. Kashon, G. Piedimonte, V. Castranova, and J. S. Fedan. 2011. Pulmonary effects after acute inhalation of oil dispersant (COREXIT EC9500A) in rats. Journal of Toxicology and Environmental Health, Part A 74.21: 1381-1396. Roberts, J. R., S. E. Anderson, H. Kan, K. Krajnak, J. A. Thompson, A. Kenyon, W. T. Goldsmith, W. McKinney, D. G. Frazer, M. Jackson, and J. S. Fedan. 2014. Evaluation of Pulmonary and Systemic Toxicity of Oil Dispersant (COREXIT EC9500A®) following Acute Repeated Inhalation Exposure. Environmental Health Insights 8s1:EHI.S15262. DOI: 10.4137/EHI.S15262. Robinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis. 2007. Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science 315(5816):1259-1262. DOI: 10.1126/science.1133061. Rodríguez-Trigo, G., J. Zock, F. Pozo-Rodríguez, and et al. 2010. HEalth changes in fishermen 2 years after clean-up of the prestige oil spill. Annals of Internal Medicine 153(8):489-498. DOI: 10.7326/0003-4819-153-8-201010190-00279. Romero, I. C., G. Toro-Farmer, A. R. Diercks, P. Schwing, F. Muller-Karger, S. Murawski, and D. J. Hollander. 2017. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environmental Pollution 228:179-189. DOI: 10.1016/j.envpol.2017.05.019. Romero, I. C., P. T. Schwing, G. R. Brooks, R. A. Larson, D. W. Hastings, G. Ellis, E. A. Goddard, and D. J. Hollander. 2015. Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the northeast Gulf of Mexico. PLoS One 10(5). DOI: 10.1371/journal.pone.0128371. Ross, J. L., R. J. Ferek, and P. V. Hobbs. 1996. Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean. Journal of the Air and Waste Management Association 46(3):251-259. DOI: 10.1080/10473289.1996.10467459. Ross, S. L. 2016. Meso-scale flume testing of dispersant effectieness in frazil ice. For Bureau of Safety and Environmental Enforcement (BSEE), U.S. Department of the Interior. https://www.bsee.gov/sites/bsee.gov/files/research-reports//1047aa.pdf Ross, S. L., and Buist, I. 1995. Preliminary Laboratory Study to Determine the Effect of Emulsification on Oil Spill Evaporation. S.L. Ross Environmental Research Ltd. Ottawa, PREPUBLICATION COPY

290 The Use of Dispersants in Marine Oil Spill Response Ontario, Canada. http://www.slross.com/publications/amop/1995- EmulsionEvaporation.pdf. Rotkin-Ellman, M., K. Wong Karen, and M. Solomon Gina. 2012. Seafood Contamination after the BP Gulf Oil Spill and Risks to Vulnerable Populations: A Critique of the FDA Risk Assessment. Environmental Health Perspectives 120(2):157-161. DOI: 10.1289/ehp.1103695. Rubin-Blum, M., C. P. Antony, C. Borowski, L. Sayavedra, T. Pape, H. Sahling, G. Bohrmann, M. Kleiner, M. C. Redmond, D. L. Valentine, and N. Dubilier. 2017. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology 2:17093. DOI: 10.1038/nmicrobiol.2017.93 Rusiecki, J. A., M. Alexander, E. G. Schwartz, L. Wang, L. Weems, J. Barrett, K. Christenbury, D. Johndrow, R. H. Funk, and L. S. Engel. 2017. The Deepwater Horizon Oil Spill Coast Guard Cohort study. Occup Environ Med 0:1-11. Rusina T. P., P. Carlsson, B. Vrana, F. Smedes. 2017. Equilibrium Passive Sampling of POP in Lipid-Rich and Lean Fish Tissue: Quality Control Using Performance Reference Compounds. Environmental Science & Technology. 51(19):11250-7. Ryerson, T. B., K. C. Aikin, W. M. Angevine, E. L. Atlas, D. R. Blake, C. A. Brock, F. C. Fehsenfeld, R.-S. Gao, J. A. de Gouw, D. W. Fahey, J. S. Holloway, D. A. Lack, R. A. Lueb, S. Meinardi, A. M. Middlebrook, D. M. Murphy, J. A. Neuman, J. B. Nowak, D. D. Parrish, J. Peischl, A. E. Perring, I. B. Pollack, A. R. Ravishankara, J. M. Roberts, J. P. Schwarz, J. R. Spackman, H. Stark, C. Warneke, and L. A. Watts. 2011. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters 38(7). DOI: 10.1029/2011GL046726. Ryerson, T. B., R. Camilli, J. D. Kessler, E. B. Kujawinski, C. M. Reddy, D. L. Valentine, E. Atlas, D. R. Blake, J. de Gouw, S. Meinardi, D. D. Parrish, J. Peischl, J. S. Seewald, and C. Warneke. 2012. Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America 109(50):20246-20253. DOI: 10.1073/pnas.1110564109. Sabucedo, J. M., C. Arce, C. Senra, G. Seoane, and I. Vázquez. 2010. Symptomatic profile and health-related quality of life of persons affected by the Prestige catastrophe. Disasters 34(3):809-820. DOI: 10.1111/j.1467-7717.2010.01170.x. Sabucedo, J. M., C. Arce, M. J. Ferraces, H. Merino, and M. Durán. 2009. Psychological impact of the Prestige catastrophe. International Journal of Clinical and Health Psychology 9(1):105-116. Sampath, K., N. Afshar-Mohajer, W.-S. Heo, J. Gilbert, D. Austin, K. Koehler, and J. Katz. 2017. Aerosolization of crude oil and dispersant slicks due to bubble bursting. Bulletin of the American Physical Society. Sandifer, P. A., A. E. Sutton-Grier, and B. P. Ward. 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services 12:1-15. DOI: https://doi.org/10.1016/j.ecoser.2014.12.007. Sandoval, K., Y. Ding, and P. Gardinali. 2017. Characterization and environmental relevance of oil water preparations of fresh and weathered MC-252 Macondo oils used in toxicology testing. Science of the Total Environment 576:118-128. DOI: 10.1016/j.scitotenv.2016.09.171. Santamaria, F., G. Boffetta, M. Martins Afonso, A. Mazzino, M. Onorato, and D. Pugliese. 2013. PREPUBLICATION COPY

