National Academies Press: OpenBook
« Previous: 7 RESEARCH AND DECISION-MAKING PROTOCOLS
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

REFERENCES

Abraham, M. H., A. Ibrahim, and A. M. Zissimos. 2004. Determination of sets of solute descriptors from chromatographic measurements. Journal of Chromatography 1037(1-2):29-47.

Adams, W. J., R. A. Kimerle, and R. G. Mosher. 1985. Aquatic Safety Assessment of Chemicals Sorbed to Sediments. Aquatic Toxicology and Hazard Assessment: Seventh Symposium. STP 854: 429-429-25. R. Cardwell, R. Purdy, and R. B. Comotto, eds. Philadelphia, PA: ASTM International.

Adams, E. E., S. A. Socolofsky, and M. Boufadel. 2013. Comment on “Evolution of the Macondo well blowout: Simulating the effects of the circulation and synthetic dispersants on the subsea oil transport.” Environmental Science & Technology 47(20):11905. DOI: 10.1021/es4034099.

Adams, J., K. Charbonneau, D. Tuori, R. S. Brown, and P. V. Hodson. 2017. Review of Methods for Measuring the Toxicity to Aquatic Organisms of the Water Accommodated Fraction (WAF) and Chemically-Enhanced Water Accommodated Fraction (CEWAF) of petroleum. Canadian Science Advisory Secretariat Research Document 2017/064. Ottowa, Ontario, Canada: Fisheries and Oceans Canada, Canadian Science Advisory Secretariat.

Adeyemo, O. K., K. J. Kroll, and N. D. Denslow. 2015. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquatic Toxicology 168:60-71. DOI: 10.1016/j. aquatox.2015.09.012.

AEA Technology. 1994. International Calibration of Laboratory Dispersant Test Methods Against Sea Trials. Harwell, Oxfordshire, UK: AEA Technology.

AEA Technology. 1995. International Calibration of Laboratory Dispersant Test Methods Against Sea Trials. Field trial report. July 1995 sea trials. Harwell, Oxfordshire, UK: AEA Technology.

Aeppli, C., C. A. Carmichael, R. K. Nelson, K. L. Lemkau, W. M. Graham, M. C. Redmond, D. L. Valentine, and C. M. Reddy. 2012. Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environmental Science & Technology 46(16):8799-8807. DOI: 10.1021/es3015138.

Aeppli, C., R. K. Nelson, J. R. Radovi , C. A. Carmichael, D. L. Valentine, and C. M. Reddy. 2014. Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environmental Science & Technology 48(12):6726-6734. DOI: 10.1021/es500825q.

Afshar-Mohajer, N., C. Li, A. M. Rule, J. Katz, and K. Koehler. 2018. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves. Atmospheric Environment 179:177-186. DOI: 10.1016/j.atmosenv.2018.02.017.

Afshar-Mohajer, N., M. A. Fox, and K. Koehler. 2019. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Science of the Total Environment 654:924-932. DOI: 10.1016/j.scitotenv.2018.11.110.

Aguilera, F., J. Méndez, E. Pásaro, and B. Laffon. 2010. Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology 30(4):291-301. DOI: 10.1002/jat.1521.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Ajijolaiya, L. O., P. S. Hill, A. Khelifa, R. M. Islam, and K. Lee. 2006. Laboratory investigation of the effects of mineral size and concentration on the formation of oil–mineral aggregates. Marine Pollution Bulletin 52(8):920-927. DOI: 10.1016/j.marpolbul.2005.12.006.

Albers, P. H., and T. Loughlin. 2003. Effects of PAHs on marine birds, mammals and reptiles. In PAHs: An Ecotoxicological Perspective. P. E. T. Douben, ed. Chichester, UK: John Wiley & Sons, Inc.

Aldenberg, T., and W. Slob. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicology and Environmental Safety 25(1):48-63.

Alexander, M., L. S. Engel, N. Olaiya, L. Wang, J. Barrett, L. Weems, E. G. Schwartz, and J. A. Rusiecki. 2018. The Deepwater Horizon oil spill Coast Guard cohort study: A cross-sectional study of acute respiratory health symptoms. Environmental Research 162:196-202. DOI: 10.1016/j.envres.2017.11.044.

Aliseda, A., P. Bommer, P. Espina, O. Flores, J. C. Lasheras, B. Lehr, I. Leifer, A. Possolo, J. Riley, O. Savas, F. Schaffer, S. Wereley, and P. Yapa. 2010. Deepwater Horizon Release Estimate of Rate by PIV. Washington, DC: U.S. Department of the Interior. https://engineering.purdue.edu/~wereley/oilspill/Deepwater_Horizon_June_V.pdf.

Allen, A. A., D. Jaeger, N. J. Mabile, and D. Costanzo. 2011. The use of controlled burning during the Gulf of Mexico Deepwater Horizon MC-252 oil spill response. International Oil Spill Conference Proceedings 2011(1):abs194. DOI: 10.7901/2169-3358-2011-1-194.

Alloy, M., T. R. Garner, K. Bridges, C. Mansfield, M. Carney, H. Forth, M. Krasnec, C. Lay, R. Takeshita, J. Morris, S. Bonnot, J. Oris, and A. Roberts. 2017. Co-exposure to sunlight enhances the toxicity of naturally weathered Deepwater Horizon oil to early lifestage red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus): Photo-induced toxicity to red drum and speckled seatrout. Environmental Toxicology and Chemistry 36(3):780-785.

Amrani, A., A. L. Sessions, and J. F. Adkins. 2009. Compound-specific δ34S analysis of volatile organics by coupled GC/Multicollector-ICPMS. Analytical Chemistry 81:9027-9034.

Amrani, A., A. Deev, A. L. Sessions, Y. Tang, J. F. Adkins, R. J. Hill, J. M. Moldowan, and Z. Wei. 2012. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochimica et Cosmochemica Acta 84:152-164.

AMSA (Australian Maritime Safety Authority). 2003. Oil Spill Monitoring Handbook. Prepared by Wardrop Consulting and the Cawthron Institute for the Australian Maritime Safety Authority (AMSA) and the Marine Safety Authority of New Zealand (MSA). Canberra, Australia: AMSA.

AMSA. 2016. Oil Spill Monitoring Handbook. S. Hook, G. Batley, M. Holloway, and P. Irving, eds. Victoria, Australia: CSIRO Publishing.

Anderson, S. E., J. Franko, E. Lukomska, and B. J. Meade. 2011. Potential immunotoxicological health effects following exposure to COREXIT 9500A during cleanup of the Deepwater Horizon oil spill. Journal of Toxicology and Environmental Health—Part A: Current Issues 74(21):1419-1430. DOI: 10.1080/15287394.2011.606797.

Ankley, G. T., R. J. Erickson, G. L. Phipps, V. R. Mattson, P. A. Kosian, B. R. Sheedy, and J. S. Cox. 1995. Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. Environmental Science & Technology 29(11):2828-2833. DOI: 10.1021/es00011a019.

Apeti, D., D. Whitall, G. Lauenstein, T. McTigue, K. Kimbrough, A. Jacob, and A. Mason. 2013. Assessing the impacts of the Deepwater Horizon oil spill: The National Status and Trends Program response; a summary report of coastal contamination. Silver Spring, MD: NOAA/National Centers for Coastal Ocean Science. 16 pp.

API (American Petroleum Institute). 2013. Industry Recommended Subsea Dispersant Monitoring Plan. Version 1.0. API Technical Report 1152. Washington, DC: API.

Arata, C. M., J. S. Picou, G. D. Johnson, and T. S. McNally. 2000. Coping with technological disaster: An application of the conservation of resources model to the Exxon Valdez oil spill. Journal of Traumatic Stress 13(1):23-39. DOI: 10.1023/A:1007764729337.

Arfsten, D. P., D. J. Schaeffer, and D. C. Mulveny. 1996. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review. Ecotoxicology and Environmental Safety 33(1):1-24. DOI: 10.1006/eesa.1996.0001.

Arp, H. P., S. E. Hale, M. E. Kruså, G. Cornelissen, C. B. Grabanski, D. J. Miller, and S. B. Hawthorne. 2015. Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants. Environmental Toxicology and Chemistry 34(4):710-720.

ASCE (American Society of Civil Engineers) Task Committee. 1996. State-of-the-art review of modeling transport and fate of oil spills. Journal of Hydraulic Engineering 122(11):594-609.

ASTM (American Society for Testing and Materials). 2013a. Standard Guide for Determining Net Environmental Benefit of Dispersant Use. ASTM Standard Number F2532–13. West Conshohocken, PA: ASTM International.

ASTM. 2013b. Standard Practice for Development and Use of Oil-Spill Trajectory Models. ASTM Standard F2067-13. West Conshohocken, PA: ASTM International.

ASTM. 2014. Standard Guide for Determining Net Environmental Benefit of Dispersant Use. ASTM Standard Number F2532–13. West Conshohocken, PA: ASTM International.

ASTM. 2019. Standard Guide for Determining Net Environmental Benefit of Dispersant Use. ASTM Standard F2532-19. West Conshohocken, PA: ASTM International.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Atlas, R. M., and T. C. Hazen. 2011. Oil biodegradation and bioremediation: A tale of the two worst spills in US history. Environmental Science & Technology 45(16):6709-6715. DOI: 10.1021/es2013227.

ATSDR (Agency for Toxic Substances and Disease Registry). 2007. Toxicological Profile for Benzene, August. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=40&tid=14.

Aurand, D. V. 1995. The application of ecological risk principles to dispersant use planning. Spill Science & Technology Bulletin 2(4):241-247.

Aurand, D., and G. Coelho (Compilers). 2003. Ecological Risk Assessment: Consensus Workshop. Environmental Tradeoffs Associated With Oil Spill Response Technologies. U.S. and British Virgin Islands. A report to US Coast Guard District 7. Report 03-03. Lusby, MD: Ecosystem Management & Associates, Inc.

Aurand, D., and G. M. Coelho. 2005. Cooperative Aquatic Toxicity Testing of Dispersed Oil and the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF). Technical Report 07-03. Lusby, MD: Ecosystem Management & Associates, Inc.

Aurand, D., L. Walko, and R. Pond. 2000. Developing Consensus Ecological Risk Assessments: Environmental Protection in Oil Spill Response Planning, A Guidebook. Washington, DC: U.S. Coast Guard.

Aurand, D., M. Hitchings, L. Walko, J. Clark, J. Bonner, C. Page, R. Jamail, and R. Martin. 2001. Justification for the Proposed Texas General Land Office “Spill of Opportunity” Testing Program. Regional Response Team 6 Review Draft. Lusby, MD: Ecosystem Management & Associates, Inc.

Aurand, D., M. Hitchings, L. Walko, J. Clark, J. Bonner, C. Page, R. Jamail, and R. Martin. 2004. Texas General Land Office “Spill of Opportunity” Dispersant Demonstration Project Description. Final Report. Lusby, MD: Ecosystem Management & Associates, Inc.

Aveyard, R., B. P. Binks, and J. H. Clint. 2003. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 100-102(Suppl):503-546. DOI: 10.1016/S0001-8686(02)00069-6.

Baca, B. J., and C. D. Getter. 1984. The toxicity of oil and chemically dispersed oil to the seagrass Thalassia testudinum. In Oil Spill Chemical Dispersants: Research, Experience, and Recommendations. T. E. Allen, ed. Philadelphia, PA: American Society for Testing and Materials.

Baca, B., E. Rosch, E. D. DeMicco, and P. A. Schuler. 2014. TROPICS: 30-year follow-up and analysis of mangroves, invertebrates, and hydrocarbons. International Oil Spill Proceedings 2014(1):1734-1748.

Bacosa, H. P., Z. Liu, and D. L. Erdner. 2015. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Marine Pollution Bulletin 95(1):265-272.

Bælum, J., S. Borglin, R. Chakraborty, J. L. Fortney, R. Lamendella, O. U. Mason, M. Auer, M. Zemla, M. Bill, M. E. Conrad, S. A. Malfatti, S. G. Tringe, H.-Y. Holman, T. C. Hazen, and J. K. Jansson. 2012. Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology 14(9):2405-2416. DOI: 10.1111/j.1462-2920.2012.02780.x.

Bagby, S. C., C. M. Reddy, C. Aeppli, G. B. Fisher, and D. L. Valentinea. 2017. Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proceedings of the National Academy of Sciences of the United States of America 114(1):E9-E18. DOI: 10.1073/pnas.1610110114.

Bagi, A., D. M. Pampanin, O. G. Brakstad, and R. Kommedal. 2013. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q(10) approach. Marine Environmental Research 89:83-90.

Ballou, T. G., S. C. Hess, R. E. Dodge, A. H. Knap, and T. D. Sleeter. 1989. Effects of untreated and chemically dispersed oil on tropical marine communities: A long-term field experiment. International Oil Spill Conference Proceedings 1989(1):447-454.

Bandara, U. C., P. D. Yapa, and H. Xie. 2011. Fate and transport of oil in sediment laden marine waters. Journal of Hydro-Environment Research 5(3):145-156. DOI: 10.1016/j.jher.2011.03.002.

Bandele, O. J., M. F. Santillo, M. Ferguson, and P. L. Wiesenfeld. 2012. In vitro toxicity screening of chemical mixtures using HepG2/C3A cells. Food and Chemical Toxicology 50(5):1653-1659.

Barker, C. 2011. A statistical outlook for the Deepwater Horizon oil spill. Geophysical Monograph Series 195:237-244.

Barker, C. H., W. J. Lehr, A. MacFadyen, C. O’Connor, J. Makela, and J. Hennen, eds. 2018. General NOAA Operational Modeling Environment (GNOME) technical documentation. U.S. Department of Commerce, NOAA Technical Memorandum NOS OR&R 40. Seattle, WA: Emergency Response Division, NOAA.

Barron, M. O. 2003. Photoenhanced toxicity of oil in spill response and impact assessment. In Proceedings of the 26th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Ottawa, Ontario, Canada: Environment Canada.

Barron, M. G. 2017. Photoenhanced toxicity of petroleum to aquatic invertebrates and fish. Archives of Environmental Contamination and Toxicology 73:40-46.

Barron, M. G., and E. Holder. 2003. Are exposure and ecological risks of PAHs underestimated at petroleum contaminated sites? Human and Ecological Risk Assessment 9(6):1533-1545. DOI: 10.1080/10807030390251029.

Barron, M. G., and L. Ka’aihue. 2003. Critical evaluation of CROSERF test methods for oil dispersant toxicity testing under subarctic conditions. Marine Pollution Bulletin 46(9):1191-1199. DOI: 10.1016/S0025-326X(03)00125-5.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Barron, M. G., M. G. Carls, J. W. Short, and S. D. Rice. 2003. Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Environmental Toxicology and Chemistry 22(3):650-660.

Barron, M. G., M. J. Hemmer, and C. R. Jackson. 2013. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions. Integrated Environmental Assessment and Management 9(4):610-615. DOI: 10.1002/ieam.1420.

Barron, M. G., J. Krzykwa, C. R. Lilavois, and S. Raimondo. 2018. Photoenhanced toxicity of weathered crude oil in sediment and water to larval zebrafish. Bulletin Environmental Contamination and Toxicology 100:49-53. https://doi.org/10.1007/s00128-017-2228-x.

Baussant, T., R. K. Bechmann, I. C. Taban, B. K. Larsen, A. H. Tandberg, A. Bjørnstad, S. Torgrimsen, A. Nævdal, K. B. Øysæd, G. Jonsson, and S. Sanni. 2009. Enzymatic and cellular responses in relation to body burden of PAHs in bivalve molluscs: A case study with chronic levels of North Sea and Barents Sea dispersed oil. Marine Pollution Bulletin 58(12):1796-1807.

Bear, J., and A. Verruijt. 1987. Transport by advection and dispersion. Modeling Groundwater Flow and Pollution 316-343.

Beegle-Krause, C. J., H. Simmons, M. McPhee, R. L. Daae, and M. Reed. 2014. The fate of dispersed oil under ice: Results of JIP phase 1 program. International Oil Spill Conference Proceedings 2014(1):949-959.

Bejarano, A. C. 2018. Critical review and analysis of aquatic toxicity data on oil spill dispersants. Environmental Toxicology and Chemistry 37(12):2989-3001. DOI: 10.1002/etc.4254.

Bejarano, A. C., and M. G. Barron. 2014. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species. Environmental Science & Technology 48(8):4564-4572. DOI: 10.1021/es500649v.

Bejarano, A. C., and J. Michel. 2016. Oil spills and their impacts on sand beach invertebrate communities: A literature review. Environmental Pollution 218:709-722. DOI: 10.1016/j.envpol.2016.07.065.

Bejarano, A. C., E. Levine, and A. Mearns. 2013. Effectiveness and potential ecological effects of offshore surface dispersant use during the Deepwater Horizon oil spill: A retrospective analysis of monitoring data. Environmental Monitoring and Assessment 185(12):10281-10295. DOI: 10.1007/s10661-013-3332-y.

Bejarano, A. C., V. Chu, J. Dahlin, and J. Farr. 2014a. Development and application of DTox: A quantitative database of the toxicity of dispersants and chemically dispersed oil. International Oil Spill Conference Proceedings 2014(1):733-746.

Bejarano, A. C., J. R. Clark, and G. M. Coelho. 2014b. Issues and challenges with oil toxicity data and implications for their use in decision making: A quantitative review. Environmental Toxicology and Chemistry 33(4):732-742. DOI: 10.1002/etc.2501.

Bejarano, A. C., J. K. Farr, P. Jenne, V. Chu, and A. Hielscher. 2016. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Environmental Toxicology and Chemistry 35(6):1576-1586. DOI: 10.1002/etc.3289.

Bejarano, A. C., W. W. Gardiner, M. G. Barron, and J. Q. Word. 2017. Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity. Marine Pollution Bulletin 122(1-2):316-322. DOI: 10.1016/j.marpolbul.2017.06.064.

Belore, R. 2014. Subsea chemical dispersant research. In Proceedings of the 37th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Canmore, Alberta, Canada: Environment Canada.