References 291 Stokes drift for inertial particles transported by water waves. EPL 102(1). DOI: 10.1209/0295-5075/102/14003. Sathiakumar N, Tipre M, Turner-Henson A, Chen L, Leader M, Gohlke J. Post-deepwater horizon blowout seafood consumption patterns and community-specific levels of concern for selected chemicals among children in Mobile County, Alabama. International journal of hygiene and environmental health. 2017 Jan 1;220(1):1-7. Schaum, J., M. Cohen, S. Perry, R. Artz, R. Draxler, J. B. Frithsen, D. Heist, M. Lorber, and L. Phillips. 2010. Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill. Environmental Science & Technology 44(24):9383-9389. DOI: 10.1021/es103559w. Schünemann, H., S. Hill, G. Guyatt, E. A. Akl, and F. Ahmed. 2011. The GRADE approach and Bradford Hill’s criteria for causation. Journal of Epidemiology and Community Health 65(5):392. Schwacke, L. H., C. R. Smith, F. I. Townsend, R. S. Wells, L. B. Hart, B. C. Balmer, T. K. Collier, S. De Guise, M. M. Fry, and L. J. Guillette Jr. 2013. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environmental Science & Technology 48(1):93-103. Schwing, P. T., G. R. Brooks, R. A. Larson, C. W. Holmes, B. J. O’Malley, and D. J. Hollander. 2017. Constraining the Spatial Extent of Marine Oil Snow Sedimentation and Flocculent Accumulation Following the Deepwater Horizon Event Using an Excess 210Pb Flux Approach. Environmental Science & Technology 51(11):5962-5968. DOI: 10.1021/acs.est.7b00450. Schwing, P. T., I. C. Romero, G. R. Brooks, D. W. Hastings, R. A. Larson, and D. J. Hollander. 2015. A decline in benthic foraminifera following the deepwater horizon event in the northeastern Gulf of Mexico. PLoS One 10(3). DOI: 10.1371/journal.pone.0120565. Schwing, P. T., B. J. O’Malley, and D. J. Hollander. 2018. Resilience of benthic Foraminifera in the northern Gulf of Mexico following the Deepwater Horizon event (2011-2015). Ecological Indicators 84: 753-764, http://dx.doi.org/10.1016/j.ecolind.2017.09.044 Seemann, R.; Malone, K.; Laqua, K.; Schmidt, J.; Meyer, A.; Krause, D.; Schlüter, M: A new high-pressure laboratory setup for the investigation of deep-sea oil spill scenarios under in-situ conditions, Proceedings of the 7th International Symposium on Environmental Hydraulics, Singapore (2014), pp. 340-343 Sellin Jeffries, M. K., C. Claytor, W. Stubblefield, W. H. Pearson, and J. T. Oris. 2013. Quantitative risk model for polycyclic aromatic hydrocarbon photoinduced toxicity in pacific herring following the Exxon Valdez oil spill. Environmental Science & Technology 47(10):5450-5458. Shiller, A. M., E. W. Chan, D. J. Joung, M. C. Redmond, and J. D. Kessler. 2017. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Scientific Reports 7(1):10389. DOI: 10.1038/s41598-017-11060-z. Short, J. W. Susceptibility of Diluted Bitumen Products from the Alberta Tar Sands to Sinking in Water; A51148; JWS Consulting LLC: 2013. Report to the National Energy Board of Canada. D72-80-2 Gitxaala Nation https://apps.neb- one.gc.ca/REGDOCS/Search?txthl=Susceptibility%20of%20diluted%20bitumen%20pro ducts%20from%20the%20alberta%20tar%20sands%20to%20sinking%20in%20water. Singer, M. M., D. Aurand, G. E. Bragin, J. R. Clark, G. M. Coelho, M. L. Sowby, and R. S. PREPUBLICATION COPY

292 The Use of Dispersants in Marine Oil Spill Response Tjeerdema. 2000. Standardization of the preparation and quantitation of water- accommodated fractions of petroleum for toxicity testing. Marine Pollution Bulletin 40(11):1007-1016. DOI: 10.1016/s0025-326x(00)00045-x. Singer, M. M., D. V. Aurand, G. M. Coelho, G. E. Bragin, J. R. Clark, M. Sowby, and R. S. Tjeerdema. 2001. Making, Measuring, and Using Water-Accommodated Fractions of Petroleum for Toxicity Testing. International Oil Spill Conference Proceedings 2001(2):1269-1274. DOI: 10.7901/2169-3358-2001-2-1269. Singer, M., D. Aurand, G. Bragin, J. Clark, G. Coelho, M. Sowby, and R. Tjeerdema. 2000. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Marine Pollution Bulletin 40(11):1007-1016. Skancke, J., O. Johansen, P. J. Brandvik, and O. G. Brakstad. 2016. Implementing new features in OSCAR; oil temperature and viscosity during droplet formation and area specific biodegradation. SINTEF Report A27807, unrestricted access, Trondheim, Norway. Slaughter, A., G. Coelho, and J. Stave. 2017. Spill Impact Mitigation Assessment (SIMA) In Support Of BP Canada Energy Group ULC, Scotian Basin Exploration Project. Sposon Group Technical Report 17-03. Sloan, C. A., D. W. Brown, R. W. Pearce, R. H. Boyer, J. L. Bolton, D. G. Burrows, D. P. Herman, and M. M. Krahn. 2004. Extraction, Cleanup, and Gas Chromatography/Mass Spectrometry Analysis of Sediments and Tissues for Organic Contaminants. Slovic, P. 1987. Perception of Risk. Science 236(4799):280–285. DOI: 10.1126/science.3563507 Socolofsky, S. A., and E. E. Adams. 2002. Multi-phase plumes in uniform and stratified crossflow. Journal of Hydraulic Research 40(6):661-672. DOI: 10.1080/00221680209499913. Socolofsky S. A., and E. E. Adams. 2005. Role of Slip Velocity in the Behavior of Stratified Multiphase Plumes. Journal of Hydraulic Engineering 131(4):273-282. DOI: 10.1061/(ASCE)0733-9429(2005)131:4(273). Socolofsky, S. A., E. E. Adams, and C. R. Sherwood. 2011. Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophysical Research Letters 38(9). DOI: 10.1029/2011GL047174. Socolofsky, S. A., E. E. Adams, M. C. Boufadel, Z. M. Aman, Ø. Johansen, W. J. Konkel, D. Lindo, M. N. Madsen, E. W. North, C. B. Paris, D. Rasmussen, M. Reed, P. Rønningen, L. H. Sim, T. Uhrenholdt, K. G. Anderson, C. Cooper, and T. J. Nedwed. 2015. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. Marine Pollution Bulletin 96(1):110-126. DOI: https://doi.org/10.1016/j.marpolbul.2015.05.039. Solsberg, L. 2008. Countermeasures for the Beaufort Transition Season. Presented at Oil Spill Response: A Global Perspective, Dordrecht, 2008. Sørhus, E., R. B. Edvardsen, Ø. Karlsen, T. Nordtug, T. van der Meeren, A. Thorsen, C. Harman, S. Jentoft, and S. Meier. 2015. Unexpected interaction with dispersed crude oil droplets drives severe toxicity in atlantic haddock embryos. PLoS One 10(4):e0124376. Soto, L.A., A.V. Botello, S. Licea-Durán, M. Lizárraga-Partida, A. Yáñez-Arancibia. 2014. The environmental legacy of the Ixtoc-1 oil spill in Campeche Sound, southwestern Gulf of Mexico. Frontiers in Marine Science 1:1-9. Spaulding, M., Z. Li, D. Mendelsohn, D. Crowley, D. French-McCay, and A. Bird. 2017. Application of an Integrated Blowout Model System, OILMAP DEEP, to the Deepwater Horizon (DWH) Spill. Mar Pollut Bull 120(1-2):37-50. DOI: PREPUBLICATION COPY

References 293 10.1016/j.marpolbul.2017.04.043. Sponson Group. 2017. Scotian Basin Spill Impact Mitigation Assessment. Technical Report 17- 03. Mansfield, Texas. Sriram, K., G. X. Lin, A. M. Jefferson, W. T. Goldsmith, M. Jackson, W. McKinney, D. G. Frazer, V. A. Robinson, and V. Castranova. 2011. Neurotoxicity Following Acute Inhalation Exposure to the Oil Dispersant Corexit EC9500A. Journal of Toxicology and Environmental Health. Part A 74(21):1405-1418. DOI: 10.1080/15287394.2011.606796. Steffek, T., K. Bittler, and A. Guarino. 2016. Comparative Testing of Corexit EC9500A, Finasol OSR 52, Accell Clean DWD, and ZI 400 at Ohmsett in a Simulated Arctic Environment. U.S. Department of Interior, Bureau of Safety and Environmental Enforcement. Stephan, C. E., D. I. Mount, D. J. Hansen, J. Gentile, G. A. Chapman and W. A. Brungs. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. US Environmental Protection Agency. Washington, DC. Sterling Jr, M. C., J. S. Bonner, C. A. Page, C. B. Fuller, A. N. S. Ernest, and R. L. Autenrieth. 2004. Modeling crude oil droplet - Sediment aggregation in nearshore waters. Environmental Science and Technology 38(17):4627-4634. DOI: 10.1021/es035467z. Stevens, C. C., L. J. Thibodeaux, E. B. Overton, K. T. Valsaraj, K. Nandakumar, A. Rao, and N. D. Walker. 2015. Sea Surface Oil Slick Light Component Vaporization and Heavy Residue Sinking: Binary Mixture Theory and Experimental Proof of Concept. Environmental Engineering Science 32(8):694-702. DOI: 10.1089/ees.2015.0022. Stevens, L., and D. Aurand. 2008. Criteria for Evaluating Oil Spill Planning and Response Operations. Stewart, P. A., M. R. Stenzel, G. Ramachandran, S. Banerjee, T. B. Huynh, C. P. Groth, R. K. Kwok, A. Blair, L. S. Engel, and D. P. Sandler. 2017. Development of a total hydrocarbon ordinal job-exposure matrix for workers responding to the Deepwater Horizon disaster: The GuLF STUDY. Journal of Exposure Science and Environmental Epidemiology 28:223. DOI: 10.1038/jes.2017.16 https://www.nature.com/articles/jes201716#supplementary-information. Stieglitz, J. D., E. M. Mager, R. H. Hoenig, D. D. Benetti, and M. Grosell. 2016. Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environmental Toxicology and Chemistry 35(10):2613-2622. DOI: 10.1002/etc.3436. Stiver, W. and D. MacKay. 1984. Evaporation Rate of Spills of Hydrocarbons and Petroleum Mixtures. Environmental Science and Technology 18(11):834-840. DOI: 10.1021/es00129a006. Available at: https://pubs.acs.org/doi/abs/10.1021/es00129a006. Stoffyn-Egli, P., and K. Lee. 2002. Formation and Characterization of Oil–Mineral Aggregates. Spill Science & Technology Bulletin 8(1):31-44. DOI: https://doi.org/10.1016/S1353- 2561(02)00128-7. Stolper, D. A., A. M. Martini, M. Clog, P. M. Douglas, S. S. Shusta, D. L. Valentine, A. L. Sessions, and J. M. Eiler. 2015. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta 161:219-247. DOI: https://doi.org/10.1016/j.gca.2015.04.015. Stone, K., and A. G. Guarino. 2017. Realistic Stable Water-In-Oil Emulsions at OHMSETT.. International Oil Spill Conference Proceedings 2017(1):2826-2850. DOI: 10.7901/2169- PREPUBLICATION COPY