Belore, R., A. Lewis, A. Guarino, and J. Mullin. 2008. Dispersant effectiveness testing on viscous, US outer continental shelf crude oils and water-in-oil emulsions at Ohmsett. International Oil Spill Conference Proceedings 2008(1):823-828.

Belore, R. C., K. Trudel, J. V. Mullin, and A. Guarino. 2009. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants. Marine Pollution Bulletin 58(1):118-128. DOI: 10.1016/j.marpolbul.2008.08.013.

Bence, A. E., K. A. Kvenvolden, and M.C. Kennicutt. 1996. Organic chemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill: A review. Organic Geochemistry 24:7-42.

Benignus, V. A., P. J. Bushnell, and W. K. Boyes. 2011. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations. Risk Analysis 31:1935-1948.

Benner, Jr., R. A., K. R. El Said, E. Jester, R. A. Flurer, B. L. Boyd, B. Gamble, S. Gratz, K. J. Mulligan, D. T. Heitkemper, D. Burrows, D. A. M. Da, M. M. Krahn, W. L. Reichert, G. Ylitalo, S. M. Plakas, V. Seyfert-Margolis, and R. Dickey. 2010. Investigation of Corexit®9500 Dispersant in Gulf of Mexico Seafood Species. https://www.semanticscholar.org/paper/Investigation-of-Corexit-9500-dispersant-in-Gulf-of-Benner/07a6808f47c596da2fb08d236093a8781edf31c9.

Bera, G., T. Parkerton, A. Redman, N. R. Turner, D. A. Renegar, J. L. Sericano, and A. H. Knap. 2018. Passive dosing yields comparable dissolved aqueous exposures of crude oil as CROSERF water accommodated fraction method. Environmental Toxicology and Chemistry 37:2810-2819. DOI: 10.1002/etc.4263.

Berdugo-Clavijo, C., and L. M. Gieg. 2014. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Frontiers in Microbiology 5:197. DOI: 10.3389/fmicb.2014.00197.

Bianchi, T. S., R. L. Cook, E. M. Perdue, P. E. Kolic, N. Green, Y. Zhang, R. W. Smith, A. S. Kolker, A. Ameen, G. King, L. M. Ojwang, C. L. Schneider, A. E. Normand, and R. Hetland. 2011. Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, USA. Marine Environmental Research 72(5):248-257. DOI: 10.1016/j.marenvres.2011.09.007.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Bingham, E., R. P. Trosset, and D. Warshawsky. 1979. Carcinogenic potential of petroleum hydrocarbons: A critical review of the literature. Journal of Environmental Pathology and Toxicology 3(1-2):483-563.

Bjerkemo, O. K. 2013. Recommended practices for Arctic oil spill prevention. Emergency Prevention, Preparedness and Response (EPPR). Arctic Council. 123 pp. https://oaarchive.arctic-council.org/handle/11374/614.

Blackall, P. J., and G. A. Sergy. 1981. The BIOS project—Frontier Oil Spill Countermeasures research. International Oil Spill Conference Proceedings 1981(1):167-172.

Blanchard, D. C., and A. H. Woodcock. 1980. The production, concentration, and vertical distribution of the sea-salt aerosol. Annals of the New York Academy of Sciences 338(1):330-347.

Bobra, M. 1992. A Study of the Evaporation of Petroleum Oils. Technical Report EE-135; MICROLOG-93-08105 Ottowa, Ontario, Canada: Environment Canada.

Bocard, C., G. Castaing, and C. Gatellier. 1984. Chemical oil dispersion in trials at sea and in laboratory tests: The key role of dilution processes. In Oil Spill Chemical Dispersants, Research, Experience, and Recommendation. T. E. Allen, ed. Philadelphia, PA: American Society for Testing and Materials.

Bock, M., H. Robinson, R. Wenning, D. French-McCay, J. Rowe, and A. H. Walker. 2018. Comparative risk assessment of oil spill response options for a deepwater oil well blowout: Part II. Relative risk methodology. Marine Pollution Bulletin 133:984-1000. DOI: 10.1016/j.marpolbul.2018.05.032.

Boehm, P. D., and P. D. Carragher. 2012. Location of natural oil seep and chemical fingerprinting suggest alternative explanation for deep sea coral observations. Proceedings of the National Academy of Sciences of the United States of America 109(40):E2647.

Boehm, P. D., M. S. Steinhauer, D. R.Green, B. Fowler, B. Humphrey, D. L. Fiest, and W. J. Cretney. 1987. Comparative fate of chemically dispersed and beached crude oil in subtidal sediments of the arctic nearshore. Arctic 1:133-148.

Boehm, P. D., K. J. Murray, and L. L. Cook. 2016. Distribution and attenuation of polycyclic aromatic hydrocarbons in Gulf of Mexico seawater from the Deepwater Horizon oil accident. Environmental Science & Technology 50(2):584-592. DOI: 10.1021/acs.est.5b03616.

Bombardelli, F. A., G. C. Buscaglia, C. R. Rehmann, L. E. Rincon, and M. H. Garcia. 2007. Modeling and scaling of aeration bubble plumes: A two-phase flow analysis. Journal of Hydraulic Research 45(5):617-630. DOI: 10.1080/00221686.2007.9521798.

Boone, K. S., and D. M. Di Toro. 2019. Target site model: Application of the polyparameter target lipid model to predict aquatic organism acute toxicity for various modes of action. Environmental Toxicology and Chemistry 38(1):222-239. https://doi.org/10.1002/etc.4278.

Bostrom, A., S. Joslyn, R. Pavia, A. H. Walker, K. Starbird, and T. M. Leschine. 2015a. Methods for communicating the complexity and uncertainty of oil spill response actions and tradeoffs. Human and Ecological Risk Assessment: An International Journal 21(3):631-645. http://dx.doi.org/10.1080/10807039.2014.947867.

Bostrom, A., A. H. Walker, T. Scott, R. Pavia, T. M. Leschine, and K. Starbird. 2015b. Oil spill response risk judgments, decisions, and mental models: Findings from surveying US stakeholders and coastal residents. Human and Ecological Risk Assessment: An International Journal 21(3):581-604. http://dx.doi.org/10.1080/10807039.2014.947865.

Boufadel, M. C., P. Reeser, M. T. Suidan, B. A. Wrenn, J. Cheng, X. Du, T. L. Huang, and A. D. Venosa. 1999. Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environmental Technology 20(2):191-199. DOI: 10.1080/09593332008616808.

Boufadel, M. C., R. D. Bechtel, and J. Weaver. 2006. The movement of oil under non-breaking waves. Marine Pollution Bulletin 52(9):1056-1065. DOI: 10.1016/j.marpolbul.2006.01.012.

Boufadel, M. C., K. Du, V. Kaku, and J. Weaver. 2007. Lagrangian simulation of oil droplets transport due to regular waves. Environmental Modelling and Software 22(7):978-986. DOI: 10.1016/j.envsoft.2006.06.009.

Boufadel, M. C., E. Wickley-Olsen, T. King, Z. Li, K. Lee, and A. D. Venosa. 2008. Theoretical foundation for predicting dispersion effectiveness due to waves. International Oil Spill Conference Proceedings 2008(1):509-513.

Boufadel, M. C., A. Abdollahi-Nasab, X. Geng, J. Galt, and J. Torlapati. 2014. Simulation of the landfall of the Deepwater Horizon oil on the shorelines of the Gulf of Mexico. Environmental Science & Technology 48(16):9496-9505. DOI: 10.1021/es5012862.

Boufadel, M., Z. Pan, B. Wartell, T. Steffek, and A. Guarino. 2017. Chemical characterization of the Ohmsett tank water: filtration and potential impact on dispersion effectiveness. In Proceedings of the 40th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Alberta, Canada: Environment Canada.

Boufadel, M. C., F. Cui, J. Katz, T. Nedwed, and K. Lee. 2018a. On the transport and modeling of dispersed oil under ice. Marine Pollution Bulletin 135:569-580. DOI: 10.1016/j.marpolbul.2018.07.046.

Boufadel, M. C., F. Gao, L. Zhao, T. Özgökmen, R. Miller, T. King, B. Robinson, K. Lee, and I. Leifer. 2018b. Was the Deepwater Horizon well discharge churn flow? Implications on the estimation of the oil discharge and droplet size distribution. Geophysical Research Letters 45(5):2396-2403. DOI: 10.1002/2017GL076606.

BP Exploration and Production. 2014. Gulf Science Data, Water Chemistry Data File: Directory: Water; subdirectory: Water Chemistry; filename: WaterChemistry_W-01v02-01.csv (zipped). Last modified May 2014. [cited 2015 July 28]. http://gulfsciencedata.bp.com.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Bragg, J. R., and E. H. Owens. 1995. Shoreline cleansing by interactions between oil and fine mineral particles. International Oil Spill Conference Proceedings 1995(1):219-227.

Bragg, J. R., and S. H. Yang. 1995. Clay-oil flocculation and its role in natural cleansing in Prince William Sound following the Exxon Valdez oil spill. Philadelphia, PA: American Society for Testing and Materials.

Brakstad, O., and L.-G. Faksness. 2000. Biodegradation of Water-Accommodated Fractions and Dispersed Oil in the Seawater Column. Prepared for presentation at the Society of Petroleum Engineers International Conference on Health, Safety, and the Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers.

Brakstad, O. G., P. S. Daling, L. G. Faksness, I. K. Almås, S. H. Vang, L. Syslak, and F. Leirvik. 2014. Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Marine Pollution Bulletin 84(1-2):125-134.

Brakstad, O. G., T. Nordtug, and M. Throne-Holst. 2015. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine Pollution Bulletin 93(1):144-152. DOI: 10.1016/j.marpolbul.2015.02.006.

Brakstad, O. G., I. K. Almas, and D. F. Krause. 2017. Biotransformation of natural gas and oil compounds associated with marine oil discharges. Chemosphere 182:555-558.

Brakstad, O. G., A. Lewis, and C. J. Beegle-Krause. 2018a. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Marine Pollution Bulletin 135:346-356.

Brakstad, O. G., U. Farooq, D. Ribicic, and R. Netzer. 2018b. Dispersibility and biotransformation of oils with different properties in seawater. Chemosphere 191:44-53. DOI: 10.1016/j.chemosphere.2017.10.012.

Brandvik, P. J., J. L. M. Resby, P. S. Daling, F. Leirvik, and J. Fritt-Rasmussen. 2010. Meso-Scale Weathering of Oil as a Function of Ice Conditions—Oil Properties, Dispersibility and In Situ Burnability of Weathered Oil as a Function of Time. Trondheim, Norway: SINTEF.

Brandvik, P. J., Ø. Johansen, F. Leirvik, U. Farooq, and P. S. Daling. 2013. Droplet breakup in subsurface oil releases—Part 1: Experimental study of droplet breakup and effectiveness of dispersant injection. Marine Pollution Bulletin 73(1):319-326. DOI: 10.1016/j.marpolbul.2013.05.020.

Brandvik, P. J., Ø. Johansen, U. Farooq, G. Angell, and F. Leirvik. 2014a. Sub-Surface Oil Releases—Experimental Study of Droplet Distributions and Different Dispersant Injection Techniques. Version 2, SINTEF Report A26122, unrestricted distribution. Trondheim, Norway: SINTEF.

Brandvik, P. J., Ø. Johansen, U. Farooq, E. Davies, D. Krause, and F. Leirvik. 2014b. Sub-Surface Oil Releases—Experimental Study of Droplet Distributions. Phase II, SINTEF Report 102001616, unrestricted distribution. Trondheim, Norway: SINTEF.

Brandvik, P. J., E. Davies, D. F. Krause, P. A. Beynet, M. Agrawal, and P. Evans. 2016. Subsea Mechanical Dispersion, Adding to the Toolkit of Oil Spill Response Technology. Society of Petroleum Engineers Conference on Health, Safety, Security, Environment and Social Responsibility Proceedings (Norway). DOI: 10.2118/179331-MS.

Brandvik, P. J., E. Davies, C. Storey, F. Leirvik, and D. Krause. 2017a. Subsurface Oil Releases—Verification of Dispersant Effectiveness Under High Pressure Using Combined Releases of Live Oil and Natural Gas. SINTEF Report OC2017 A-090, unrestricted distribution. Trondheim, Norway: SINTEF.

Brandvik, P. J., E. Davies, Ø. Johansen, F. Leirvik, and R. Belore. 2017b. Subsea Dispersant Injection—Large-Scale Experiments to Improve Algorithms for Initial Droplet Formation (Modified Weber Scaling). SINTEF Report OC2017 A-087, unrestricted distribution. Trondheim, Norway: SINTEF.

Brandvik, P. J., Ø. Johansen, F. Leirvik, D. F. Krause, and P. S. Daling. 2018. Subsea dispersants injection (SSDI), effectiveness of different dispersant injection techniques—An experimental approach. Marine Pollution Bulletin 136:385-393. DOI: 10.1016/j.marpolbul.2018.09.021.

Brandvik, P. J., C. Storey, E. J. Davies, and F. Lervik. 2019a. Quantification of oil droplets under high pressure laboratory experiments simulating deep water oil releases and subsea dispersants injection (SSDI). Marine Pollution Bulletin 138:520-525. DOI: 10.1016/j.marpolbul.2018.11.020.

Brandvik, P. J., C. Storey, E. J. Davies, and Ø. Johansen. 2019b. Combined releases of oil and gas under pressure: The influence of live oil and natural gas on initial oil droplet formation. Marine Pollution Bulletin 140:485-492. DOI: 10.1016/j.marpolbul.2019.01.036.

Brette, F., B. Machado, C. Cros, J. P. Incardona, N. L. Scholz, and B. A. Block. 2014. Crude oil impairs cardiac excitation-contraction coupling in fish. Science 343:772-776.

Brezonik, P. L. 1993. Chemical Kinetics and Process Dynamics in Aquatic Systems. First Edition. Boca Raton, FL: CRC Press.

Bridges, K. N., C. R. Lay, M. M. Alloy, M. L. Gielazyn, J. M. Morris, H. P. Forth, R. Takeshita, C. L. Travers, J. T. Oris, and A. P. Roberts. 2018. Estimating incident ultraviolet radiation exposure in the northern Gulf of Mexico during the Deepwater Horizon oil spill. Environmental Toxicology and Chemistry 37:1679-1687. DOI: 10.1002/etc.4119.

Brock, C. A., D. M. Murphy, R. Bahreini, and A. M. Middlebrook. 2011. Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill. Geophysical Research Letters 38(17). DOI: 10.1029/2011GL048541.

Broje, V., and A. A. Keller. 2006. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environmental Science & Technology 40(24):7914-7918. DOI: 10.1021/es061842m.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Brooks, G. R., R. A. Larson, P. T. Schwing, I. Romero, C. Moore, G. J. Reichart, T. Jilbert, J. P. Chanton, D. W. Hastings, W. A. Overholt, K. P. Marks, J. E. Kostka, C. W. Holmes, and D. Hollander. 2015. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10(7):e0132341. DOI: 10.1371/journal.pone.0132341.

Brutsaert, W. 1982. Evaporation into the Atmosphere: Theory, History, and Applications. Dordrecht, the Netherlands: Springer. DOI: 10.1007/978-94-017-1497-6.

Budnitz, R. J., G. Apostolakis, D. M. Boore, L. S. Cluff, K. J. Coppersmith, C. A. Cornell, and P. A. Morris. 1998. Use of technical expert panels: Applications to probabilistic seismic hazard analysis. Risk Analysis 18(4):463-469.

Buist, I., S. Potter, L. Zabilansky, A. Guarino, and J. Mullin. 2008. Recent mid-scale research on using oil herding surfactants to thicken oil slicks in pack ice for in-situ burning. In Oil Spill Response: A Global Perspective. W. F. Davidson, K. Lee, and A. Cogswell, eds. NATO Science for Peace and Security Series C: Environmental Security. Dordrecht, the Netherlands: Springer.

Buist, I., S. Potter, T. Nedwed, and J. Mullin. 2011. Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology 67(1):3-23. DOI: 10.1016/j.coldregions.2011.02.004.

Burgess, R. M., W. J. Berry, D. R. Mount, and D. M. Di Toro. 2012. Mechanistic sediment quality guidelines based on contaminant bioavailability: Equilibrium partitioning sediment benchmarks. Environmental Toxicology and Chemistry 32(1):102-114.

Burmaster, D. E., and P. D. Anderson. 1994. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis 14(4):477-481.

Butler, J. D., T. F. Parkerton, D. J. Letinski, G. E. Bragin, M. A. Lampi, and K. R. Cooper. 2013. A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish. Science of the Total Environment 463:952-958. DOI: 10.1016/j.scitotenv.2013.06.079.

Butler, J. D., T. F. Parkerton, A. D. Redman, D. J. Letinski, and K. R. Cooper. 2016. Assessing aromatic-hydrocarbon toxicity to fish early life stages using passive-dosing methods and target-lipid and chemical-activity models. Environmental Science & Technology 50(15):8305-8315. DOI: 10.1021/acs.est.6b01758.

Caetano, C., and D. White. 2017. The evolution of a dispersant spraying platform from turboprop to jet engine aircraft. International Oil Spill Conference Proceedings 2017(1):2811-2825.

Cai, Z., J. Fu, W. Liu, K. Fu, S. E. O’Reilly, and D. Zhao. 2017. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components. Marine Pollution Bulletin 114(1):408-418. DOI: 10.1016/j.marpolbul.2016.09.057.

Calabrese, R. V., T. P. K. Chang, and P. T. Dang. 1986. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE Journal 32(4):657-666.

Calvert, J. G., and J. N. Pitts. 1966. Photochemistry. New York: John Wiley & Sons, Inc.

Camilli, R., C. M. Reddy, D. R. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva, and J. V. Maloney. 2010. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001):201-204. DOI: 10.1126/science.1195223.

Campbell, D., D. Cox, J. Crum, K. Foster, P. Christie, and D. Brewster. 1993. Initial effects of the grounding of the tanker Braer on health in Shetland. The Shetland Health Study Group. British Medical Journal 307(6914):1251.

Campbell, D., D. Cox, J. Crum, K. Foster, and A. Riley. 1994. Later effects of grounding of tanker Braer on health in Shetland. BMJ: British Medical Journal 309(6957):773-774.

Campo, P., A. D. Venosa, and M. T. Suidan. 2013. Biodegradability of Corexit 9500 and Dispersed South Louisiana Crude Oil at 5 and 25°C. Environmental Science & Technology 47(4):1960-1967. DOI: 10.1021/es303881h.

Cao, Y., R. A. Chastain, E. A. Eloe, Y. Nogi, C. Kato, and D. H. Bartlett. 2014. Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico Trench. Applied and Environmental Microbiology 80(1):54-60. DOI: 10.1128/AEM.02288-13.

Carls, M. G., S. D. Rice, and J. E. Hose. 1999. Sensitivity to fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry 18(3):481-493. DOI: 10.1002/etc.5620180317.

Carls, M. G., L. Holland, M. Larsen, T. K. Collier, N. L. Scholz, and J. P. Incardona. 2008. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquatic Toxicology 88(2):121-127.

Carney, M. W., H. P. Forth, M. O. Krasnec, R. Takeshita, J. V. Holmes, and J. M. Morris. 2016. Quality assurance project plan: Deepwater Horizon laboratory toxicity testing. DWH NRDA Toxicity Technical Working Group. Prepared for National Oceanic and Atmospheric Administration by Abt Associates, Boulder, CO.

Carrasco, J. M., B. Pérez-Gómez, M. J. García-Mendizábal, V. Lope, N. Aragonés, M. J. Forjaz, P. Guallar-Castillón, G. López-Abente, F. Rodríguez-Artalejo, and M. Pollán. 2007. Health-related quality of life and mental health in the medium-term aftermath of the Prestige oil spill in Galiza (Spain): A cross-sectional study. BMC Public Health 7(1):245. DOI: 10.1186/1471-2458-7-245.

Carter-Groves, M. 2014. Global dispersant stockpile: Part of the industry solution to worst case scenario readiness. International Oil Spill Conference Proceedings 2014(1):504-515.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Castro, M. C., G. R. Krieger, M. Z. Balge, M. Tanner, J. Utzinger, M. Whittaker, and B. H. Singer. 2016. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces. Proceedings of the National Academy of Sciences of the United States of America 113(51):14528. DOI: 10.1073/pnas.1605678113.

CDC (Centers for Disease Control and Prevention). 2010. Oil Spill Dispersant (Corexit®EC9500A and EC9527A) Information for Health Professionals. https://www.cdc.gov/nceh/oil_spill/docs/Oil%20Spill%20Dispersant.pdf (accessed April 4, 2019).

CDC. 2018. Emergency Responder Health Monitoring and Surveillance (ERHMS)™. https://www.cdc.gov/niosh/erhms/default.html (last updated March 28, 2018).

CEDRE. 2016. Analysis of Dispersibility of Oil Frozen into Ice with and Without Dispersant. http://www.arcticresponsetechnology.org/wp-content/uploads/2017/09/Report-Analysis-of-dispersibility-of-oil-frozen.pdf.

Chakraborty, R., S. E. Borglin, E. A. Dubinsky, G. L. Andersen, and T. C. Hazen. 2012. Microbial response to the MC-252 Oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology 3:357. DOI: 10.3389/fmicb.2012.00357.

Chan, G. K. Y., A. C. Chow, and E. E. Adams. 2015. Effects of droplet size on intrusion of sub-surface oil spills. Environmental Fluid Mechanics 15(5):959-973. DOI: 10.1007/s10652-014-9389-5.

Chandrasekar, S., G. A. Sorial, and J. W. Weaver. 2006. Dispersant effectiveness on oil spills—impact of salinity. ICES Journal of Marine Science 63(8):1418-1430.

Chanton, J. P., J. Cherrier, R. M. Wilson, J. Sarkodee-Adoo, S. Bosman, A. Mickle, and W. M. Graham. 2012. Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environmental Research Letters 7(4):4. DOI: 10.1088/1748-9326/7/4/045303.

Chanton, J., T. Zhao, B. E. Rosenheim, S. Joye, S. Bosman, C. Brunner, K. M. Yeager, A. R. Diercks, and D. Hollander. 2014. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environmental Science & Technology 49(2):847-854. DOI: 10.1021/es5046524.

Chanton, J., T. Zhao, B. E. Rosenheim, S. Joye, S. Bosman, C. Brunner, K. M. Yeager, A. R. Diercks, and D. Hollander. 2015. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environmental Science & Technology 49(2):847-854.

Chapelle, F. H. 2001. Ground-Water Microbiology and Geochemistry. New York: John Wiley & Sons, Inc.

Chapman, P. M., and M. J. Riddle. 2005. Toxic effects of contaminants in polar marine environments. Environmental Science and Technology 39(9):200A-206A. DOI: 10.1021/es0532537.

Chazot, C., and A. Rhodes. 2017. The development of trans-boundary spill response cooperation across west, central and southern Africa. International Oil Spill Conference Proceedings 2017(1):1650-1668.

Chen, F., and F. D. Yapa. 2007. Estimating the oil droplet size distributions in Deepwater oil spills. Journal of Hydraulic Engineering 133(2):197-207.

Chen, L., Y. Zhou, X. Wang, T. Zwicker, and J. Lu. 2013. Enhanced oil-mineral aggregation with modified bentonite. Water Science and Technology 67(7):1581-1589. DOI: 10.2166/wst.2013.013.

Chen, L., J. S. Levine, M. W. Gilmer, E. D. Sloan, C. A. Koh, and A. K. Sum. 2014. Methane hydrate formation and dissociation on suspended gas bubbles in water. Journal of Chemical and Engineering Data 59(4):1045-1051.

Chen, Z., C. S. Zhan, K. Lee, Z. K. Li, and M. Boufadel. 2009. Modeling oil droplet formation and evolution under breaking waves. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 31(5):438-448. DOI: 10.1080/15567030701531295.

Cheong, H.-K., M. Ha, J. S. Lee, H. Kwon, E.-H. Ha, Y.-C. Hong, Y. Choi, W.-C. Jeong, J. Hur, S.-M. Lee, E.-J. Kim, and H. Im. 2011. Hebei Spirit oil spill exposure and subjective symptoms in residents participating in clean-up activities. Environmental Health and Toxicology 26:e2011007. DOI: 10.5620/eht.2011.26.e2011007.

Chopra, A., and T. S. Coolbaugh. 2016. Recent Technology Advances for Effective Oil Spill Response. Presented at the Society of Petroleum Engineers Health, Safety, Security, Environment, & Social Responsibility Conference, April 18-20, New Orleans, Louisiana.

Choyke, S. 2018. Environmental Fate of Chemical Dispersant Corexit®9500 in Seawater by High-Resolution Mass Spectrometry. Dissertation, Duke University. https://hdl.handle.net/10161/17508.

Christiansen, J. S., R. A. Dalmo, and K. Ingebrigsten. 1996. Xenobiotic excretion in fish with aglomerular kidneys. Marine Ecology Progress Series 136:303-304.

Clark, J. R., G. E. Bragin, R. Febbo, and D. J. Letinski. 2001. Toxicity of physically and chemically dispersed oils under continuous and environmentally realistic exposure conditions: Applicability to dispersant use decisions in spill response planning. International Oil Spill Conference Proceedings 2001(2):1249-1255.

Clift, R., J. R. Grace, and M. E. Weber. 1978. Bubbles, Drops, and Particles. Mineola, NY: Dover Publications, Inc.

Coelho, G. 2014. Subsea Dispersant Injection NEBA and Monitoring: Evolution of the Process. Invited Speaker in 2014 CCA-OSRL Technical Forum “Understanding Dispersants in Oil Spill Response.” Fort Lauderdale, FL: Clean Caribbean & Americas (CCA) and Oil Spill Response, Limited.

Coelho, G. M., D. V. Aurand, G. S Petch, and D. M. Jones. 1998. Toxicity Bioassays on Dispersed Oil in the North Sea: June 1996 Field Trials. EM&A Report 96-02. Purcellville, VA: Ecosystem Management & Associates, Inc.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Coelho, G. M., D. V. Aurand, A. Slaughter, L. Robinson, and B. C. Jones. 2011a. Rapid toxicity evaluations of several dispersants: A comparison of results. International Oil Spill Conference Proceedings 2011(1):abs416.

Coelho, G., D. Aurand, L. Essex, A. Parkin, and L. Robinson. 2011b. Monitoring Subsurface Dispersant Injection During the MC252 Incident, Volume 1. EM&A Report Number 11-05. Lusby, MD. 35 pp.

Coelho, G., J. Clark, and D. Aurand. 2013. Toxicity testing of dispersed oil requires adherence to standardized protocols to assess potential real world effects. Environmental Pollution 177:185-188. DOI: 10.1016/j.envpol.2013.02.004.

Coelho, G., D. Aurand, J. Staves, E. Miller, and A. Slaughter. 2015. Net Environmental Benefit Analysis in Support of the Shelburne Basin Venture Exploration Drilling Project. Nova Scotia, Canada: HDR Inc.

Coelho, G., A. Slaughter, and J. Staves. 2017a. Spill Impact Mitigation Assessment in Support of Statoil Canada Ltd Drilling Program in the Flemish Pass. Technical Report 17-02. Mansfield, TX: Sponson Group Inc.

Coelho, G., J. Staves, and D. Fritz. 2017b. Putting oil Spill Impact Mitigation Assessment (SIMA) into action for spill response planning. International Oil Spill Conference Proceedings 2017(1):1433-1452.

Cole, J., D. M. Beare, A. P. W. Waugh, E. Capulas, K. E. Aldridge, C. F. Arlett, M. H. L. Green, J. E. Crum, D. Cox, R. C. Garner, K. H. Dingley, E. A. Martin, K. Podmore, R. Heydon, and P. B. Farmer. 1997. Biomonitoring of possible human exposure to environmental genotoxic chemicals: Lessons from a study following the wreck of the oil tanker Braer. Environmental and Molecular Mutagenesis 30(2):97-111. DOI: 10.1002/(SICI)1098-2280(1997)30:2<97::AID-EM2>3.0.CO;2-9.

Conmy, R. N., P. G. Coble, J. Farr, A. M. Wood, K. Lee, W. S. Pegau, I. D. Walsh, C. R. Koch, M. I. Abercrombie, M. S. Miles, M. R. Lewis, S. A. Ryan, B. J. Robinson, T. L. King, C. R. Kelble, and J. Lacoste. 2014. Submersible optical sensors exposed to chemically dispersed crude oil: Wave tank simulations for improved oil spill monitoring. Environmental Science & Technology 48(3):1803-1810. DOI: 10.1021/es404206y.

Conmy, R. N., T. King, B. Robinson, S. Ryan, Y. Lu, M. Abercrombie, M. Boufadel, and H. Niu. 2016. Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option and Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. Washington, DC: U.S. Environmental Protection Agency.

Conmy, R. N., B. Robinson, T. King, M. Boufadel, S. Ryan, C. McIntyre, M. I. Abercrombie, and K. Lee. 2017. Oil plume simulations: Tracking oil droplet size distribution and fluorescence within high-pressure release jets. International Oil Spill Conference Proceedings 2017(1):1230-1250. DOI: 10.7901/2169-3358-2017.1.1230.

Coolbaugh, T. S., and R. Cox. 2015. Development of a Bench Scale Effectiveness Test for Subsea Dispersant Use: An Oil Spill Response Joint Industry Project of the International Association of Oil & Gas Producers and IPIECA. Proceedings of the Thirty-Eighth AMOP Technical Seminar on Environmental Contamination and Response, Environment Canada, Ottawa, ON.

Coolbaugh, T., E. Bonneville, S. Depraz, H. Murphy, and P. Taylor. 2014. The IMO/IPIECA Global Initiative: Expanding government and industry cooperation into new regions. International Oil Spill Conference Proceedings 2014(1):1342-1352.

Coolbaugh, T., G. Varghese, and L. S. Li. 2017. Global dispersant approvals in Asia Pacific—Current status and on going challenges. International Oil Spill Conference Proceedings 2017(1):657-677.

Cooper, C., D. Danmeier, S. Frolov, G. Stuart, S. Zuckerman, S. Anderson, and N. Sharma. 2016. Real Time Observing and Forecasting of Loop/Eddy Currents in 2015. Presented at the Offshore Technology Conference, May 4-7, Houston, Texas. OTC-25920-MS.

Coughlin, S. S. 1990. Recall bias in epidemiologic studies. Journal of Clinical Epidemiology 43(1):87-91. DOI: 10.1016/0895-4356(90)90060-3.

Crespo-Medina, M., C. D. Meile, K. S. Hunter, A. R. Diercks, V. L. Asper, V. J. Orphan, P. L. Tavormina, L. M. Nigro, J. J. Battles, J. P. Chanton, A. M. Shiller, D. J. Joung, R. M. W. Amon, A. Bracco, J. P. Montoya, T. A. Villareal, A. M. Wood, and S. B. Joye. 2014. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 7(6):423. DOI: 10.1038/ngeo2156.

Crespo-Medina, M., C. D. Meile, K. S. Hunter, A. R. Diercks, V. L. Asper, V. J. Orphan, P. L. Tavormina, L. M. Nigro, J. J. Battles, J. P. Chanton, A. M. Shiller, D. J. Joung, R. M. W. Amon, A. Bracco, J. P. Montoya, T. A. Villareal, A. M. Wood, and S. B. Joye. 2015. Addendum: The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 8:490. DOI: 10.1038/ngeo2447. https://www.nature.com/articles/ngeo2447#supplementary-information.

Cronin, M. A., and J. W. Bickham. 1998. A population genetic analysis of the potential for a crude oil spill to induce heritable mutations and impact natural populations. Ecotoxicology 7(5):259-278. DOI: 10.1023/A:1008887712459.

Crowley, D., D. French-McCay, L. Santos, B. Chowdhury, and R. Markussen. 2018. Modeling atmospheric volatile organic compound concentrations resulting from a deepwater oil well blowout—Mitigation by subsea dispersant injection. Marine Pollution Bulletin 136:152-163. DOI: https://doi.org/10.1016/j.marpolbul.2018.09.001.

CRRC (Coastal Response Research Center). 2017. State-of-the-Science of Dispersants and Dispersed Oil (DDO) in U.S. Arctic Waters: Degradation and Fate. Durham, NH: University of New Hampshire, Coastal Response Research Center.

CRRC, RPI (Research Planning Incorporated), and NOAA (National Oceanic and Atmospheric Administration). 2012. The Future of Dispersant Use in Oil Spill Response Initiative. https://crrc.unh.edu/sites/crrc.unh.edu/files/media/docs/Workshops/dispersant_future_11/Dispersant_Initiative_FINALREPORT.pdf.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Curd, H. 2011. The use of dispersant for the control of volatile organic compounds. International Oil Spill Conference Proceedings 2011(1):abs359.

Dabestani, R., and I. N. Ivanov. 1999. A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochemistry and Photobiology 70(1):10-34.

Daling, P. S., P. J. Brandvik, D. Mackay, and O. Johansen. 1990. Characterization of crude oils for environmental purposes. Proceedings of the Thirteenth Arctic and Marine Oil Spill Program Technical Seminar. Pp. 119-138.

Daling, P., O. M. Aamo, A. Lewis, and T.Strom-Kristiansen. 1997. SINTEF/IKU Oil-Weathering Model: Predicting Oils’ Properties at Sea. International Oil Spill Conference 1997:297-307.

Daling, P., A. Holumsnes, C. Rasmussen, P. J. Brandvik, and F. Leirvik. 2010. Development and field testing of a flexible system for application of dispersants on oil spills in ice. In Proceedings of the 33rd Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Volume 2, p. 1332. Ottawa, Ontario, Canada: Environment Canada.

Daling, P. S., F. Leirvik, I. K. Almas, P. J. Brandvik, B. H. Hansen, A. Lewis, and M. Reed. 2014. Surface weathering and dispersibility of MC252 crude oil. Marine Pollution Bulletin 87(1):300-310.

Daly, K. L., U. Passow, J. Chanton, and D. Hollander. 2016. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18-33. DOI: 10.1016/j. ancene.2016.01.006.

Danaei, G., S. Vander Hoorn, A. D. Lopez, C. J. Murray, M. Ezzati, and Comparative Risk Assessment Collaborating Group (Cancers). 2005. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. The Lancet 366(9499):1784-1793.

D’Andrea, M. A., and G. K. Reddy. 2013. Health consequences among subjects involved in Gulf oil spill clean-up activities. The American Journal of Medicine 126(11):966-974. DOI: 10.1016/j.amjmed.2013.05.014.

D’Andrea, M. A., and G. K. Reddy. 2018. The development of long-term adverse health effects in oil spill cleanup workers of the Deepwater Horizon offshore drilling rig disaster. Frontiers in Public Health 6:117. DOI: 10.3389/fpubh.2018.00117.

D’Asaro, E. A., A. Y. Shcherbina, J. M. Klymak, J. Molemaker, G. Novelli, C. M. Guigand, A. C. Haza, B. K. Haus, E. H. Ryan, G. A. Jacobs, H. S. Huntley, N. J. M. Laxague, S. Chen, F. Judt, J. C. McWilliams, R. Barkan, A. D. Kirwan, Jr., A. C. Poje, and T. M. Özgökmen. 2018. Ocean convergence and the dispersion of flotsam. Proceedings of the National Academy of Sciences of the United States of America 115(6):1162-1167. DOI: 10.1073/pnas.1718453115.

D’Auria, M., L. Emanuele, R. Racioppi, and V. Velluzzi. 2009. Photochemical degradation of crude oil: Comparison between direct irradiation, photocatalysis, and photocatalysis on zeolite. Journal of Hazardous Materials 164(1):32-38.

Davies, L., A. Lewis, T. Lunel, and A. Crosbie. 1998. Dispersion of Emulsified Oils at Sea—Laboratory Study. Technical Report, AEAT-4347. National Environmental Technology Centre.

Davies, E., P. J. Brandvik, O. Johansen, I. Nagamine, D. Dunnebier, S. Masutani, and F. Leirvik. 2016. Fate of Subsea Dispersed Oil Droplets. Report 102004240, unrestricted distribution. Trondheim, Norway: SINTEF.