294 The Use of Dispersants in Marine Oil Spill Response 3358-2017.1.2826. Stout, S. A., and C. R. German. 2018. Characterization and flux of marine oil snow settling toward the seafloor in the northern Gulf of Mexico during the Deepwater Horizon incident: Evidence for input from surface oil and impact on shallow shelf sediments. Marine Pollution Bulletin 129(2):695-713. DOI: https://doi.org/10.1016/j.marpolbul.2017.10.059. Stout, S. A. and J. R. Payne. 2016. Macondo oil in deep-sea sediments: Part 1 – sub-sea weathering of oil deposited on the seafloor. Marine Pollution Bulletin 111(1-2): 365-380. Stout, S. A., and J. R. Payne. 2016. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Marine Pollution Bulletin 108(1-2):186- 202. DOI: 10.1016/j.marpolbul.2016.04.031. Stout, S. A., and J. R. Payne. 2017. Footprint, weathering, and persistence of synthetic-base drilling mud olefins in deep-sea sediments following the Deepwater Horizon disaster. Marine Pollution Bulletin 118(1-2):328-340. DOI: 10.1016/j.marpolbul.2017.03.013. Stout, S. A., J. R. Payne, R. W. Ricker, G. Baker, and C. Lewis. 2016. Macondo oil in deep-sea sediments: Part 2 — Distribution and distinction from background and natural oil seeps. Marine Pollution Bulletin 111(1-2):381-401. DOI: 10.1016/j.marpolbul.2016.07.041. Stout, S. A., S. Rouhani, B. Liu, J. Oehrig, R. W. Ricker, G. Baker, and C. Lewis. 2017. Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill. Marine Pollution Bulletin 114(1):327-342. DOI: 10.1016/j.marpolbul.2016.09.046. Strøm-Kristiansen, T., J.N. Hokstad, A. Lewis, and P.J. Brandvik. 1997. NOFO 1996 oil on water exercise – analysis of sample material. SINTEF Data report number STF66 A97050. Trondheim, Norway. Stubblefield, W., and B. De Jourdan. 2017. Differences in exposure media profile and toxicity following preparation of water-accommodated fractions along an energy continuum. Presented at SETAC EUROPE 27th Annual Meeting, Brussels, Belgium, May 2017. Suárez, B., V. Lope, B. Pérez-Gómez, N. Aragonés, F. Rodríguez-Artalejo, F. Marqués, A. Guzmán, L. J. Viloria, J. M. Carrasco, J. M. Martín-Moreno, G. López-Abente, and M. Pollán. 2005. Acute health problems among subjects involved in the cleanup operation following the Prestige oil spill in Asturias and Cantabria (Spain). Environmental Research 99(3):413-424. DOI: https://doi.org/10.1016/j.envres.2004.12.012. Subedi R. K., S. Y. Oh, M. K. Chun, and H. K. Choi. 2010. Recent advances in transdermal drug delivery. Archives of Pharmacal Research 33(3):339-51. doi: 10.1007/s12272-010-0301- 7. Suja, L. D., S. Summers, and T. Gutierrez. 2017. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Frontiers in Microbiology 8(676). DOI: 10.3389/fmicb.2017.00676. Sun, J., and X. Zheng. 2009. A review of oil-suspended particulate matter aggregation—a natural process of cleansing spilled oil in the aquatic environment. Journal of Environmental Monitoring 11(10):1801-1809. DOI: 10.1039/B904829B. Sun, J., A. Khelifa, X. Zheng, Z. Wang, L. L. So, S. Wong, C. Yang, and B. Fieldhouse. 2010. A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Marine Pollution Bulletin 60(10):1701-1707. DOI: https://doi.org/10.1016/j.marpolbul.2010.06.044. Sun, J., A. Khelifa, C. Zhao, D. Zhao, and Z. Wang. 2014. Laboratory investigation of oil- PREPUBLICATION COPY

References 295 suspended particulate matter aggregation under different mixing conditions. The Science of the total environment 473-474:742-749. DOI: 10.1016/j.scitotenv.2013.12.078. Sun, S., C. Hu, O. Garcia-Pineda, V, Kourafalou, M. Le Hénaff, Y. Androulidakis. 2018. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. https://doi.org/10.1016/j.marpolbul.2018.09.004. Sunagawa, S., L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B. Djahanschiri, G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C. Cruaud, F. D'Ovidio, S. Engelen, I. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F. Kokoszka, C. Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H. Sarmento, S. Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, E. Boss, M. Follows, L. Karp-Boss, U. Krzic, E. G. Reynaud, C. Sardet, M. Sieracki, D. Velayoudon, C. Bowler, C. De Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. Jaillon, F. Not, H. Ogata, S. Pesant, S. Speich, L. Stemmann, M. B. Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. Raes, S. G. Acinas, and P. Bork. 2015. Structure and function of the global ocean microbiome. Science 348(6237). DOI: 10.1126/science.1261359. Sutton, O.G. 1934. Wind Structure and Evaporation in a Turbulent Atmosphere. Proceedings of the Royal Society of London. A 146 (858): 701-722. Available at: https://www.jstor.org/stable/2935619?seq=1#metadata_info_tab_contents. Swan, B. K., B. Tupper, A. Sczyrba, F. M. Lauro, M. Martinez-Garcia, J. M. Gonźalez, H. Luo, J. J. Wright, Z. C. Landry, N. W. Hanson, B. P. Thompson, N. J. Poulton, P. Schwientek, S. G. Acinas, S. J. Giovannoni, M. A. Moran, S. J. Hallam, R. Cavicchioli, T. Woyke, and R. Stepanauskas. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America 110(28):11463-11468. DOI: 10.1073/pnas.1304246110. Takeshita, R., L. Sullivan, C. Smith, T. Collier, A. Hall, T. Brosnan, T. Rowles, and L. Schwacke. 2017. The Deepwater Horizon oil spill marine mammal injury assessment. Endangered Species Research 33:95-106. Tarnecki, J. H., and W. F. Patterson. 2015. Changes in Red Snapper Diet and Trophic Ecology Following the Deepwater Horizon Oil Spill. Marine and Coastal Fisheries 7(1):135-147. DOI: 10.1080/19425120.2015.1020402. Taylor, G. I. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 219(1137):186. Teal, J. M., and R. W. Howarth. 1984. Oil spill studies: A review of ecological effects. Environmental Management 8(1):27-43. DOI: 10.1007/BF01867871. Techtmann, S. M., M. Zhuang, P. Campo, E. Holder, M. Elk, T. C. Hazen, R. Conmy, and J. W. Santo Domingo. 2017. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Applied and Environmental Microbiology 83(10):e03462-03416. Temkin, A. M., R. R. Bowers, M. E. Magaletta, S. Holshouser, A. Maggi, P. Ciana, L. J. Guillette, J. A. Bowden, J. R. Kucklick, J. E. Baatz, and D. D. Spyropoulos. 2016. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen. Environmental Health Perspectives 124(1):112-119. DOI: 10.1289/ehp.1409672. PREPUBLICATION COPY