Davies, E. J., P. J. Brandvik, F. Leirvik, and R. Nepstad. 2017. The use of wide-band transmittance imaging to size and classify suspended particulate matter in seawater. Marine Pollution Bulletin 115(1-2):105-114.

Davis, E. J., D. A. E. Engelbertha Dunnebier, O. Johansen, P. J. Brandvik, S. Masutani, and I. Nagamine. 2017. Shedding from Chemically-Treated Oil Droplets Rising in Sea Water. Unrestricted distribution. Trondheim, Norway: SINTEF.

de Gouw, J. A., A. M. Middlebrook, C. Warneke, R. Ahmadov, E. L. Atlas, R. Bahreini, D. R. Blake, C. A. Brock, J. Brioude, D. W. Fahey, F. C. Fehsenfeld, J. S. Holloway, M. Le Henaff, R. A. Lueb, S. A. McKeen, J. F. Meagher, D. M. Murphy, C. Paris, D. D. Parrish, A. E. Perring, I. B. Pollack, A. R. Ravishankara, A. L. Robinson, T. B. Ryerson, J. P. Schwartz, J. R. Spackman, A. Srinivasan, and L. A. Watts. 2011. Organic aerosol formation downwind from the Deepwater Horizon oil spill. Science 331(6022):1295-1299. DOI: 10.1126/science.1200320.

de Hoop, L., A. M. Schipper, R. S. Leuven, M. A. Huijbregts, G. H. Olsen, M. G. Smit, and A. J. Hendriks. 2011. Sensitivity of polar and temperate marine organisms to oil components. Environmental Science & Technology 45(20):9017-9023. DOI: 10.1021/es202296a.

Decker, J. A., D. G. DeBord, B. Bernard, G. S. Dotson, J. Halpin, C. J. Hines, M. Kiefer, K. Myers, E. Page, P. Schulte, and J. Snawder. 2013. Recommendations for biomonitoring of emergency responders: Focus on occupational health investigations and occupational health research. Military Medicine 178(1):68-75.

Deepwater Horizon Natural Resource Damage Assessment Trustees. 2016. Deepwater Horizon Oil Spill: Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental Impact Statement. http://www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan.

Delmont, T. O., and A. M. Eren. 2017. Simulations predict microbial responses in the environment? This environment disagrees retrospectively. Proceedings of the National Academy of Sciences of the United States of America 114(43):E8947.

Delvigne, G. A. L., and C. E. Sweeney. 1988. Natural dispersion of oil. Oil and Chemical Pollution 4(4):281-310. DOI: 10.1016/S0269-8579(88)80003-0.

Dembe, A. E., J. B. Erickson, R. G. Delbos, and S. M. Banks. 2005. The impact of overtime and long work hours on occupational injuries and illnesses: New evidence from the United States. Occupational and Environmental Medicine. BMJ Publishing Group Ltd. 62(9):588-597.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

DeMicco, E., P. A. Schuler, T. Omer, and B. Baca. 2011. Net Environmental Benefit Analysis (NEBA) of dispersed oil on nearshore tropical ecosystems: Tropics—the 25th year research visit. International Oil Spill Conference Proceedings 2011(1):abs282.

Det norske Veritas and O. K. Bjerkemo. 2013. Recommended Practices for Arctic Oil Spill Prevention. Emergency Prevention, Preparedness and Response (EPPR) working group. Odder, Denmark: Narayana Press.

DF Dickins Associates Ltd. 2004. Advancing Oil Spill Response in Ice-Covered Waters. Prepared for the Prince William Sound Oil Spill Recovery Institute (PWS-OSRI) and the United States Arctic Research Commission (USARC), March 2014.

Di Toro, D. M., and J. A. McGrath. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures and sediments. Environmental Toxicology and Chemistry 19(8):1971-1982. DOI: 10.1002/etc.5620190804.

Di Toro, D. M., C. S. Zarba, D. J. Hansen, W. J. Berry, R. C. Swartz, C. E. Cowan, S. P. Pavlou, H. E. Allen, N. A. Thomas, and P. R. Paquin. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry 10(12):1541-1583.

Di Toro, D. M., J. A. McGrath, and D. J. Hansen. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environmental Toxicology and Chemistry 19(8):1951-1970.

Di Toro, D. M., J. A. McGrath, and W. A. Stubblefield. 2007. Predicting the toxicity of neat and weathered crude oil: Toxic potential and the toxicity of saturated mixtures. Environmental Toxicology and Chemistry 26(1):24-36. DOI: 10.1897/06174R.1.

Diamante, G., G. do Amaral e Silva Müller, N. Menjivar-Cervantes, E. G. Xu, D. C. Volz, A. C. Dias Bainy, and D. Schlenk. 2017. Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. Aquatic Toxicology 189:77-86. DOI: 10.1016/j.aquatox.2017.05.013.

Diamond, S. A. 2003. Photoactivated toxicity in aquatic environments. In UV Effects in Aquatic Organisms and Ecosystems. New York: John Wiley & Sons, Inc. Pp. 219-250.

Dickey, R. W. 2012. FDA risk assessment of seafood contamination after the BP oil spill. Environmental Health Perspectives 120(2):a54-a55. DOI: 10.1289/ehp.1104539.

Dickey, R. W., and W. W. Dickhoff. 2011. Dispersants and Seafood Safety Assessment of the Potential Impact of Corexit® Oil Dispersants on Seafood Safety. Dispersant Initiative and Workshop “The Future of Dispersant Use in Spill Response.” Durham, NH: University of New Hampshire, Coastal Response Research Center.

Díez, S., E. Jover, J. M. Bayona, and J. Albaigés. 2007. Prestige oil spill. III. Fate of a heavy oil in the marine environment. Environmental Science & Technology 41(9):3075-3082.

Dissanayake, A. L., I. Jun, and S. A. Socolofsky. 2015. Numerical models to simulate oil and gas blowout plumes and associated chemical and physical process of hydrocarbons. E-proceedings of the 36th IAHR World Congress. Netherlands: The Hague.

Dissanayake, A. L., J. Gros, and S. A. Socolofsky. 2018. Integral models for bubble, droplet and multiphase plume dynamics in stratification and crossflow. Environmental Fluid Mechanics 18(5):1167-1202. DOI: 10.1007/s10652-018-9591-y.

DIVER. 2017. Web Application: Data Integration Visualization Exploration and Reporting Application. Washington, DC: National Oceanic and Atmospheric Administration. https://www.diver.orr.noaa.gov.

dos Santos Fogaca, F., C. Soares, M. Oliveira, R. Alves, A. Maulvault, V. Barbosa, P. Anacleto, J. Avelar Magalhães, N. Bandarra, M. Ramalhosa, S. Morais, and A. Marques. 2018. Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure. Environmental Research 164:165-172.

Douglas, P. M. J., D. A. Stolper, J. M. Eiler, A. L. Sessions, M. Lawson, Y. Shuai, A. Bishop, O. G. Podlaha, A. A. Ferreira, E. V. Santos Neto, M. Niemann, A. S. Steen, L. Huang, L. Chimiak, D. L. Valentine, J. Fiebig, A. J. Luhmann, W. E. Seyfried, G. Etiope, M. Schoell, W. P. Inskeep, J. J. Moran, and N. Kitchen. 2017. Methane clumped isotopes: Progress and potential for a new isotopic tracer. Organic Geochemistry 113:262-282. DOI: 10.1016/j.orggeochem.2017.07.016.

Drieu, M., M. Sams, and K. Wilson. 2017. One gulf—Commitment to preparedness. International Oil Spill Conference Proceedings 2017(1):2743-2761.

Drozd, G. T., D. R. Worton, C. Aeppli, C. M. Reddy, H. Zhang, E. Variano, and A. H. Goldstein. 2015. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways. Journal of Geophysical Research: Oceans 120:7300–7315. http://dx.doi.org/10.1002/2015JC011093.

Du, M., and J. D. Kessler. 2012. Assessment of the spatial and temporal variability of bulk hydrocarbon respiration following the Deepwater Horizon oil spill. Environmental Science and Technology 46(19):10499-10507. DOI: 10.1021/es301363k.

Dubinsky, E. A., M. E. Conrad, R. Chakraborty, M. Bill, S. E. Borglin, J. T. Hollibaugh, O. U. Mason, Y. M. Piceno, F. C. Reid, W. T. Stringfellow, L. M. Tom, T. C. Hazen, and G. L. Andersen. 2013. Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Science & Technology 47(19):10860-10867. DOI: 10.1021/es401676y.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Duerr, R. S., J. G. Massey, M. H. Ziccardi, and Y. N. Addassi. 2011. Physical effects of Prudhoe Bay crude oil water accommodated fractions (WAF) and Corexit 9500 chemically enhanced water accommodated fractions (CEWAF) on common murre feathers and California sea otter hair. International Oil Spill Conference Proceedings 2011(1):abs252.

Duke, N. C. 2016. Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review. Marine Pollution Bulletin 109(2):700-715.

Eames, I. 2008. Settling of particles beneath water waves. Journal of Physical Oceanography 38(12):2846-2853. DOI: 10.1175/2008JPO3793.1.

Ebert, T. 2008. Summary of studies of corexit dispersant droplet impact behavior into oil slicks and dispersant droplet evaporation. International Oil Spill Conference Proceedings. Pp. 797-800.

Ebert, T. A., R. Downer, J. Clark, and C. A. Huber. 2018. Summary of studies of Corexit dispersant impact behavior into oil slicks and dispersant droplet evaporation. International Oil Spill Conference Proceedings 2008(1):797-800.

Ebrahimi, D., J. Li, and D. B. Hibbert. 2007. Classification of weathered petroleum oils by multi-way analysis of gas chromatography–mass spectrometry data using PARAFAC2 parallel factor analysis. Journal of Chromatography A 1166(1):163-170.

Echols, B., C. Langdon, W. Stubblefield, G. Rand, and P. Gardinali. 2018. A comparative assessment of the aquatic toxicity of Corexit 9500 to marine organisms. Archives of Environmental Contamination and Toxicology 77(1):40-50.

Edwards, B. R., C. M. Reddy, R. Camilli, C. A. Carmichael, K. Longnecker, and B. A. S. Van Mooy. 2011. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environmental Research Letters 6(3). DOI: 10.1088/1748-9326/6/3/035301.

Ehrenhauser, F. S., P. Avij, X. Shu, V. Dugas, I. Woodson, T. Liyana-Arachchi, Z. Zhang, F. R. Hung, and K. T. Valsaraj. 2014. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: Laboratory experimental demonstration of the transport pathway. Environmental Science: Processes & Impacts 16(1):65-73.

Ehrlich, P. R., and H. A. Mooney. 1983. Extinction, substitution, and ecosystem services. BioScience 33(4):248-254.

El Said, K., E. Jester, R. Flurer, B. Boyd, B. Gamble, S. Gratz, K. Mulligan, D. Heitkemper, and D. Burrows. 2010. Investigation of Corexit® 9500 Dispersant in Gulf of Mexico Seafood Species. Dauphin Island, AL: Gulf Coast Seafood Laboratory, U.S. Food and Drug Administration.

Elliott, A. J., N. Hurford, and C. J. Penn. 1986. Shear diffusion and the spreading of oil slicks. Marine Pollution Bulletin 17(7):308-313. DOI: 10.1016/0025-326X(86)90216-X.

Engelhardt, R. R. 1983. Petroleum effects on marine mammals. Aquatic Toxicology 4(3):199-217.

EPA (U.S. Environmental Protection Agency). 1994. Benzo[a]pyrene (BaP) (CASRN 50-32-8). http://www.epa.gov/iris/subst/0136.htm.

EPA. 1998. Carcinogenic Effects of Benzene: An Update (Draft Report). EPA/600/P-97/001F Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment.

EPA. 2003. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA 600/R-02/013. Technical Report. Washington, DC: U.S. Environmental Protection Agency.

EPA. 2010. Explanation of PAH Benchmark Calculations Using EPA PAH ESB Approach. https://web.archive.org/web/20100702083049/http://www.epa.gov/bpspill/water/explanation-of-pah-benchmark-calculations-20100622.pdf.

EPA. 2016a. EPA Response to BP Spill in the Gulf of Mexico: Sediment Benchmarks for Aquatic Life. https://archive.epa.gov/emergency/bpspill/web/html/sediment-benchmarks.html (last updated February 20, 2016).

EPA. 2016b. EPA Response to BP Spill in the Gulf of Mexico: Water Quality Benchmarks for Aquatic Life. https://archive.epa.gov/emergency/bpspill/web/html/water-benchmarks.html (last updated February 2, 2016).

EPA. 2017. Toxicological Review of Benzo[a]pyrene (CASRN 50-32-8). https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0136tr.pdf.

EPA. 2018. U.S. Environmental Protection Agency NCP Product Schedule August 2018. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100W60V.txt.

Esbaugh, A. J., E. M. Mager, J. D. Stieglitz, R. Hoenig, T. L. Brown, B. L. French, T. L. Linbo, C. Lay, H. Forth, N. L. Scholz, J. P. Incardona, J. M. Morris, D. D. Benetti, and M. Grosell. 2016. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. Science of the Total Environment 543(Pt A):644-651. DOI: 10.1016/j.scitotenv.2015.11.068.

European Maritime Safety Agency. 2014. Inventory of National Policies Regarding the Use of Oil Spill Dispersants in the EU Member States. http://www.emsa.europa.eu/news-a-press-centre/external-news/item/618-inventory-ofnationalpolicies-regarding-the-use-of-oil-spill-dispersants-in-the-eu.html.

Fabisiak, J. P., and B. D. Goldstein. 2011. Oil Dispersants and Human Health Effects. Pittsburgh, PA: Department of Environmental & Occupational Health, Center for Healthy Environments and Communities, University of Pittsburgh Graduate School of Public Health. https://crrc.unh.edu/sites/crrc.unh.edu/files/media/docs/Workshops/dispersant_forum_13/HumanHealthEffects.pdf.

Fabregat, A., W. K. Dewar, T. M. Özgökmen, A. C. Poje, and N. Wienders. 2015. Numerical simulations of turbulent thermal, bubble and hybrid plumes. Ocean Modelling 90:16-28. DOI: 10.1016/j.ocemod.2015.03.007.

Fabregat, A., A. C. Poje, T. M. Öygökmen, and W. K. Dewar. 2016. Dynamics of turbulent plumes with mixed buoyancy sources in thermally stratified environments. Physics of Fluids 28(9).

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Fannelop, T. K., and G. D. Waldman. 1972. Dynamics of oil slicks. AIAA Journal 10(4):506–510.

FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 1991. Toxicological Evaluation of Certain Food Additives and Contaminants. WHO Food Additives Series, No. 28, no. 723 on INCHEM. Geneva, Switzerland: Food and Agriculture Organization of the United Nations/World Health Organization.

FAO/WHO. 1995. Toxicological evaluation of certain food additives with a review of general principles and of specifications. In 44th Report of the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 859. Geneva, Switzerland: Food and Agricultural Organization of the United Nations/World Health Organization.

Farwell, C., C. M. Reddy, E. Peacock, R. K. Nelson, L. Washburn, and D. L. Valentine. 2009. Weathering and the fallout plume of heavy oil from strong petroleum seeps near Coal Oil Point, CA. Environmental Science & Technology 43(10):3542-3548. DOI: 10.1021/es802586g.

Fathalla, E. M., and J. T. Andersson. 2011. Products of polycyclic aromatic sulfur heterocycles in oil spill photodegradation. Environmental Toxicology and Chemistry 30(9):2004-2012.

Fay, J. A. 1969. The Spread of Oil Slicks on a Calm Sea. In Oil on the sea: Proceedings of a symposium on the scientific and engineering aspects of oil pollution of the sea, sponsored by Massachusetts Institute of Technology and Woods Hole Oceanographic Institution and held at Cambridge, Massachusetts, May 16. D. P. Hoult, ed. Boston, MA: Springer US.

FDA (U.S. Food and Drug Administration). 2011. Deepwater Horizon Surveillance Phase III Assignment (Issued 10/1/10) FDA Analytical Results-Metals. http://wayback.archive-it.org/7993/20170723102055/https:/www.fda.gov/downloads/Food/RecallsOutbreaksEmergencies/UCM261604.pdf.

Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team. 2010. Oil Budget Calculator Deepwater Horizon. https://www.hsdl.org/?view&did=13402.

Finch, B. E., and W. A. Stubblefield. 2016. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities. Environmental Toxicology and Chemistry 35(5):1113-1122. DOI: 10.1002/etc.3250.

Finch, B. E., E. S. Stefansson, C. J. Langdon, S. M. Pargee, S. M. Blunt, S. J. Gage, and W. A. Stubblefield. 2016. Photoenhanced toxicity of two weathered Macondo crude oils to early life stages of the eastern oyster (Crassostrea virginica). Marine Pollution Bulletin 113(1-2):316-323.

Finch, B. E., S. Marzooghi, D. M. Di Toro, and W. A. Stubblefield. 2017a. Phototoxic potential of undispersed and dispersed fresh and weathered Macondo crude oils to Gulf of Mexico Marine Organisms. Environmental Toxicology and Chemistry 36(10):2640-2650. DOI: 10.1002/etc.3808.

Finch, B. E., S. Marzooghi, D. M. Di Toro, and W. A. Stubblefield. 2017b. Evaluation of the phototoxicity of unsubstituted and alkylated polycyclic aromatic hydrocarbons to mysid shrimp (Americamysis bahia): Validation of predictive models. Environmental Toxicology and Chemistry 36:2043-2049. DOI: 10.1002/etc.3733.

Finch, B. E., E. S. Stefansson, C. J. Langdon, S. M. Pargee, and W. A. Stubblefield. 2018. Photo-enhanced toxicity of undispersed and dispersed weathered Macondo crude oil to Pacific (Crassostrea gigas) and eastern oyster (Crassostrea virginica) larvae. Marine Pollution Bulletin 133:828-834.

Findlay, G. M. 1928. Ultra-violet light and skin cancer. The Lancet 212(5491):1070-1073.

Fingas, M. 2011. Evaporation modeling. In Oil Spill Science and Technology. M. Fingas, ed. Boston, MA: Gulf Professional Publishing. Pp. 201-242.

Fingas, M. F. 2013. Modeling of oil and petroleum evaporation. Journal of Petroleum Science and Engineering 2:104-115.

Fingas, M. 2014. A review of natural dispersion models. International Oil Spill Conference Proceedings 2014(1):285471. DOI: 10.7901/2169-3358-2014-1-285471.1.

Fingas, M. F. 2015. Oil and petroleum evaporation. In Handbook of Oil Spill Science and Technology. M. Fingas, ed. Hoboken, NJ: John Wiley & Sons, Inc.

Fingas, M., B. Fieldhouse, and J. Mullin. 1994. Studies of water-in-oil emulsions and techniques to measure emulsion treating agents. Arctic Marine Oilspill Program. Ottawa, Ontario, Canada: Environment Canada. Pp. 213-244.

Fingas, M., B. Fieldhouse, J. Lane, and J. Mullin. 2000. Studies of water-in-oil emulsions: Long-term stability, oil properties, and emulsions formed at sea. Proceedings of the Twenty-Third Arctic and Marine Oil Spill Program (AMOP) Technical Seminar. Vancouver, British Columbia, Canada: Environment Canada.

Fiocco, R. J., and A. Lewis. 1999. Oil spill dispersants. Pure and Applied Chemistry 71(1):27-42.

Fisher, C. R., P. Y. Hsing, C. L. Kaiser, D. R. Yoerger, H. H. Roberts, W. W. Shedd, E. E. Cordes, T. M. Shank, S. P. Berlet, M. G. Saunders, E. A. Larcom, and J. M. Brooks. 2014. Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proceedings of the National Academy of Sciences of the United States of America 111(32):11744-11749. DOI: 10.1073/pnas.1403492111.

Fitzgerald, T. P., and J. M. Gohlke. 2014. Contaminant levels in Gulf of Mexico reef fish after the Deepwater Horizon oil spill as measured by a fishermen-led testing program. Environmental Science & Technology 48(3):1993-2000. DOI: 10.1021/es4051555.

Fitzpatrick, F. A., M. C. Boufadel, R. Johnson, K. W. Lee, T. P. Graan, A. C. Bejarano, Z. Zhu, D. Waterman, D. M. Capone, E. Hayter, S. K. Hamilton, T. Dekker, M. H. Garcia, and J. S. Hassan. 2015. Oil-particle interactions and submergence from crude oil spills in marine and freshwater environments: Review of the science and future research needs. Reston, VA: U.S. Geological Survey. 44 pp.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Fiume, M. M., B. Heldreth, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks, Jr., R. C. Shank, T. J. Slaga, and P.W. Snyder. 2016. Safety assessment of dialkyl sulfosuccinate salts as used in cosmetics. International Journal of Toxicology 35(3 Suppl):34S-46S.

Flurer, R. A., B. L. Boyd, B. Gamble, S. Gratz, K. J. Mulligan, R. A. Benner, Jr., K. R. El Said, E. L. E. Jester, D. G. Burrows, D. A. M. da Silva, M. M. Krahn, W. L. Reichert, and G. M. Ylitalo. 2010. Determination of Dioctylsulfosuccinate in Select Seafoods Using a QuEChERS Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. FDA/ORA/DFS Laboratory Information Bulletin. Pp. 1-19.

Fodrie, F. J., K. W. Able, F. Galvez, K. L. Heck, Jr., O. P. Jensen, P. C. López-Duarte, C. W. Martin, R. E. Turner, and A. Whitehead. 2014. Integrating organismal and population responses of estuarine fishes in Macondo spill research. BioScience 64(9):778-788.

Forth, H. P., C. L. Mitchelmore, J. M. Morris, and J. Lipton. 2017a. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment. Environmental Toxicology and Chemistry 36(6):1450-1459. DOI: 10.1002/etc.3672.

Forth, H. P., C. L. Mitchelmore, J. M. Morris, C. R. Lay, and J. Lipton. 2017b. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment. Environmental Toxicology and Chemistry 36(6):1460-1472. DOI: 10.1002/etc.3803.

Fraga, B., T. Stoesser, C. C. K. Lai, and S. A. Socolofsky. 2016. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes. Ocean Modelling 97:27-36. DOI: 10.1016/j.ocemod.2015.11.005.

Frelichowska, J., M. A. Bolzinger, and Y. Chevalier. 2010. Effects of solid particle content on properties of o/w Pickering emulsions. Journal of Colloid and Interface Science 351(2):348-356. DOI: 10.1016/j.jcis.2010.08.019.

French, D., M. Reed, K. Jayko, S. Feng, H. Rhines, S. Pavigano, T. Isaji, S. Puckett, A. Keller, F. W. French III, D. Gifford, J. McCue, T. Opishinski, G. Brown, E. MacDonald, J. Quirk, S. Natzke, B. S. Ingram, R. Bishop, M. Welsh, and M. Phillips. 1996. The CERCLA Type A Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) Technical Documentation Volume I—Part 1 Model Description. Prepared for Office of Policy and Compliance. U.S. Department of the Interior. Contract No. 14-01-0001-91-C-11.

French-McCay, D. P. 2002. Development and application of an oil toxicity and exposure model, OilToxEx. Environmental Toxicology and Chemistry 21(10):2080-2094.

French-McCay, D. 2003. Development and application of damage assessment modeling: Example assessment for the North Cape oil spill. Marine Pollution Bulletin 47(9-12):341-359. DOI: 10.1016/s0025-326x(03)00208-x.

French-McCay, D. 2004. Oil spill impact modeling development and validation. Environmental Toxicology and Chemistry 23(10):2441-2456.

French-McCay, D. 2009. State-of-the-art and research needs for oil spill impact assessment modeling. Proceedings of the 32nd AMOP Technical Seminar on Environmental Contamination and Response 2:601–653.

French-McCay, D. 2011. Oil spill modeling for ecological risk and natural resource damage assessment. International Oil Spill Conference Proceedings.

French-McCay, D. P. 2016. Potential effects thresholds for oil spill risk assessments. In Proceedings of the 39th AMOP Technical Seminar on Environmental Contamination and Response, Emergencies Science Division, Environment Canada, Ottawa, ON, Canada. Pp. 285-303.

French-McCay, D. P. 2017. Modeling Oil Transport and Fate—Dispersant Use for Deepwater Blowouts. Presentation to the Committee on the Evaluation of the Use of Chemical Dispersants in Oil Spill Response. August 7, 2017. Washington, DC.

French-McCay, D., and D. Crowley. 2018. Sensitivity Analysis for Oil Fate and Exposure Modeling of a Subsea Blowout—Data Report. Washington, DC: American Petroleum Institute.

French-McCay, D. P., C. Mueller, J. Payne, E. Terrill, M. Otero, S. Y. Kim, M. Carter, W. Nordhausen, M. Lampinen, and C. Ohlmann. 2008. Dispersed oil transport modeling calibrated by field-collected data measuring fluorescein dye dispersion. International Oil Spill Conference Proceedings 2008(1):527-536. DOI: 10.7901/2169-3358-2008-1-527.

French-McCay, D. P., K. Jayko, Z. Li, M. Horn, Y. Kim, T. Isaji, D. Crowley, M. Spaulding, L. Decker, C. Turner, S. Zamorski, J. Fontenault, R. Shmookler, and J. J. Rowe. 2015. Technical Reports for Deepwater Horizon Water Column Injury Assessment – WC_TR14: Modeling Oil Fate and Exposure Concentrations in the Deepwater Plume and Cone of Rising Oil Resulting from the Deepwater Horizon Oil Spill. DWH NRDA Water Column Technical Working Group Report. Prepared for National Oceanic and Atmospheric Administration by RPS ASA, South Kingstown, RI. September 29, 2015. Administrative Record no. DWH-AR0285776.pdf. https://www.doi.gov/deepwaterhorizon/adminrecord.

French-McCay, D. P., M. Horn, Z. Li, K. Jayko, M. L. Spaulding, D. Crowley, and D. Mendelsohn. 2018a. Modeling distribution, fate, and concentrations of Deepwater Horizon Oil in subsurface waters of the Gulf of Mexico. In Oil Spill Environmental Forensic Case Studies. Cambridge, MA: Butterworth-Heinemann. Pp. 683-735. DOI: 10.1016/b978-0-12-804434-6.00031-8.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

French-McCay, D., D. Crowley, J. J. Rowe, M. Bock, H. Robinson, R. Wenning, A. H. Walker, J. Joeckel, T. J. Nedwed, and T. F. Parkerton. 2018b. Comparative Risk Assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling. Marine Pollution Bulletin 133:1001-1015. DOI: https://doi.org/10.1016/j.marpolbul.2018.05.042.

Friedman, P. D., and J. Katz. 2002. Mean rise rate of droplets in isotropic turbulence. Physics of Fluids 14(9):3059-3073. DOI: 10.1063/1.1497377.

Frometa, J., M. E. DeLorenzo, E. C. Pisarski, and P. J. Etnoyer. 2017. Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Marine Pollution Bulletin 122(1-2):91-99. DOI: 10.1016/j.marpolbul.2017.06.009.

Frysinger, G. S., R. B. Gaines, L. Xu, and C. M. Reddy. 2003. Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environmental Science and Technology 37(8):1653-1662.

Fu, G. M., A. T. Kan, and M. Tomson. 1994. Adsorption and desorption hysteresis of PAHs in surface sediment. Environmental Toxicology and Chemistry 13(10):1559-1567.

Fu, J., Y. Gong, X. Zhao, S. E. O’Reilly, and D. Zhao. 2014. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons. Environmental Science & Technology 48(24):14392-14399. DOI: 10.1021/es5042157.

Fu, J., Y. Gong, Z. Cai, S. E. O’Reilly, and D. Zhao. 2017. Mechanistic investigation into sunlight-facilitated photodegradation of pyrene in seawater with oil dispersants. Marine Pollution Bulletin 114:751-758.

Gallacher, J., K. Bronstering, S. Palmer, D. Fone, and R. Lyons. 2007. Symptomatology attributable to psychological exposure to a chemical incident: A natural experiment. Journal of Epidemiology and Community Health 61(6):506.

Gallaway, B. J., W. J. Konkel, and B. L. Norcross. 2017. Some thoughts on estimating change to Arctic cod populations from hypothetical oil spills in the eastern Alaska Beaufort Sea. Arctic Science 3(4):716-729.

Gam, K. B., R. K. Kwok, L. S. Engel, M. D. Curry, P. A. Stewart, M. R. Stenzel, J. A. McGrath, W. B. Jackson II, R. L. Jensen, A. P. Keil, M. Y. Lichtveld, A. K. Miller, and D. P. Sandler. 2018a. Lung function in oil spill response workers 1-3 years after the Deepwater Horizon disaster. Epidemiology 29(3):315-322. DOI: 10.1097/ede.0000000000000808.

Gam, K. B., R. K. Kwok, L. S. Engel, M. D. Curry, P. A. Stewart, M. Stenzel, J. A. McGrath, W. Braxton Jackson, R. L. Jensen, M. Lichtveld, A. K. Miller, and D. P. Sandler. 2018b. Exposure to oil spill chemicals and lung function in Deepwater Horizon disaster response workers. Journal of Occupational and Environmental Medicine 60(6):e312-e318. DOI: 10.1097/JOM.0000000000001292.

Garcia, M. T., E. Campos, A. Marsal, and I. Ribosa. 2009. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Research 43:295-302.

Gardiner, W. W., J. Q. Word, J. D. Word, R. A. Perkins, K. M. McFarlin, B. W. Hester, L. S. Word, and C. M. Ray. 2013. The acute toxicity of chemically and physically dispersed crude oil to key Arctic species under Arctic conditions during the open water season. Environmental Toxicology and Chemistry 32(10):2284-2300. DOI: 10.1002/etc.2307.

Garneau, M.-È., C. Michel, G. Meisterhans, N. Fortin, T. L. King, C. W. Greer, and K. Lee. 2016. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiology Ecology 92(10):fiw130. DOI: 10.1093/femsec/fiw130.

Garrett, R. M., I. J. Pickering, C. E. Haith, and R. C. Prince. 1998. Photooxidation of crude oils. Environmental Science and Technology 32(23):3719-3723.

Geng, X., M. C. Boufadel, Y. R. Personna, K. Lee, D. Tsao, and E. D. Demicco. 2014. BIOB: A mathematical model for the biodegradation of low solubility hydrocarbons. Marine Pollution Bulletin 83(1):138-147. DOI: 10.1016/j. marpolbul.2014.04.007.

Geng, X., M. C. Boufadel, K. Lee, S. Abrams, and M. Suidan. 2015. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry. Water Resources Research 51(5):3193-3218. DOI: 10.1002/2014WR016870.

Geng, X., M. C. Boufadel, T. Ozgokmen, T. King, K. Lee, Y. Lu, and L. Zhao. 2016. Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients. Marine Pollution Bulletin 104(1-2):279-289. DOI: 10.1016/j.marpolbul.2016.01.007.

George, S. E., G. M. Nelson, M. J. Kohan, S. H. Warren, B. T. Eischen, and L. R. Brooks. 2001. Oral treatment of Fischer 344 rats with weathered crude oil and a dispersant influences intestinal metabolism and microbiota. Journal of Toxicology and Environmental Health, Part A 63:297-316.

Geraci, J., and D. Aubin. 1988. Synthesis of Effects of Oil on Marine Mammals. 99-0049. Washington, DC: U.S. Department of the Interior, Minerals Management Service Atlantic OCS Region.

Gerhard, L., and J. A. Anello. 1969. Effect of polysorbate hydrolysis products on biologic membrane permeability. Journal of Pharmaceutical Sciences 58(4):494-495. DOI: 10.1002/jps.2600580426.

Ghosh, U. 2007. The role of black carbon in influencing availability of PAHs in sediments. Human and Ecological Risk Assessment 13(2):276-285.

Gieg, L. M., and C. R. A. Toth. 2018. Anaerobic biodegradation of hydrocarbons: metagenomics and metabolomics. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. R. Steffan, ed. Cham, Switzerland: Springer International Publishing.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Giesy, J. P., J. L. Newsted, and J. T. Oris. 2013. Photo enhanced toxicity: Serendipity of a prepared mind and flexible program management. Environmental Toxicology and Chemistry 32(5):969-971.

Gilfillan, E. S., D. Page, and J. Foster. 1986. Tidal Area Dispersant Project: Fate and Effects of Chemically Dispersed Oil in the Nearshore Benthic Environment. Final Report, Publication Number 4440. Washington, DC: American Petroleum Institute.

Gilson, D. 2006. Report on the Non-Mechanical Response for the T/V Exxon Valdez Oil Spill. Submitted for the Oil Spill Prevention and Response Committee of the Prince William Sound Regional Citizens’ Advisory Council.

Glover, C. M., S. P. Mezyk, K. G. Linden, and F. L. Rosario-Ortiz. 2014. Photochemical degradation of Corexit components in ocean water. Chemosphere 111:596-602.

Gohlke, J. M., D. Doke, M. Tipre, M. Leader, and T. Fitzgerald. 2011. A review of seafood safety after the Deepwater Horizon blowout. Environmental Health Perspectives 119(8):1062-1069. DOI: 10.1289/ehp.1103507.

Goldstein, B. D. 2010a. Benzene as a cause of lymphoproliferative disorders. Chemico-Biological Interactions 184(1):147-150. DOI: 10.1016/j.cbi.2009.12.021.

Goldstein, B. D. 2010b. Understanding the effects of oil spills on human health. In Assessing the Effects of the Gulf of Mexico Oil Spill on Human Health: A Summary of the June 2010 Workshop. Washington, DC: The National Academies Press.

Goldstein, B. 2011. Risk assessment of environmental chemicals: If it ain’t broke…. Risk Analysis 31:1356-1362.

Goldstein, B. D. 2016. Relevance of transparency to sustainability and to Pennsylvania’s Marcellus Shale Act 13. In Shale Gas and the Future of Energy: Law and Policy for Sustainability. C. J. Dernbach and J. R. May, eds. Northampton, MA: Edward Elgar Publishing.

Goldstein, B. D., H. J. Osofsky, and M. Y. Lichtveld. 2011. The Gulf oil spill. New England Journal of Medicine 364(14):1334-1348. DOI: 10.1056/NEJMra1007197.

Golshan, R., A. E. Tejada-Martínez, M. J. Juha, and Y. Bazilevs. 2017. LES and RANS simulation of wind- and wave-forced oceanic turbulent boundary layers in shallow water with wall modeling. Computers and Fluids 142:96-108. DOI: 10.1016/j.compfluid.2016.05.016.

Golshan, R., M. C. Boufadel, V. A. Rodriguez, X. Geng, F. Gao, T. King, B. Robinson, and A. E. Tejada-Martínez. 2018. Oil droplet transport under non-breaking waves: An Eulerian RANS approach combined with a Lagrangian particle dispersion model. Journal of Marine Science and Engineering 6(1). DOI: 10.3390/jmse6010007.

Gong, Y., X. Zhao, Z. Cai, S. E. O’Reilly, X. Hao, and D. Zhao. 2014. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin 79(1-2):16-33. DOI: 10.1016/j.marpolbul.2013.12.024.

Gong, Y., J. Fu, S.E. O’Reilly, and D. Zhao. 2015. Effects of oil dispersants on photodegradation of pyrene in marine water. Journal of Hazardous Materials 287:142-150.

Gopalan, B., and J. Katz. 2010. Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Physical Review Letters 104(5):054501. DOI: 10.1103/PhysRevLett.104.054501.

Goss, K. U. 2005. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibria 233(1):19-22.

Gräbsch, C. 2016. Health effects of mineral oil, dispersants and oil-dispersant-mixtures. In The Use of Dispersants to Combat Oil Spills in Germany at Sea. M. Grote, A. Nagel, N. Hartmut, J. Rauterberg, and D.-S. Wahrendorf, eds. Berlin, Germany: Federal Institute for Risk Assessment.