296 The Use of Dispersants in Marine Oil Spill Response Testa, J. M., E. Eric Adams, E. W. North, and R. He. 2016. Modeling the influence of deep water application of dispersants on the surface expression of oil: A sensitivity study. Journal of Geophysical Research: Oceans 121(8):5995-6008. DOI: 10.1002/2015JC011571. Townsend, A. A. 1980. The response of sheared turbulence to additional distortion. Journal of Fluid Mechanics 98(1): 171-191. Trudel, B. K., R. C. Belore, A. Guarino, A. Lewis, and J. Mullin. 2005. Determining the Viscosity Limits for Effective Chemical Dispersion: Relating Ohmsett Results to Those from Tests At-Sea. International Oil Spill Conference Proceedings 2005(1):71-76. DOI: 10.7901/2169-3358-2005-1-71. Trudel, K., R. C. Belore, J. V. Mullin, and A. Guarino. 2010. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank. Marine Pollution Bulletin 60(9):1606-1614. DOI: 10.1016/j.marpolbul.2010.01.010. Tseng, Y.-H., and A. Prosperetti. 2015. Local interfacial stability near a zero vorticity point. Journal of Fluid Mechanics 776:5-36. DOI: 10.1017/jfm.2015.246. Turner, N. R., and D. A. Renegar. 2017. Petroleum hydrocarbon toxicity to corals: A review. Marine Pollution Bulletin 119(2):1-16. USARC (United States Arctic Research Commission). 2012. Oil spills in Arctic waters: An introduction and inventory of research activities and USARC Recommendations. USCG (United States Coast Guard). 2011. On Scene Coordinator Report Deepwater Horizon Oil Spill. Available at: https://repository.library.noaa.gov/view/noaa/283 (accessed: March 27, 2019). USEPA (U.S. Environmental Protection Agency). 1994. Benzo[a]pyrene (BaP) (CASRN 50-32- 8). Available: http://www.epa.gov/iris/subst/0136.htm [accessed 15 November 2010]. USEPA. 1998. Carcinogenic Effects of Benzene: An Update (Draft Report). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/P-97/001F USEPA. 2003. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. EPA 600/R-02/013. Technical Report, Washington, DC. USEPA. 2017. Toxicological Review of Benzo[a]pyrene [CASRN 50-32-8]. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0136tr.pdf Valentine, D. 2010. Measure methane to quantify the oil spill. Nature 465:421. DOI: 10.1038/465421a. Valentine, D. L., J. D. Kessler, M. C. Redmond, S. D. Mendes, M. B. Heintz, C. Farwell, L. Hu, F. S. Kinnaman, S. Yvon-Lewis, M. Du, E. W. Chan, F. G. Tigreros, and C. J. Villanueva. 2010. Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208-211. DOI: 10.1126/science.1196830. Valentine, D. L., I. Mezić, S. Maćešić, N. Črnjarić-Žic, S. Ivić, P. J. Hogan, V. A. Fonoberov, and S. Loire. 2012. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proceedings of the National Academy of Sciences 109(50):20286. Valentine, D. L., G. B. Fisher, S. C. Bagby, R. K. Nelson, C. M. Reddy, S. P. Sylva, and M. A. Wood. 2014. Fallout plume of submerged oil from Deepwater Horizon. Proceedings of the National Academy of Sciences of the United States of America 111(45):15906-15911. DOI: 10.1073/pnas.1414873111. van Eenennaam, J. S., Y. Wei, K. C. F. Grolle, E. M. Foekema, and A. J. Murk. 2016. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria. PREPUBLICATION COPY

References 297 Marine Pollution Bulletin 104(1-2):294-302. DOI: 10.1016/j.marpolbul.2016.01.005. van Eenennaam, J. S., S. Rahsepar, J. R. Radović, T. B. P. Oldenburg, J. Wonink, A. A. M. Langenhoff, A. J. Murk, and E. M. Foekema. 2018. Marine snow increases the adverse effects of oil on benthic invertebrates. Marine Pollution Bulletin 126:339-348. DOI: 10.1016/j.marpolbul.2017.11.028. Van Leeuwen, C. J., P. T. Van Der Zandt, T. Aldenberg, H. J. Verhaar, and J. L. Hermens. 1992. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environmental Toxicology and Chemistry 11(2):267-282. Van Meter, R. J., J. R. Spotila, and H. W. Avery. 2006. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings. Environmental Pollution 142:466-475. Varanasi U. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press; 1989 Mar 31. Veith, G. D., D. J. Call, and L. Brooke. 1983. Structure–toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Canadian Journal of Fisheries and Aquatic Sciences 40(6):743-748. Veith, G. D., O. G. Mekenyan, G. T. Ankley, and D. J. Call. 1995. A QSAR analysis of substituent effects on the photoinduced acute toxicity of PAHs. Chemosphere 30(11):2129-2142. Venkatesh, S., H. El Tahan, G. Comfort, and R. Abdelnour. 1990. Modelling the behaviour of oil spills in ice infested waters. Atmosphere-Ocean 28(3):303-329. DOI: 10.1080/07055900.1990.9649380. Venosa, A. D., and E. L. Holder. 2007. Biodegradability of dispersed crude oil at two different temperatures. Marine Pollution Bulletin 54(5):545-553. DOI: https://doi.org/10.1016/j.marpolbul.2006.12.013. Venosa, A. D., M. T. Suidan, B. A. Wrenn, K. L. Strohmeier, J. R. Haines, B. L. Eberhart, D. King, and E. Holder. 1996. Bioremediation of an Experimental Oil Spill on the Shoreline of Delaware Bay. Environmental Science & Technology 30(5):1764-1775. DOI: 10.1021/es950754r. Venosa, A. D., P. Campo, and M. T. Suidan. 2010. Biodegradability of Lingering Crude Oil 19 Years after the Exxon Valdez Oil Spill. Environmental Science & Technology 44(19):7613-7621. DOI: 10.1021/es101042h. Verbruggen, E. M. J., W. H. J. Vaes, T. F. Parkerton, and L. M. Hermens. 2000. Polyacrylate coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environmental Science & Technology 34(2):324-331. DOI: 10.1021/es990616s. Vergeynst, L., K. U. Kjeldsen, P. Lassen, and S. Rysgaard. 2018. Bacterial community succession and degradation patterns of hydrocarbons in seawater at low temperature. Journal of Hazardous Materials 353:127-134. DOI: https://doi.org/10.1016/j.jhazmat.2018.03.051. Vergeynst, L., S. Wegeberg, J. Aamand, P. Lassen, U. Gosewinkel, J. Fritt-Rasmussen, K. Gustavson, and A. Mosbech. 2018. Biodegradation of marine oil spills in the Arctic with a Greenland perspective. Science of the Total Environment 626:1243-1258. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.173. Vignier, J., P. Soudant, F. L. Chu, J. M. Morris, M. W. Carney, C. R. Lay, M. O. Krasnec, R. PREPUBLICATION COPY