Grace, H. P. 1982. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chemical Engineering Communications 14(3-6):225-277. DOI: 10.1080/00986448208911047.

Gratz, S., A. Mohrhaus, B. Gamble, J. Gracie, D. Jackson, J. Roetting, L. Ciolino, H. McCauley, G. Schneider, D. Crockett, W. Krol, T. Arsenault, J. White, M. Flottmeyer, Y. Johnson, D. Heitkemper, and F. Fricke. 2010. Screen for the Presence of Polycyclic Aromatic Hydrocarbons in Select Seafoods Using LC-Fluorescence. FDA/ORA/DFS Laboratory Information Bulletin 4475. Pp. 1-39.

Grenvald, J. C., T. G. Nielsen, and M. Hjorth. 2013. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods. Ecotoxicology 22(1):184-198.

Gros, J., C. M. Reddy, R. K. Nelson, S. A. Socolofsky, and J. S. Arey. 2016. Simulating gas–liquid−water partitioning and fluid properties of petroleum under pressure: Implications for deep-sea blowouts. Environmental Science & Technology 50(14):7397-7408. DOI: 10.1021/acs.est.5b04617.

Gros, J., S. A. Socolofsky, A. L. Dissanayake, I. Jun, L. Zhao, M. C. Boufadel, C. M. Reddy, and J. S. Arey. 2017. Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proceedings of the National Academy of Sciences of the United States of America 114(38):10065-10070. DOI: 10.1073/pnas.1612518114.

Grosell, M., R. J. Griffitt, T. A. Sherwood, and D. L. Wetzel. In press. Endpoints and non-model species in oil spill toxicology. In Deep Oil Spills: Facts, Fate and Effects. S. A. Murawski, C. Ainsworth, S. Gilbert, D. Hollander, C. B. Paris, M. Schlüter, and D. Wetzel, eds. New York: Springer International Publishing.

Grote, M. 2016. The Use of Dispersants to Combat Oil Spills in Germany at Sea. Berlin, Germany: Federal Institute for Risk Assessment.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Grote, M., G. Schüürmann, and R. Altenburger. 2005a. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environmental Science & Technology 39(11):4141-4149.

Grote, M., W. Brack, H. A. Walter, and R. Altenburger. 2005b. Light as a confounding factor for toxicity assessment of complex contaminated sediments. Environmental Toxicology and Chemistry 24(12):3143-3152. DOI: 10.1897/04-550r.1.

Grote, M., C. van Bernem, B. Böhme, U. Callies, I. Calvez, B. Christie, K. Colcomb, H.-P. Damian, H. Farke, C. Gräbsch, A. Hunt, T. Höfer, J. Knaack, U. Kraus, S. Le Floch, G. Le Lann, H. Leuchs, A. Nagel, H. Nies, W. Nordhausen, J. Rauterberg, D. Reichenbach, G. Scheiffarth, F. Schwichtenberg, N. Theobald, J. Voß, and D.-S. Wahrendorf. 2018. The potential for dispersant use as a maritime oil spill response measure in German waters. Marine Pollution Bulletin 129(2):623-632. DOI: 10.1016/j.marpolbul.2017.10.050.

Gründger, F., N. Jiménez, T. Thielemann, N. Straaten, T. Lüders, H.-H. Richnow, and M. Krüger. 2015. Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany. Frontiers in Microbiology 6:200. DOI: 10.3389/fmicb.2015.00200.

Gullett, B. K., M. D. Hays, D. Tabor, and R. V. Wal. 2016. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns. Marine Pollution Bulletin 107(1):216-223. DOI: 10.1016/j.marpolbul.2016.03.069.

Guo, F., D. M. L. Stebbins, T. Peng, R. Falahat, W. Zhao, S. Thomas, R. Toomey, and N. Alcantar. 2014. Effect of a Natural Cactus-Based Mucilage Dispersant on the Surface Tension and Droplet Size of Dispersed Crude Oil. Presented at the AIChE Annual Meeting, November 16-21, Atlanta, Georgia.

Gustitus, S. A., and T. P. Clement. 2017. Formation, fate, and impacts of microscopic and macroscopic oil-sediment residues in nearshore marine environments: A critical review. Reviews of Geophysics 55(4):1130-1157. DOI: 10.1002/2017RG000572.

Gustitus, S. A., G. F. John, and T. P. Clement. 2017. Effects of weathering on the dispersion of crude oil through oil-mineral aggregation. Science of the Total Environment 587-588:36-46.

Guyomarch, J., F. X. Merlin, and P. Bernanose. 1999. Oil interaction with mineral fines and chemical dispersion: Behaviour of the dispersed oil in coastal or estuarine conditions. In Proceedings of the 22nd Arctic and Marine Oilspill Program Technical Seminar. Ottawa, Ontario, Canada: Environment Canada. P. 919.

Guyomarch, J., S. L. Floch, and R. Jézéquel. 2012. Oil weathering, impact assessment and response option studies at the pilot scale: Improved methodology and design of a new dedicated flume test. In Proceedings of the 35th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Ottawa, Ontario, Canada: Environment Canada. Pp. 1001-1017.

Ha, M., H. Kwon, H.-K. Cheong, S. Lim, S. J. Yoo, E.-J. Kim, S. G. Park, J. Lee, and B. C. Chung. 2012. Urinary metabolites before and after cleanup and subjective symptoms in volunteer participants in cleanup of the Hebei Spirit oil spill. Science of the Total Environment 429:167-173. DOI: 10.1016/j.scitotenv.2012.04.036.

Hall, R., A. Belisle, and L. Sileo. 1983. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill. Journal of Wildlife Diseases 19(2):106.

Hall, G. J., G. S. Frysinger, C. Aeppli, C. A. Carmichael, J. Gros, K. L. Lemkau, R. K. Nelson, and C. M. Reddy. 2013. Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Marine Pollution Bulletin 75(1):140-149.

Hansel, T. C., H. Osofsky, E. Baumgartner, S. Bradberry, L. Brown, K. Kirkland, J. Langhinrichsen-Rohling, J. Osofsky, A. H. Speier, and B. D. Goldstein. 2017. Social and environmental justice as a lens to approach the distribution of $105 million of directed funding in response to the Deepwater Horizon oil disaster. Environmental Justice 10(4):119-127. DOI: 10.1089/env.2016.0039.

Hansen, B. H., D. Altin, S. F. Rørvik, I. B. Øverjordet, A. J. Olsen, and T. Nordtug. 2011. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Science of the Total Environment 409(4):704-709.

Hansen, B. H., D. Altin, A. J. Olsen, and T. Nordtug. 2012. Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod Calanus finmarchicus. Ecotoxicology and Environmental Safety 86:38-46. DOI: 10.1016/j. ecoenv.2012.09.009.

Hansen, B. H., D. Altin, I. B. Øverjordet, T. Jager, and T. Nordtug. 2013. Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: Effects on survival and biomarker response. Science of the Total Environment 449:276-284.

Hansen, B. H., I. Salaberria, K. E. Read, P. A. Wold, K. M. Hammer, A. J. Olsen, D. Altin, I. B. Øverjordet, T. Nordtug, T. Bardal, and E. Kjørsvik. 2019. Developmental effects in fish embryos exposed to oil dispersions—the impact of crude oil micro-droplets. Marine Environmental Research 150:104753.

Harms, H., D. Schlosser, and L. Y. Wick. 2011. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9(3):177-192.

Hastings, D. W., P. T. Schwing, G. R. Brooks, R. A. Larson, J. L. Morford, T. Roeder, K. A. Quinn, T. Bartlett, I. C. Romero, and D. J. Hollander. 2016. Changes in sediment redox conditions following the BP DWH blowout event. Deep Sea Research Part II: Topical Studies in Oceanography 129:167-178.

Hatcher, P. G., W. Obeid, A. S. Wozniak, C. Xu, S. Zhang, P. H. Santschi, and A. Quigg. 2018. Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state 13C NMR spectroscopy. Marine Pollution Bulletin 126:159-165. DOI: 10.1016/j.marpolbul.2017.11.004.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Hayworth, J. S., and T. P. Clement. 2012. Provenance of Corexit-related chemical constituents found in nearshore and inland Gulf Coast waters. Marine Pollution Bulletin 64(10):2005-2014.

Hazen, T. C. 1997. Bioremediation. In Microbiology of the Terrestrial Subsurface. P. Amy and D. Haldeman, eds. Boca Raton, FL: CRC Press.

Hazen, T. C. 2010a. Biostimulation. In Handbook of Hydrocarbon Microbiology: Microbial Interactions with Hydrocarbons, Oils, Fats and Related Hydrophobic Substrates and Products. K. N. Timmis, ed. Berlin, Germany: Springer-Verlag.

Hazen, T. C. 2010b. Cometabolic bioremediation. In Handbook of Hydrocarbon Microbiology: Microbial Interactions with Hydrocarbons, Oils, Fats and Related Hydrophobic Substrates and Products. K. N. Timmis, ed. Berlin, Germany: Springer-Verlag.

Hazen, T. C. 2010c. In situ groundwater bioremediation. In Handbook of Hydrocarbon Microbiology: Microbial Interactions with Hydrocarbons, Oils, Fats and Related Hydrophobic Substrates and Products. K. N. Timmis, ed. Berlin, Germany: Springer-Verlag.

Hazen, T. C. 2018. Cometabolic bioremediation. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. R. Steffan, ed. Cham, Switzerland: Springer International Publishing. Pp. 233-247.

Hazen, T. C., and G. S. Sayler. 2016. Environmental systems microbiology of contaminated environments. In Manual of Environmental Microbiology. Fourth Edition. Washington, DC: American Society of Microbiology. Pp. 5.1.6-1-5.1.6-10. DOI: 10.1128/9781555818821.ch5.1.6.

Hazen, T. C., and S. M. Techtmann. 2018. Oil biodegradation in deep marine basins. In Handbook of Hydrocarbon and Lipid Microbiology. R. Steffan, ed. Cham, Switzerland: Springer.

Hazen, T. C., R. Chakraborty, J. M. Fleming, I. R. Gregory, J. P. Bowman, L. Jimenez, D. Zhang, S. M. Pfiffner, F. J. Brock-man, and G. S. Sayler. 2009. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Archives of Microbiology 191(3):221-232. DOI: 10.1007/s00203-008-0445-8.

Hazen, T. C., E. A. Dubinsky, T. Z. DeSantis, G. L. Andersen, Y. M. Piceno, N. Singh, J. K. Jansson, A. Probst, S. E. Borglin, J. L. Fortney, W. T. Stringfellow, M. Bill, M. E. Conrad, L. M. Tom, K. L. Chavarria, T. R. Alusi, R. Lamendella, D. C. Joyner, C. Spier, J. Bælum, M. Auer, M. L. Zemla, R. Chakraborty, E. L. Sonnenthal, P. D’Haeseleer, H. Y. N. Holman, S. Osman, Z. M. Lu, J. D. Van Nostrand, Y. Deng, J. Z. Zhou, and O. U. Mason. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204-208. DOI: 10.1126/science.1195979.

Hazen, T. C., A. M. Rocha, and S. M. Techtmann. 2013. Advances in monitoring environmental microbes. Current Opinion in Biotechnology 24(3):526-533. DOI: 10.1016/j.copbio.2012.10.020.

Hazen, T. C., R. C. Prince, and N. Mahmoudi. 2016. Marine oil biodegradation. Environmental Science & Technology 50(5):2121-2129. DOI: 10.1021/acs.est.5b03333.

Head, I. M., N. D. Gray, and S. R. Larter. 2014. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Frontiers in Microbiology 5(566). DOI: 10.3389/fmicb.2014.00566.

Heintz, R. A., J. W. Short, and S. D. Rice. 1999. Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environmental Toxicology and Chemistry 18(3):494-503.

Helton, J. C. 2011. Quantification of margins and uncertainties: Conceptual and computational basis. Reliability Engineering & System Safety 96(9):976-1013.

Hemmer, M. J., M. G. Barron, and R. M. Greene. 2010. Comparative Toxicity of Eight Oil Dispersant Products on Two Gulf of Mexico Aquatic Test Species. EPA/600/R-11/113, 2010. Washington, DC: U.S. Environmental Protection Agency.

Hemmer, M. J., M. G. Barron, and R. M. Greene. 2011. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environmental and Toxicological Chemistry 30(10):2244-2252. DOI: 10.1002/etc.619.

Herdter, E. S., D. P. Chambers, C. D. Stallings, and S. A. Murawski. 2017. Did the Deepwater Horizon oil spill affect growth of red snapper in the Gulf of Mexico? Fisheries Research 191:60-68. DOI: https://doi.org/10.1016/j.fishres.2017.03.005.

Hermens, J. L. 1989. Quantitative structure-activity relationships of environmental pollutants. In Handbook of Environmental Chemistry: Reactions and Processes. Volume 2, Part E. O. Hutzinger, ed. Berlin, Germany: Springer-Verlag.

Hernandez, F. J., J. E. Filbrun, J. Fang, and J. T. Ransom. 2016. Condition of larval red snapper (Lutjanus campechanus) relative to environmental variability and the Deepwater Horizon oil spill. Environmental Research Letters 11(9):094019.

Hill, A. B. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58(5):295-300.

Hill, P. S., A. Khelifa, and K. Lee. 2002. Time scale for oil droplet stabilization by mineral particles in turbulent suspensions. Spill Science & Technology Bulletin 8(1):73-81. DOI: 10.1016/S1353-2561(03)00008-2.

Hill, T. M., J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Robert, and L. Beaufort. 2006. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Proceedings of the National Academy of Sciences of the United States of America 103(37):13570-13574. DOI: 10.1073/pnas.0601304103.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Hinze, J. O. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal 1(3):289-295. DOI: 10.1002/aic.690010303.

Hjorth, M., and T. G. Nielsen. 2011. Oil exposure in a warmer Arctic: Potential impacts on key zooplankton species. Marine Biology 158(6):1339-1347.

Hobson, M. T., B. Slone, W. J. Landry III, and R. Forbes. 2013. US 8,388,839 B1. United States Patent and Trademark Office. March 5, 2017. https://patentimages.storage.googleapis.com/37/4a/b0/de4c5e32794af8/US8388839.pdf.

Hodson, P. V. 2017. The toxicity to fish embryos of pah in crude and refined oils. Archives of Environmental Contamination and Toxicology 73(1, SI):12-18. https://doi.org/10.1007/s00244-016-0357-6.

Hodson, P. V., J. Adams, and R. S. Brown. 2019. Oil toxicity test methods must be improved. Environmental and Toxicological Chemistry 38:302-311. DOI: 10.1002/etc.4303.

Hoffman, F. O., and J. S. Hammonds. 1994. Propagation of uncertainty in risk assessments: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Analysis 14(5):707-712.

Hokstad, J. N., P. S. Daling, S. Johnsen, and M. Buffagni. 1998. Chemical and toxicological characterisation of water accommodated fractions relevant for oil spill situations. In WIT Transactions on Ecology and the Environment. Volume 27. Southampton, UK: WIT Press.

Holder, E., R. Conmy, and A. D. Venosa. 2015. Comparative laboratory-scale testing of dispersant effectiveness of 23 crude oils using four different testing protocols. Journal of Environmental Protection 6(6):628-639. DOI: 10.4236/jep.2015.66057.

Holland-Bartels, L., and B. Pierce. 2011. An Evaluation of the Science Needs to Inform Decisions on Outer Continental Shelf Energy Development in the Chukchi and Beaufort Seas, Alaska. Reston, VA: U.S. Geological Survey. 292 pp.

Hoult, D. P. 1972. Oil spreading on the sea. Annual Review of Fluid Mechanics 4(1):341-368. DOI: 10.1146/annurev. fl.04.010172.002013. https://www.nature.com/articles/nmicrobiol201793#supplementary-information.

Houma ICP Aerial Dispersant Group. 2010. After Action Report: Deepwater Horizon MC252 Aerial Dispersant Response. http://www.mdl2179trialdocs.com/releases/release201501260800005/TREX-013037.pdf.

Hsu, C. S., C. L. Hendrickson, R. P. Rodgers, A. M. McKenna, and A. G. Marshall. 2011. Petroleomics: Advanced molecular probe for petroleum heavy ends. Journal of Mass Spectrometry 46(4):337-343.

Hu, C., R. H. Weisberg, Y. Liu, L. Zheng, K. L. Daly, D. C. English, J. Zhao, and G. A. Vargo. 2011. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters 38(9). DOI: 10.1029/2011GL047184.

Hu, P., E. A. Dubinsky, A. J. Probst, J. Wang, C. M. K. Sieber, L. M. Tom, P. R. Gardinali, J. F. Banfield, R. M. Atlas, and G. L. Andersen. 2017. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proceedings of the National Academy of Sciences of the United States of America 114:7432-7437.

Huang, X. D., S. N. Krylov, L. Ren, B. J. McConkey, D. G. Dixon, and B. M. Greenberg. 1997. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G 3. Environmental Toxicology and Chemistry 16(11):2296-2303.

Huang, M., I. A. Blair, and T. M. Penning. 2014. Metabolism of a representative alkylated petrogenic polycyclic aromatic hydrocarbon (PAH) 6-ethyl-chrysene associated with the Deepwater Horizon oil spill in human hepatoma (HepG2) cells. Abstracts of Papers of the American Chemical Society 248:1.

Huba, A. K., and P. R. Gardinali. 2016. Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Science of the Total Environment 563(September):600-610. https://doi.org/10.1016/j.scitotenv.2016.03.233.

Huber, C., A. Steen, and B. Parscal. 2014. Does wave height matter for effective surface dispersant application? International Oil Spill Conference Proceedings 2014(1):747-761.

Huijbregts, M. A. J., Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, and R. van Zelm. 2017. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment 22(2):138-147.

Hunt, J. S. 1996. Petroleum Geochemistry and Geology. New York: W.H. Freeman.

IARC (International Agency for Research on Cancer). 2012a. Benzene. In Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100F. Lyon, France: International Agency for Research on Cancer, World Health Organization. Pp. 249-294.

IARC. 2012b. Benzo(a)pyrene. In Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100F. Lyon, France: International Agency for Research on Cancer, World Health Organization. Pp. 111-144.

Ichiye, T. 1967. Upper ocean boundary-layer flow determined by dye diffusion. Physics of Fluids 10:S270-S277.

Incardona, J. P., T. K. Collier, and N. L. Scholz. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196(2):191-205.

Incardona, J. P., T. K. Collier, and N. L. Scholz. 2011. Oil spills and fish health: Exposing the heart of the matter. Journal of Exposure Science and Environmental Epidemiology 21(1):3-4.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Incardona, J. P., T. L. Swarts, R. C. Edmunds, T. L. Linbo, A. Aquilina-Beck, C. A. Sloan, L. D. Gardner, B. A. Block, and N. L. Scholz. 2013. Exxon Valdez to Deepwater Horizon: Comparable toxicity of both crude oils to fish early life stages. Aquatic Toxicology 142:303-316. DOI: 10.1016/j.aquatox.2013.08.011.

Incardona, J. P., L. D. Gardner, T. L. Linbo, T. L. Brown, A. J. Esbaugh, E. M. Mager, J. D. Stieglitz, B. L. French, J. S. Labenia, C. A. Laetz, M. Tagal, C. A. Sloan, A. Elizur, D. D. Benetti, M. Grosell, B. A. Block, and N. L. Scholz. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences of the United States of America 111(15):E1510-E1518.

Ingebrigtsen, K., J. S. Christiansen, Ö Lindhe, and I. Brandt. 2000. Disposition and cellular binding of 3H-benzo(a)pyrene at subzero temperatures: Studies in an aglomerular arctic teleost fish—the polar cod (Boreogadus saida). Polar Biology 23:503-509.

IOM (Institute of Medicine). 2014. Understanding the Connections Between Coastal Waters and Ocean Ecosystem Services and Human Health: Workshop Summary. Washington, DC: The National Academies Press. https://doi.org/10.17226/18552.

IPIECA. 2000. Choosing Spill Response Options to Minimize Damage. Net Environmental Benefit Analysis. IPIECA Report Series Volume 10. London, UK: IPIECA. 20 pp.

IPIECA. 2013. Net Environmental Benefit Analysis for Effective Oil Spill Response and Preparedness. Glance and scan presentation. 30 pp. http://oilspillresponseproject.org/completed-products.

IPIECA. 2015. Dispersants: Subsea Application—Good Practice Guidelines for Incident Management and Emergency Response Personnel. IOGP Report 533. London, UK: IPIECA. 70 pp.

IPIECA-API-IOGP (International Association of Oil & Gas Producers). 2017. Guidelines on Implementing Spill Impact Mitigation Assessment (SIMA): A Technical Support Document to Accompany the IPIECA-IOGP Guidance on Net Environmental Benefit Analysis (NEBA). http://www.ipieca.org/resources/awareness-briefing/guidelines-on-implementing-spill-impact-mitigation-assessment-sima.

IPIECA-IOGP. 2012. Oil Spill Responder Health and Safety: Good Practice Guidelines for Incident Management and Emergency Response Personnel. https://www.giwacaf.net/en/publications/health-and-safety-of-reponders-ipieca-gpg.

IPIECA-IOGP. 2014. Regulatory Approval of Dispersant Products and Authorization for Their Use. London, UK: IPIECA. 32 pp.

IPIECA-IOGP. 2015. Response Strategy Development Using Net Environmental Benefit Analysis (NEBA): Good Practice Guidelines for Incident Management and Emergency Response Personnel. http://www.ipieca.org/resources/good-practice/response-strategy-development-using-net-environmental-benefit-analysis-neba.

IPIECA-IOGP. 2016. Guidelines on Oil Characterization to Inform Spill Planning and Decision Making. http://www.ipieca.org/resources/awareness-briefing/guidelines-on-oil-characterization-to-inform-spill-response-decisions.

Jaggi, A., R. W. Snowdon, A. Stopford, J. R. Radovi , T. B. P. Oldenburg, and S. R. Larter. 2017. Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Organic Geochemistry 108:1-8. DOI: 10.1016/j.orggeochem.2017.03.006.

Jaligama, S., Z. Chen, J. Saravia, N. Yadav, S. M. Lomnicki, T. R. Dugas, and S. A. Cormier. 2015. Exposure to Deepwater Horizon crude oil burnoff particulate matter induces pulmonary inflammation and alters adaptive immune response. Environmental Science & Technology 49(14):8769-8776. DOI: 10.1021/acs.est.5b01439.

Jamur, M. C., and C. Oliver. 2010. Permeabilization of cell membranes. In Immunocytochemical Methods and Protocols. C. Oliver and M. C. Jamur, eds. Totowa, NJ: Humana Press.

Janjua, N. Z., P. M. Kasi, H. Nawaz, S. Z. Farooqui, U. B. Khuwaja, N.-ul-Hussan, S. N. Jafri, S. A. Lutfi, M. M. Kadir, and N. Sathiakumar. 2006. Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health 6:84. DOI: 10.1186/1471-2458-6-84.

Jensen, L. K., and J. Carroll. 2010. Experimental studies of reproduction and feeding for two Arctic-dwelling Calanus species exposed to crude oil. Aquatic Biology 10(3):261-271. DOI: 10.3354/ab00286.

Jensen, M. H., T. G. Nielsen, and I. Dahllöf. 2008. Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland. Aquatic Toxicology 87(2):99-107.

Jenssen, B. M. 1994. Review article: Effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds. Environmental Pollution 86(2):207-215.

Jenssen, B. M., and M. Ekker. 1991. Effects of plumage contamination with crude oil dispersant mixtures on thermoregulation in common eiders and mallards. Archives of Environmental Contamination and Toxicology 20(3):398-403.

Jernelöv, A., and O. Lindén. 1981. Ixtoc I: A case study of the world’s largest oil spill. Ambio 10(6):299-306.

Jézéquel, R., J. Receveur, T. Nedwed, and S. Le Floch. 2018. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under Arctic conditions. Marine Pollution Bulletin 127:626-636. DOI: 10.1016/j. marpolbul.2017.12.034.

Johansen, Ø. 2000. DeepBlow—a lagrangian plume model for deep water blowouts. Spill Science & Technology Bulletin 6(2):103-111.

Johansen, Ø. 2003. Development and verification of deep-water blowout models. Marine Pollution Bulletin 47(9):360-368. DOI: 10.1016/S0025-326X(03)00202-9.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Johansen, Ø., H. Rye, A. G. Melbye, H. V. Jensen, B. Serigstad, and T. Knutsen. 2001. DeepSpill JIP—Experimental Discharges of Gas and Oil at Helland Hansen—June 2000. Technical Report, DeepSpill JIP, Report No. STF66 F01082. Trondheim, Norway: SINTEF.

Johansen, Ø., H. Rye, and C. Cooper. 2003. DeepSpill-Field study of a simulated oil and gas blowout in deep water. Spill Science and Technology Bulletin 8(5-6):433-443.

Johansen, Ø., P. J. Brandvik, and U. Farooq. 2013. Droplet breakup in subsea oil releases—Part 2: Prediction of droplet size distributions with and without injection of chemical dispersants. Marine Pollution Bulletin 73:327-335.

Johansen, Ø., M. Reed, and N. R. Bodsberg. 2015. Natural dispersion revisited. Marine Pollution Bulletin 93(1):20-26.

Johansson, S., U. Larsson, and P. Boehm. 1980. The Tsesis oil spill. Impact on the pelagic ecosystem. Marine Pollution Bulletin 11(10):284-293. DOI: 10.1016/0025-326X(80)90166-6.

Jolliet, O., M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, and R. Rosenbaum. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 8(6):324.

Jones, R. K. 1997. A simplified pseudo-component oil evaporation model. In Proceedings of the 20th Arctic and Marine Oilspill Program Technical Seminar. Ottawa, Ontario, Canada: Environment Canada.

Jones, B. C. 2010. Dispersant Studies of the Deepwater Horizon Oil Spill Response. Volume 3. Technical Report for BP Gulf of Mexico Spill Response Unit. 25 pp.

Jones, M., and S. Petch. 1995. A Report on the Analysis of Hydrocarbons in Sea Waters and Associated Samples from Trial Oil Spills Off Eastern England, July 1995. Newcastle upon Tyne, UK: University of Newcastle upon Tyne.

Joung, D., and A. M. Shiller. 2013. Trace element distributions in the water column near the Deepwater Horizon well blowout. Environmental Science and Technology 47(5):2161-2168.

Joye, S. B., I. R. MacDonald, I. Leifer, and V. Asper. 2011a. Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nature Geoscience 4(3):160-164. DOI: 10.1038/ngeo1067. https://www.nature.com/articles/ngeo1067#supplementary-information.

Joye, S. B., I. Leifer, I. R. MacDonald, J. P. Chanton, C. D. Meile, A. P. Teske, J. E. Kostka, L. Chistoserdova, R. Coffin, D. Hollander, M. Kastner, J. P. Montoya, G. Rehder, E. Solomon, T. Treude, and T. A. Villareal. 2011b. Comment on “A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico.” Science 332(6033):1033. DOI: 10.1126/science.1203307.

Judson, R. S., M. T. Martin, D. M. Reif, K. A. Houck, T. B. Knudsen, D. M. Rotroff, M. Xia, S. Sakamuru, R. Huang, P. Shinn, C. P. Austin, R. J. Kavlock, and D. J. Dix. 2010. Analysis of eight oil spill dispersants using rapid, in vitro tests for endocrine and other biological activity. Environmental Science & Technology 44(15):5979-5985. DOI: 10.1021/es102150z.

Jung, S.-C., K.-M. Kim, K.-S. Lee, S. Roh, W.-C. Jeong, S.-J. Kwak, I.-J. Lee, Y.-H. Choi, S. R. Noh, J.-I. Hur, and Y.-K. Jee. 2013. Respiratory effects of the Hebei Spirit oil spill on children in Taean, Korea. Allergy, Asthma & Immunology Research 5(6):365-370. DOI: 10.4168/aair.2013.5.6.365.

Kasperson, R. E., O. Renn, P. Slovic, H. S. Brown, J. Emel, R. Goble, J. X. Kasperso, and S. Ratick. 1988. The social amplification of risk: A conceptual framework. Risk Analysis 8(2):177-187.

Katepalli, H., V. T. John, A. Tripathi, and A. Bose. 2017. Microstructure and rheology of particle stabilized emulsions: Effect of particle shape and inter-particle interactions. Colloid Interfacial Science 485:11-17.

Kessler, J. D., W. S. Reeburgh, D. L. Valentine, F. S. Kinnaman, E. T. Peltzer, P. G. Brewer, J. Southon, and S. C. Tyler. 2008a. A survey of methane isotope abundance (C-14, C-13, H-2) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters. Journal of Geophysical Research-Oceans 113(C12):13. DOI: 10.1029/2008jc004822.

Kessler, R. C., S. Galea, M. J. Gruber, N. A. Sampson, R. J. Ursano, and S. Wessely. 2008b. Trends in mental illness and suicidality after Hurricane Katrina. Molecular Psychiatry 13(4):374-384. DOI: 10.1038/sj.mp.4002119.

Kessler, J. D., D. L. Valentine, M. C. Redmond, M. Du, E. W. Chan, S. D. Mendes, E. W. Quiroz, C. J. Villanueva, S. S. Shusta, L. M. Werra, S. A. Yvon-Lewis, and T. C. Weber. 2011a. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312-315. DOI: 10.1126/science.1199697.

Kessler, J. D., D. L. Valentine, M. C. Redmond, and M. Du. 2011b. Response to comment on “A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico.” Science 332(6033):1033. DOI: 10.1126/science.1203428.

Khelifa, A., P. Stoffyn-Egli, P. S. Hill, and K. Lee. 2002. Characteristics of oil droplets stabilized by mineral particles: Effects of oil type and temperature. Spill Science & Technology Bulletin 8(1):19-30. DOI: 10.1016/S1353-2561(02)00117-2.

Khelifa, A., P. S. Hill, and K. Lee. 2003. A stochastic model to predict the formation of oil-mineral aggregates. In Proceedings of the 26th Arctic and Marine Oilspill Program Technical Seminar. Ottawa, Ontario, Canada: Environment Canada.

Khelifa, A., P. S. Hill, and K. Lee. 2005. A comprehensive numerical approach to predict Oil-Mineral Aggregate (OMA) formation following oil spills in aquatic environments. International Oil Spill Conference Proceedings 2005(1):873-877. DOI: 10.7901/2169-3358-2005-1-873.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Khelifa, A., B. Fieldhouse, Z. Wang, C. Yang, M. Landriault, C. E. Brown, and M. Fingas. 2008. Effects of chemical dispersant on oil sedimentation due to oil-SPM flocculation: Experiments with the NIST standard reference material 1941. International Oil Spill Conference Proceedings 2008(1):627-631. DOI: 10.7901/2169-3358-2008-1-627.

Kimes, N., A. Callaghan, D. Aktas, W. Smith, J. Sunner, B. Golding, M. Drozdowska, T. Hazen, J. Suflita, and P. Morris. 2013. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology 4(50). DOI: 10.3389/fmicb.2013.00050.

Kimes, N. E., A. V. Callaghan, J. M. Suflita, and P. J. Morris. 2014. Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives. Frontiers in Microbiology 5(603). DOI: 10.3389/fmicb.2014.00603.

King, B. S., and J. D. Gibbins. 2011. Health Hazard Evaluation of Deepwater Horizon Response Workers. Health Hazard Evaluation Report. HETA 2010-0115 and 2010-0129-3138. August 2011. https://www.cdc.gov/niosh/hhe/reports/pdfs/2010-0115-0129-3138.pdf.

King, G. M., C. B. Smith, B. Tolar, and J. T. Hollibaugh. 2013. Analysis of composition and structure of coastal to mesopelagic bacterioplankton communities in the northern Gulf of Mexico. Frontiers in Microbiology 3(438):1.

King, S. M., P. A. Leaf, A. C. Olson, P. Z. Ray, and M. A. Tarr. 2014a. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill. Chemosphere 95:415-422.

King, T. L., B. Robinson, M. Boufadel, and K. Lee. 2014b. Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea. Marine Pollution Bulletin 83(1):32-37. DOI: 10.1016/j.marpolbul.2014.04.042.

King, G. M., J. E. Kostka, T. C. Hazen, and P. A. Sobecky. 2015a. Microbial responses to the Deepwater Horizon oil spill: From coastal wetlands to the deep sea. Annual Review of Marine Science 7(1):377-401. DOI: 10.1146/annurev-marine-010814-015543.

King, T. L., B. Robinson, C. McIntyre, P. Toole, S. Ryan, F. Saleh, M. C. Boufadel, and K. Lee. 2015b. Fate of surface spills of cold lake blend diluted bitumen treated with dispersant and mineral fines in a wave tank. Environmental Engineering Science 32(3):250-261. DOI: 10.1089/ees.2014.0459.

King, T. L., B. Robinson, S. Ryan, Y. Lu, Q. Zhou, L. Ju, P. Sun, and K. Lee. 2015c. Fate of Chinese and Canadian oils treated with dispersants in a wave tank. In Proceedings of the 38th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Vancouver, British Columbia, Canada: Environment Canada.

King, T. L., B. Robinson, F. Cui, M. Boufadel, K. Lee, and J. A. C. Clyburne. 2017. An oil spill decision matrix in response to surface spills of various bitumen blends. Environmental Science-Processes & Impacts 19(7):928-938. DOI: 10.1039/c7em00118e.

Kinner, N. E., L. Belden, and P. Kinner. 2014. Unexpected sink for Deepwater Horizon oil may influence future spill response. Town Hall: Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). January 27, Mobile, AL. Eos 95(21):176.

Kipka, U., and D. M. Di Toro. 2009. Technical basis for polar and nonpolar narcotic chemicals and polycyclic aromatic hydrocarbon criteria. III. A polyparameter model for target lipid partitioning. Environmental Toxicology and Chemistry 28(7):1429-1438.

Kitaigorodskii, S. A., M. A. Donelan, J. L. Lumley, and E. A. Terray. 1983. Wave-turbulence interactions in the upper ocean. Part II. Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. Journal of Physical Oceanography 13(11):1988-1999. DOI: 10.1175/1520-0485(1983)013<1988:WTIITU>2.0.CO;2.

Klasing, S. A., and R. K. Brodberg. 2013. Protocol For Seafood Risk Assessment to Support Fisheries Re-Opening Decisions for Aquatic Oil Spills in California. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

Kleindienst, S., J. H. Paul, and S. B. Joye. 2015a. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nature Reviews Microbiology 13(6):388-396. DOI: 10.1038/nrmicro3452.

Kleindienst, S., M. Seidel, K. Ziervogel, S. Grim, K. Loftis, S. Harrison, S. Y. Malkin, M. J. Perkins, J. Field, M. L. So-gin, T. Dittmar, U. Passow, P. M. Medeiros, and S. B. Joye. 2015b. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of America 112(48):14900.

Knap, A., N. R. Turner, G. Bera, D. A. Renegar, T. Frank, J. Sericano, and B. M. Riegl. 2017. Short-term toxicity of 1-methylnaphthalene to Americamysis bahia and 5 deep-sea crustaceans. Environmental Toxicology and Chemistry 36(12):3415-3423.

Kover, S. C., F. L. Rosario-Ortiz, and K. G. Linden. 2014. Photochemical fate of solvent constituents of Corexit oil dispersants. Water Research 50:408-419. DOI: 10.1016/j.watres.2013.12.013.

Krajnak, K., H. Kan, S. Waugh, G. R. Miller, C. Johnson, J. R. Roberts, W. T. Goldsmith, M. Jackson, W. McKinney, D. Frazer, M. L. Kashon, and V. Castranova. 2011. Acute effects of COREXIT EC9500A on cardiovascular functions in rats. Journal of Toxicology and Environmental Health, Part A 74(21):1397-1404. DOI: 10.1080/15287394.2011.606795.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Krasnec, M. O., H. P. Forth, M. W. Carney, R. Takeshita, A. K. McFadden, I. Lipton, B. Wallace, K. Dean, C. R. Lay, D. Cacela, J. V. Holmes, J. Lipton, and J. M. Morris. 2016. General Laboratory Procedures and Practices: Deepwater Horizon Laboratory Toxicity Testing. DWH NRDA Toxicity Technical Working Group. Prepared for the National Oceanic and Atmospheric Administration. Boulder, CO: Abt Associates.