298 The Use of Dispersants in Marine Oil Spill Response Robert, and A. K. Volety. 2016. Lethal and sub-lethal effects of Deepwater Horizon slick oil and dispersant on oyster (Crassostrea virginica) larvae. Mar Environ Res 120:20-31. DOI: 10.1016/j.marenvres.2016.07.006. Vilcáez, J., L. Li, and S. S. Hubbard. 2013. A new model for the biodegradation kinetics of oil droplets: application to the Deepwater Horizon oil spill in the Gulf of Mexico. Geochemical Transactions 14:4-4. DOI: 10.1186/1467-4866-14-4. Vinardell, M. P., and M. R. Infante. 1999. The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 124(2):117-120. DOI: https://doi.org/10.1016/S0742-8413(99)00057-2. Visser, A. 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Viveros, D., R. Jones, and M. Boufadel. 2015. Development of a new oil biodegradation algorithm for NOAA's oil spill modelling suite (GNOME/ADIOS). von Netzer F, Pilloni G, Kleindienst S, Kruger M, Knittel K, Grundger F & Lueders. 2013. Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems. Applied and Environmental Microbiology 79: 543-552. Vonk, S. M., D. J. Hollander, and A. J. Murk. 2015. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Marine Pollution Bulletin 100(1):5-12. DOI: 10.1016/j.marpolbul.2015.08.023. Walker, A. H., R. Pavia, A. Bostrom, T. M. Leschine, and K. Starbird. 2015. Communication Practices for Oil Spills: Stakeholder Engagement During Preparedness and Response. Human and Ecological Risk Assessment: An International Journal 21(3):667-690. DOI: 10.1080/10807039.2014.947869. Walker, A. H., C. Stern, D. Scholz, E. Nielsen, F. Csulak, and R. Gaudiosi. 2016. Consensus Ecological Risk Assessment of Potential Transportation-related Bakken and Dilbit Crude Oil Spills in the Delaware Bay Watershed, USA. Journal of Marine Science and Engineering 4(1). DOI: 10.3390/jmse4010023. Walker, A.H., D. Scholz, M. McPeek, D. French-McCay, J. Rowe, M. Bock, H. Robinson, and R. Wenning. 2018. Comparative Risk Assessment of Spill Response Options for a Deepwater Oil Well Blowout: Part III. Stakeholder Engagement. Mar. Pollut. Bull. 133:970–983. https://doi.org/10.1016/j.marpolbul.2018.05.009. Walker, A.H., D. Scholz, A. C. Bejarano, A. M. Hess (Compilers). 2018. Hawaii Net Environmental Benefit Analysis: Consensus Evaluation of Tradeoffs Associated with Oil Spill Response Options. A Report to the Oceania Regional Response Team. SEA Consulting Group, Cape Charles, VA, 23310. 182 pages with appendices. Wammer, K. H., and C. A. Peters. 2005. Polycyclic aromatic hydrocarbon biodegradation rates: A structure-based study. Environmental Science and Technology 39(8):2571-2578. DOI: 10.1021/es048939y. Wang, D., and E. E. Adams. 2016. Intrusion dynamics of particle plumes in stratified water with weak crossflow: Application to deep ocean blowouts. Journal of Geophysical Research: Oceans 121(6):3820-3835. DOI: 10.1002/2015JC011324. Wang, C. Y. and R. V. Calabrese. 1986. Drop breakup in turbulent stirred-tank contactors. Part II: Relative influence of viscosity and interfacial tension. AIChE Journal 32(4): 667-676. PREPUBLICATION COPY

References 299 Wang, W., Y. Zheng, Z. Li, and K. Lee. 2011. PIV investigation of oil–mineral interaction for an oil spill application. Chemical Engineering Journal 170(1):241-249. DOI: https://doi.org/10.1016/j.cej.2011.03.062. Wang, H., Y. Shi, D. Major, and Z. Yang. 2012. Lung epithelial cell death induced by oil- dispersant mixtures. Toxicology in Vitro 26(5):746-751. DOI: https://doi.org/10.1016/j.tiv.2012.03.011. Wang, W., Y. Zheng, and K. Lee. 2013. Chemical dispersion of oil with mineral fines in a low temperature environment. Marine Pollution Bulletin 72(1):205-212. DOI: https://doi.org/10.1016/j.marpolbul.2013.03.042. Wang, B., S. A. Socolofsky, J. A. Breier, and J. S. Seewald. 2016. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. Journal of Geophysical Research: Oceans 121(4):2203-2230. DOI: 10.1002/2015JC011452 Wang, J., K. Sandoval, Y. Ding, D. Stoeckel, A. Minard-Smith, G. Andersen, E. A. Dubinsky, R. Atlas, and P. Gardinali. 2016. Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Science of the Total Environment 557-558:453-468. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.015. Wang, Z., S. F. DiMarco, and S. A. Socolofsky. 2016. Turbulence measurements in the northern gulf of Mexico: Application to the Deepwater Horizon oil spill on droplet dynamics. Deep-Sea Research Part I: Oceanographic Research Papers 109:40-50. DOI: 10.1016/j.dsr.2015.12.013. Ward, C. P., C. J. Armstrong, R. N. Conmy, D. P. French-Mccay, and C. M. Reddy. 2018. Photochemical Oxidation of Oil Reduced the Effectiveness of Aerial Dispersants Applied in Response to the Deepwater Horizon Spill. Environmental Science and Technology Letters 5(5):226-231. DOI: 10.1021/acs.estlett.8b00084. Ward, C. P., C. M. Sharpless, D. L. Valentine, D. P. French-McCay, C. Aeppli, H. K. White, R. P. Rodgers, K. M. Gosselin, R. K. Nelson, and C. M. Reddy. 2018. Partial Photochemical Oxidation Was a Dominant Fate of Deepwater Horizon Surface Oil. Environmental Science and Technology 52(4):1797-1805. DOI: 10.1021/acs.est.7b05948. Wardlaw, G. D., J. S. Arey, C. M. Reddy, R. K. Nelson, G. T. Ventura, and D. L. Valentine. 2008. Disentangling oil weathering at a marine seep using GCxGC: Broad metabolic specificity accompanies subsurface petroleum biodegradation. Environmental Science and Technology 42(19):7166-7173. DOI: 10.1021/es8013908. Wardlaw GD, R.K. Nelson, C.M. Reddy, D.L. Valentine. 2011. Biodegradation preference for isomers of alkylated napthalenes and benzothiophenes in marine sediment contaminated with crude oil. Organic Geochemistry. 42, 630-639. Warren, C.J., A. MacFadyen, C. Henry. 2014. Mapping oil for the destroyed Taylor Energy site in the Gulf of Mexico. In: International Oil Spill Conference Proceedings. vol. 2014, No. 1. pp. 299931 http://refhub.elsevier.com/S0025-326X(18)30644-1/rf0290 Warzinski, R. P., R. Lynn, I. Haljasmaa, I. Leifer, F. Shaffer, B. J. Anderson, and J. S. Levine. 2014. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models. Geophysical Research Letters 41(19):6841- 6847. DOI: 10.1002/2014GL061665 Waterman, D. M., and M. H. Garcia. 2015. Laboratory Tests of Oil-Particle Interactions in a Freshwater Riverine Environment with Cold Lake Blend Weathered Bitumen. US EPA Archive Document. Wawrik, B., M. Mendivelso, V. A. Parisi, J. M. Suflita, I. A. Davidova, C. R. Marks, J. D. PREPUBLICATION COPY

300 The Use of Dispersants in Marine Oil Spill Response Nostrand, Y. Liang, J. Zhou, B. J. Huizinga, D. Strąpoć, and A. V. Callaghan. 2011. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiology Ecology 81(1):26-42. DOI: 10.1111/j.1574-6941.2011.01272.x. Weise, A. M., C. Nalewajko, and K. Lee. 1999. Oil-Mineral Fine Interactions Facilitate Oil Biodegradation in Seawater. Environmental Technology 20(8):811-824. DOI: 10.1080/09593332008616877. Wenning, R. J. 2005. Use of sediment quality guidelines and related tools for the assessment of contaminated sediments, SETAC, Pensacola, FL p. White, P. A., S. Robitaille and J. B. Rasmussen. 1999. Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 18(8): 1843-1847. White, H. K., P. Y. Hsing, W. Cho, T. M. Shank, E. E. Cordes, A. M. Quattrini, R. K. Nelson, R. Camilli, A. W. J. Demopoulos, C. R. German, J. M. Brooks, H. H. Roberts, W. Shedd, C. M. Reddy, and C. R. Fisher. 2012. Impact of the Deepwater Horizon oil spill on a deep- water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences of the United States of America 109(50):20303-20308. DOI: 10.1073/pnas.1118029109. White, H. K., S. L. Lyons, S. J. Harrison, D. M. Findley, Y. Liu, and E. B. Kujawinski. 2014. Long-Term Persistence of Dispersants following the Deepwater Horizon Oil Spill. Environmental Science & Technology Letters 1(7):295-299. DOI: 10.1021/ez500168r. White, H.K., R.N Conmy, I.R. MacDonald, C.M. Reddy. 2016. Methods of Oil Detection in Response to the Deepwater Horizon Oil Spill. Oceanography 29(3) Special Issue on GoMRI Deepwater Horizon Oil Spill and Ecosystem Science (SEPTEMBER 2016), pp. 76-87. Whitehead, A., B. Dubansky, C. Bodinier, T. I. Garcia, S. Miles, C. Pilley, V. Raghunathan, J. L. Roach, N. Walker, R. B. Walter, C. D. Rice and F. Galvez (2011). Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences 109(50): 20298-20302. DOI: 10.1073/pnas.1109545108. Whitmer, E. R., B. A. Elias, D. J. Harvey, and M. H. Ziccardi. 2017. An Experimental Study of the Effects of Chemically Dispersed Oil on Feather Structure and Waterproofing in Common Murres (Uria aalge). Journal of Wildlife Diseases. Wickliffe, J., E. Overton, S. Frickel, J. Howard, M. Wilson, B. Simon, S. Echsner, D. Nguyen, D. Gauthe, D. Blake, C. Miller, C. Elferink, S. Ansari, H. Fernando, E. Trapido, and A. Kane. 2014. Evaluation of Polycyclic Aromatic Hydrocarbons Using Analytical Methods, Toxicology, and Risk Assessment Research: Seafood Safety after a Petroleum Spill as an Example. Environmental Health Perspectives 122(1):6-9. DOI: 10.1289/ehp.1306724. Wilkinson, J., C. J. Beegle-Krause, K.-U. Evers, N. Hughes, A. Lewis, M. Reed, and P. Wadhams. 2017. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices. Ambio 46(3):423-441. DOI: 10.1007/s13280-017-0958-y. Wincele Demian, E., A. Wrenn Brian, and D. Venosa Albert. 2004. Sedimentation of Oil- Mineral Aggregates for Remediation of Vegetable Oil Spills. Journal of Environmental Engineering 130(1):50-58. DOI: 10.1061/(ASCE)0733-9372(2004)130:1(50). Wise, C. F., J. T. F. Wise, S. S. Wise, W. D. Thompson, J. P. Wise, and J. P. Wise. 2014. Chemical dispersants used in the Gulf of Mexico oil crisis are cytotoxic and genotoxic to PREPUBLICATION COPY

References 301 sperm whale skin cells. Aquatic Toxicology 152:335-340. DOI: https://doi.org/10.1016/j.aquatox.2014.04.020. Wood, P. A., T. Lunel, F. Daniel, R. Swannell, K. Lee, and P. Stoffyn-Egli. 1998. Influence of oil and mineral characteristics on oil-mineral interaction. Wooten, K. J., B. E. Finch, and P. N. Smith. 2012. Embryotoxicity of Corexit 9500 in mallard ducks (Anas platyrhynchos). Ecotoxicology 21(3):662-666. Xia, K., G. Hagood, C. Childers, J. Atkins, B. Rogers, L. Ware, K. Armbrust, J. Jewell, D. Diaz, N. Gatian, and H. Folmer. 2012. Polycyclic Aromatic Hydrocarbons (PAHs) in Mississippi Seafood from Areas Affected by the Deepwater Horizon Oil Spill. Environmental Science & Technology 46(10):5310-5318. DOI: 10.1021/es2042433. Xie, H., P. D. Yapa, and K. Nakata. 2007. Modeling emulsification after an oil spill in the sea. Journal of Marine Systems 68(3-4): 489-506. Xu, E. G., E. M. Mager, M. Grosell, C. Pasparakis, L. S. Schlenker, J. D. Stieglitz, D. Benetti, E. S. Hazard, S. M. Courtney, G. Diamante, J. Freitas, G. Hardiman, and D. Schlenk. 2016. Time- and Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. Environmental Science & Technology 50(14):7842-7851. DOI: 10.1021/acs.est.6b02205. Yang, C., G. Zhang, Z. Wang, Z. Yang, B. Hollebone, M. Landriault, K. Shah, and C. E. Brown. 2014. Development of a methodology for accurate quantitation of alkylated polycyclic aromatic hydrocarbons in petroleum and oil contaminated environmental samples. Analytical Methods 6(19):7760-7771. Yang, D., B. Chen, S. A. Socolofsky, M. Chamecki, and C. Meneveau. 2016. Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow. Journal of Fluid Mechanics 794:798-833. DOI: 10.1017/jfm.2016.191. Yang, Z., B. P. Hollebone, C. E. Brown, C. Yang, Z. Wang, G. Zhang, P. Lambert, M. Landriault, and K. Shah. 2016. The photolytic behavior of diluted bitumen in simulated seawater by exposed to the natural sunlight. Fuel 186:128-139. Yang, Z., G. Zhang, B. P. Hollebone, C. E. Brown, C. Yang, P. Lambert, Z. Wang, M. Landriault, and K. Shah. 2017. Fate of oxygenated intermediates in solar irradiated diluted bitumen mixed with saltwater. Environmental Pollution 231:622-634. Yassine, M. H., M. T. Suidan, and A. D. Venosa. 2013. Microbial kinetic model for the degradation of poorly soluble organic materials. Water Research 47(4):1585-1595. DOI: https://doi.org/10.1016/j.watres.2012.12.013. Yender, R., J. Michel, and C. Lord. 2002. Managing Seafood Safety after an Oil Spill. Yergeau, E., C. Maynard, S. Sanschagrin, J. Champagne, D. Juck, K. Lee, and C. W. Greer. 2015. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. Applied and Environmental Microbiology 81(17):5855. Yergeau, E., C. Michel, J. Tremblay, A. Niemi, T. L. King, J. Wyglinski, K. Lee, and C. W. Greer. 2017. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Scientific Reports 7:42242. DOI: 10.1038/srep42242 https://www.nature.com/articles/srep42242#supplementary-information. Ylitalo, G. M., M. M. Krahn, W. W. Dickhoff, J. E. Stein, C. C. Walker, C. L. Lassitter, E. S. Garrett, L. L. Desfosse, K. M. Mitchell, B. T. Noble, S. Wilson, N. B. Beck, R. A. Benner, P. N. Koufopoulos, and R. W. Dickey. 2012. Federal seafood safety response to PREPUBLICATION COPY

302 The Use of Dispersants in Marine Oil Spill Response the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109(50):20274. Yvon-Lewis, S. A., L. Hu, and J. Kessler. 2011. Methane flux to the atmosphere from the Deepwater Horizon oil disaster. Geophysical Research Letters 38(1). DOI: 10.1029/2010GL045928. Zeinstra-Helfrich, M., W. Koops, and A. J. Murk. 2017. Predicting the consequence of natural and chemical dispersion for oil slick size over time. Journal of Geophysical Research: Oceans 122(9):7312-7324. DOI: 10.1002/2017JC012789. Zhang, H., M. Khatibi, Y. Zheng, K. Lee, Z. Li, and J. V. Mullin. 2010. Investigation of OMA formation and the effect of minerals. Marine Pollution Bulletin 60(9):1433-1441. DOI: 10.1016/j.marpolbul.2010.05.014. Zhao, L., M. C. Boufadel, S. A. Socolofsky, E. Adams, T. King, and K. Lee. 2014. Evolution of droplets in subsea oil and gas blowouts: Development and validation of the numerical model VDROP-J. Marine Pollution Bulletin 83(1):58-69. DOI: https://doi.org/10.1016/j.marpolbul.2014.04.020. Zhao, L., J. Torlapati, M. C. Boufadel, T. King, B. Robinson, and K. Lee. 2014. VDROP: A comprehensive model for droplet formation of oils and gases in liquids - Incorporation of the interfacial tension and droplet viscosity. Chemical Engineering Journal 253:93-106. DOI: https://doi.org/10.1016/j.cej.2014.04.082. Zhao, L., M. C. Boufadel, E. Adams, S. A. Socolofsky, T. King, K. Lee, and T. Nedwed. 2015. Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout. Marine Pollution Bulletin 101(1):304-319. DOI: 10.1016/j.marpolbul.2015.10.068. Zhao, L., M. Boufadel, K. Lee, T. King, N. Loney, and X. Geng. 2016. Evolution of bubble side Distribution from gas blowout in shallow water. Journal of Geophysical Research: Oceans 121(3):1573-1599. Zhao, L., M. C. Boufadel, X. Geng, K. Lee, T. King, B. H. Robinson, and F. A. Fitzpatrick. 2016. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs). Marine Pollution Bulletin 106(1-2):245-259. DOI: 10.1016/j.marpolbul.2016.02.057. Zhao, X., W. Liu, J. Fu, Z. Cai, S.E. O'Reilly and D. Zhao. 2016. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems. Marine Pollution Bulletin 109: 526-538. Zhao, L., M. C. Boufadel, T. King, B. Robinson, P. Gao, S. A. Socolfosky, K. Lee. 2017a. Droplet and bubble formation of combined oil and gas releases in subsea blowouts, Mar. Poll. Bull. Zhao, L., F. Gao, M. C. Boufadel, T. King, B. Robinson, K. Lee, and R. Conmy. 2017b. Oil jet with dispersant: Macro-scale hydrodynamics and tip streaming. AIChE J., 63: 5222– 5234. doi:10.1002/aic.15864 Zhao, L., M. C. Boufadel, J. Katz, G. Haspel, K. Lee, T. King, and B. Robinson. 2017. A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: Projectile Particles. Environmental Science & Technology 51(19):11020-11028. DOI: 10.1021/acs.est.7b02032. Zheng, L., and P. D. Yapa. 2000. Buoyant velocity of spherical and nonspherical bubbles/droplets. Journal of Hydraulic Engineering 126(11):852-854. DOI: 10.1061/(ASCE)0733-9429(2000)126:11(852). Zheng, L., and P. D. Yapa. 2002. Modeling gas dissolution in deepwater oil/gas spills. Journal of Marine Systems 31(4):299-309. DOI: 10.1016/S0924-7963(01)00067-7. PREPUBLICATION COPY

References 303 Zock, J. P., G. Rodríguez-Trigo, E. Rodríguez-Rodríguez, A. Espinosa, F. Pozo-Rodríguez, F. Gómez, C. Fuster, G. Castaño-Vinyals, J. M. Antó, and J. A. Barberà. 2012. Persistent respiratory symptoms in clean-up workers 5 years after the Prestige oil spill. Occupational and Environmental Medicine 69(7):508-513. DOI: 10.1136/oemed-2011- 100614. Zock, J.-P., G. Rodríguez-Trigo, E. Rodríguez-Rodríguez, A. Souto-Alonso, A. Espinosa, F. Pozo-Rodríguez, F. P. Gómez, C. Fuster, G. Castaño-Vinyals, J. M. Antó, and J. A. Barberà. 2014. Evaluation of the persistence of functional and biological respiratory health effects in clean-up workers 6years after the Prestige oil spill. Environment International 62:72-77. DOI: https://doi.org/10.1016/j.envint.2013.09.020. PREPUBLICATION COPY

Next: APPENDIX A: COMMITTEE AND STAFF BIOGRAPHIES »
The Use of Dispersants in Marine Oil Spill Response Get This Book
×
Buy Paperback | $75.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response options—including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools.

This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!