Krewitt, W. 2002. External costs of energy—Do the answers match the questions?: Looking back at 10 years of ExternE. Energy Policy 30(10):839-848.

Krylov, S. N., X. D. Huang, L. F. Zeiler, D. G. Dixon, and B. M. Greenberg. 1997. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a two-compartment system. Environmental Toxicology and Chemistry 16(11):2283-2295.

Kujawinski, E. B., M. C. Kido Soule, D. L. Valentine, A. K. Boysen, K. Longnecker, and M. C. Redmond. 2011. Fate of dispersants associated with the Deepwater Horizon oil spill. Environmental Science & Technology 45(4):1298-1306. DOI: 10.1021/es103838p.

Kwok, R. K., J. A. McGrath, S. R. Lowe, L. S. Engel, W. B. Jackson, M. D. Curry, J. Payne, S. Galea, and D. P. Sandler. 2017a. Mental health indicators associated with oil spill response and clean-up: Cross-sectional analysis of the GuLF STUDY cohort. The Lancet Public Health 2(12):e560-e567. DOI: 10.1016/S2468-2667(17)30194-9.

Kwok, R. K., L. S. Engel, A. K. Miller, A. Blair, M. D. Curry, W. B. Jackson, P. A. Stewart, M. R. Stenzel, L. S. Birnbaum, D. P. Sandler, and GuLF STUDY Research Team. 2017b. The GuLF STUDY: A prospective study of persons involved in the Deepwater Horizon oil spill response and clean-up. Environmental Health Perspectives 125(4):570-578. DOI: 10.1289/EHP715.

Laffon, B., E. Pásaro, and V. Valdiglesias. 2016. Effects of exposure to oil spills on human health: Updated review. Journal of Toxicology and Environmental Health—Part B: Critical Reviews 19(3-4):105-128. DOI: 10.1080/10937404.2016.1168730.

Lampi, M. A., J. Gurska, X. D. Huang, D. G. Dixon, and B. M. Greenberg. 2007. A predictive quantitative structure activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification. Environmental Toxicology and Chemistry 26(3):406-415.

Langmuir, I. 1938. Surface motion of water induced by wind. Science 87(2250):119.

Laso-Pérez, R., G. Wegener, K. Knittel, F. Widdel, K. J. Harding, V. Krukenberg, D. V. Meier, M. Richter, H. E. Tegetmeyer, D. Riedel, H.-H. Richnow, L. Adrian, T. Reemtsma, O. J. Lechtenfeld, and F. Musat. 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396. DOI: 10.1038/nature20152. https://www.nature.com/articles/nature20152#supplementary-information.

Law, R., J. Brant, M. Kirby, J. Lee, D. Morris, and J. Rees. 2014. Guidelines for the Environmental Monitoring and Impact Assessment Associated with Subsea Oil Releases and Dispersant Use in UK Waters. Science Series Technical Report. Lowestoft, UK: Centre for Environment, Fisheries and Aquaculture Science.

LDWF (Louisiana Department of Wildlife and Fisheries). 2015. LDWF Announces Reopening of Certain Recreational and Commercial Fishing Waters Effective Immediately. https://web.archive.org/web/20190801090052/http://www.wlf.louisiana.gov/news/39225.

Le Floch, S., J. Guyomarch, F.-X. Merlin, P. Stoffyn-Egli, J. Dixon, and K. Lee. 2002. The influence of salinity on oil–mineral aggregate formation. Spill Science & Technology Bulletin 8(1):65-71. DOI: 10.1016/S1353-2561(02)00124-X.

Le Floch, S., S. Van Ganse, R. Mauge, and A. Laurent. 2013. Influence of dispersant addition on the rise of oil droplets contribution to modeling. In Proceedings of the 36th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Ottawa, Ontario, Canada: Environment Canada.

Leahy, J. G., and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54(3):305-315.

Ledwell, J. R., R. He, Z. Xue, S. F. DiMarco, L. J. Spencer, and P. Chapman. 2016. Dispersion of a tracer in the deep Gulf of Mexico. Journal of Geophysical Research: Oceans 121(2):1110-1132. DOI: 10.1002/2015JC011405.

Lee, K. 2002. Oil–particle interactions in aquatic environments: Influence on the transport, fate, effect and remediation of oil spills. Spill Science & Technology Bulletin 8(1):3-8. DOI: 10.1016/S1353-2561(03)00006-9.

Lee, R. F. 2003. Photo-oxidation and photo-toxicity of crude and refined oils. Spill Science & Technology Bulletin 8(2):157-162.

Lee, K., T. Lunel, P. Wood, R. Swannell, and P. Stoffyn-Egli. 1997. Shoreline cleanup by acceleration of clay-oil flocculation processes. International Oil Spill Conference Proceedings 1997(1):235-240. DOI: 10.7901/2169-3358-1997-1-235.

Lee, K., P. Stoffyn-Egli, P. A. Wood, and T. Lunel. 1998. Formation and structure of oil-mineral fines aggregates in coastal environments. In Proceedings of the 21st Arctic and Marine Oil Spill Program Technical Seminar on Environmental Contamination and Response. Edmonton, Alberta, Canada: Environment Canada.

Lee, K., P. Stoffyn-Egli, G. H. Tremblay, E. H. Owens, G. A. Sergy, C. C. Guénette, and R. C. Prince. 2003. Oil–mineral aggregate formation on oiled beaches: Natural attenuation and sediment relocation. Spill Science & Technology Bulletin 8(3):285-296. DOI: 10.1016/S1353-2561(03)00042-2.

Lee, K., Z. Li, B. Robinson, P. E. Kepkay, X. Ma, S. E. Cobanli, T. King, M. Blouin, and B. Doyon. 2009. In Situ Remediation of Oil Spills in Ice-Packed Waters: Enhanced Dispersion and Biodegradation of Petroleum Hydrocarbons. Presented at the 10th International In Situ and On-Site Bioremediation Symposium, May 5-8, Baltimore, Maryland.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Lee, C. H., Y. A. Kang, K. J. Chang, C. H. Kim, J. I. Hur, J. Y. Kim, and J. K. Lee. 2010. Acute health effects of the Hebei oil spill on the residents of Taean, Korea. Journal of Preventive Medicine & Public Health 43(2):166-173. DOI: 10.3961/jpmph.2010.43.2.166.

Lee, K., Z. Li, B. Robinson, P. Kepkay, M. Blouin, and B. Doyon. 2011. Field trials of in-situ oil spill countermeasures in ice-infested waters. International Oil Spill Conference Proceedings 2011:16.

Lee, K., Y. Zheng, F. Merlin, Z. Li, H. Niu, and T. King. 2012. Combining Mineral Fines with Chemical Dispersants to Disperse Oil in Low Temperature and Low Mixing Environments, Including the Arctic. Herndon, VA: U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement.

Lee, K., T. Nedwed, R. C. Prince, and D. Palandro. 2013a. Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Marine Pollution Bulletin 73(1):314-318. DOI: 10.1016/j. marpolbul.2013.06.005.

Lee, K. W., W. J. Shim, U. H. Yim, and J. H. Kang. 2013b. Acute and chronic toxicity study of the Water Accommodated Fraction (WAF), Chemically Enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere 92(9):1161-1168. DOI: 10.1016/j.chemosphere.2013.01.080.

Lee, K., M. Boufadel, B. Chen, J. Foght, P. Hodson, S. Swanson, and A. Venosa. 2015. The Behaviour and Environmental Impacts of Crude Oil Released into Aqueous Environments. https://www.cepa.com/wp-content/uploads/2014/01/OIWReport.compressed.pdf.

Lehr, W. 2017. Developing a new emulsification algorithm for spill response models. Proceedings of the 40th AMOP Technical Seminar. Calgary, Canada.

Lehr, W. J., R. J. Fraga, and H. M. Cekirge. 1984. A new technique to estimate initial spill size using a modified Fay-type spreading formula. Marine Pollution Bulletin 15(9):326-329.

Leibovich, S. 1980. On wave-current interaction theories of Langmuir circulations. Journal of Fluid Mechanics 99(4):715-724. DOI: 10.1017/S0022112080000857.

Leifer, I., G. de Leeuw, and L. H. Cohen. 2000. Secondary bubble production from breaking waves: The bubble burst mechanism. Geophysical Research Letters 27(24):4077-4080.

Leschine, T. M., R. Pavia, A. H. Walker, A. Bostrom, and K. Starbird. 2015. What-if scenario modeling to support oil spill preparedness and response decision-making. Human and Ecological Risk Assessment: An International Journal 21(3):646-666. http://dx.doi.org/10.1080/10807039.2014.947868.

Leslie, H. A., A. J. P. Oosthoek, F. J. M. Busser, M. H. S. Kraak, and J. L. M. Hermens. 2002. Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environmental Toxicology and Chemistry 21(2):229-234. DOI: 10.1002/etc.5620210202.

Lester, R. R., L. C. Green, and I. Linkov. 2007. Site specific applications of probabilistic health risk assessment: Review of the literature since 2000. Risk Analysis: An International Journal 27(3):635-658.

Letinski, D., T. Parkerton, A. Redman, R. Manning, G. Bragin, E. Febbo, D. Palandro, and T. Nedwed. 2014. Use of passive samplers for improving oil toxicity and spill effects assessment. Marine Pollution Bulletin 86(1-2):274-282. DOI: 10.1016/j.marpolbul.2014.07.006.

Lewan, M. D., A. Warden, R. F. Dias, Z. K. Lowry, T. L. Hannah, P. G. Lillis, R. F. Kokaly, T. M. Hoefen, G. A. Swayze, C. T. Mills, S. H. Harris, and G. S. Plumlee. 2014. Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days. Organic Geochemistry 75:54-60.

Lewis, A., and D. Aurand. 1997. Putting Dispersants to Work: Overcoming Obstacles. API Publication No. 4652A. Washington, DC: American Petroleum Institute.

Lewis, A., and R. C. Prince. 2018. Integrating dispersants in oil spill response in Arctic and other icy environments. Environmental Science & Technology 52(11):6098-6112.

Lewis, A., P. S. Daling, T. Strom-Kristiansen, A. B. Nordvik, and R. J. Fiocco. 1995. Weathering and chemical dispersion of oil at sea. In Proceedings of the 1995 International Oil Spill Conference, American Petroleum Institute, Washington, DC. Pp. 157-164.

Li, Z., P. Kepkay, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2007. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Marine Pollution Bulletin 54(7):983-993.

Li, Z., K. Lee, T. King, M. Boufadel, and A. Venosa. 2008a. Oil droplet size distribution as a function of energy dissipation rate in an experimental wave tank. International Oil Spill Conference Proceedings 2008(1):621-626.

Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2008b. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Marine Pollution Bulletin 56(5):903-912. DOI: 10.1016/j.marpolbul.2008.01.031.

Li, Z., K. Lee, T. King, P. Kepkay, M. C. Boufadel, and A. D. Venosa. 2009a. Evaluating chemical dispersant efficacy in an experimental wave tank: 1, Dispersant effectiveness as a function of energy dissipation rate. Environmental Engineering Science 26(6):1139-1148. DOI: 10.1089/ees.2008.0377.

Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2009b. Evaluating chemical dispersant efficacy in an experimental wave tank: 2—Significant factors determining in situ oil droplet size distribution. Environmental Engineering Science 26(9):1407-1418. DOI: 10.1089/ees.2008.0408.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2009c. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions. Marine Pollution Bulletin 58(5):735-744. DOI: 10.1016/j.marpolbul.2008.12.014.

Li, Z., K. Lee, T. King, M. C. Boufadel, and A. D. Venosa. 2010. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank. Marine Pollution Bulletin 60(9):1550-1559. DOI: 10.1016/j.marpolbul.2010.04.012.

Li, P., L. Weng, H. Niu, B. Robinson, T. King, R. Conmy, K. Lee, and L. Liu. 2016. Reynolds number scaling to predict droplet size distribution in dispersed and undispersed subsurface oil releases. Marine Pollution Bulletin 113(1-2):332-342. DOI: 10.1016/j.marpolbul.2016.10.005.

Li, C., J. Miller, J. Wang, S. S. Koley, and J. Katz. 2017a. Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks. Journal of Geophysical Research: Oceans 122(10):7938-7957. DOI: 10.1002/2017JC013193.

Li, Z., M. L. Spaulding, and D. French-McCay. 2017b. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions. Marine Pollution Bulletin 119(1):145-152. DOI: 10.1016/j.marpolbul.2017.03.048.

Li, Z., M. Spaulding, D. French McCay, D. Crowley, and J. R. Payne. 2017c. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects. Marine Pollution Bulletin 114(1):247-257. DOI: 10.1016/j.marpolbul.2016.09.008.

Libre, J.-M., C. Collin-Hansen, G. Kjeilen-Eilertsen, T. W. Rogstad, C. Stephansen, O. W. Brude, A. Bjorgesaeter, and U. Brönner. 2018. ERA Acute-Implementation of a New Method for Environmental Risk Assessment of Acute Offshore Oil Spills. Presented at the Society of Petroleum Engineers International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, April 16, Abu Dhabi, United Arab Emerates.

Linton, T., and C. B. Koons. 1983. Oil dispersant field evaluation Ixtoc 1 blowout, Bay of Campeche, Mexico. Oil and Petrochemical Pollution 1:183-188.

Little, E. E., L. Cleveland, R. Calfee, and M. G. Barron. 2000. Assessment of the photoenhanced toxicity of a weathered oil to the tidewater silverside. Environmental Toxicology and Chemistry 19(4):926-932.

Liu, Z., J. Liu, Q. Zhu, and W Wu. 2012. The weathering of oil after the Deepwater Horizon oil spill: Insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environmental Research Letters 7(3):035302.

Liu, Y.-Z., A. M. Roy-Engel, M. C. Baddoo, E. K. Flemington, G. Wang, and H. Wang. 2016. The impact of oil spill to lung health—Insights from an RNA-seq study of human airway epithelial cells. Gene 578(1):38-51. DOI: 10.1016/j. gene.2015.12.016.

Liu, J., S. M. Techtmann, H. L. Woo, D. Ning, J. L. Fortney, and T. C. Hazen. 2017a. Rapid response of eastern Mediterranean deep sea microbial communities to oil. Scientific Reports 7(1):5762. DOI: 10.1038/s41598-017-05958-x.

Liu, Y.-Z., L. Zhang, A. M. Roy-Engel, S. Saito, J. A. Lasky, G. Wang, and H. Wang. 2017b. Carcinogenic effects of oil dispersants: A KEGG pathway-based RNA-seq study of human airway epithelial cells. Gene 602:16-23. DOI: 10.1016/j. gene.2016.11.028.

Lofthus, S., R. Netzer, A. S. Lewin, T. M. Heggeset, T. Haugen, and O. G. Brakstad. 2018. Biodegradation of n-alkanes on oil–seawater interfaces at different temperatures and microbial communities associated with the degradation. Biodegradation 29:141-157.

Loh, A., W. J. Shim, S. Y. Ha, and U. H. Yim. 2014. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment. Ocean Science Journal 49(4):329-341. DOI: 10.1007/s12601-014-0031-8.

Lohmann, R., J. K. MacFarlane, and P. M. Gschwend. 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York, harbor sediments. Environmental Science & Technology 39(1):141-148.

Long, E. R. 2006. Calculation and uses of mean sediment quality guideline quotients: A critical review. Environmental Science and Technology 40(6):1726-1736.

Long, E. R., D. D. Macdonald, S. L. Smith, and F. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1):81-97.

Long, E. R., L. J. Field, and D. D. Macdonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4):714-727.

Lu, Z. M., Y. Deng, J. D. Van Nostrand, Z. L. He, J. Voordeckers, A. F. Zhou, Y. J. Lee, O. U. Mason, E. A. Dubinsky, K. L. Chavarria, L. M. Tom, J. L. Fortney, R. Lamendella, J. K. Jansson, P. D’Haeseleer, T. C. Hazen, and J. Z. Zhou. 2012. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal 6(2):451-460. DOI: 10.1038/ismej.2011.91.

Lubchenco, J., M. K. McNutt, G. Dreyfus, S. A. Murawski, D. M. Kennedy, P. T. Anastas, S. Chu, and T. Hunter. 2012. Science in support of the Deepwater Horizon response. Proceedings of the National Academy of Sciences of the United States of America 109(50):20212.

Lunel, T. 1993. Dispersion: Oil droplet size measurements at sea. International Oil Spill Conference Proceedings 1993(1):794-795.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Lunel, T., R. Swannell, J. Rusin, P. Wood, N. Bailey, C. Halliwell, L. Davies, M. Sommerville, A. Dobie, D. Mitchell, M. McDonagh, and K. Lee. 1995. Monitoring the effectiveness of response operations during the Sea Empress incident: A key component of the successful counter-pollution response. Spill Science & Technology Bulletin 2(2):99-112. DOI: 10.1016/S1353-2561(96)00011-4.

Lutcavage, M., P. Lutz, G. Bossart, and D. Hudson. 1995. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Archives of Environmental Contamination and Toxicology 28(4):417-422.

Lutz, P., and M. Lutcavage. 1989. The effects of petroleum on sea turtles: Applicability to Kemp’s ridley. In Proceedings of the First International Symposium on Kemp’s Ridley Sea Turtle Biology, Conservation and Management. C. W. Caillouet, Jr., and A. M. Landry, Jr., eds. TAMU-SG89-105. Galveston, TX: Texas A&M University Sea Grant Program. Pp. 52-54.

Lyons, R. A., J. M. Temple, D. Evans, D. L. Fone, and S. R. Palmer. 1999. Acute health effects of the Sea Empress oil spill. Journal of Epidemiology and Community Health 53(5):306-310.

Lyu, L.-N., H. Ding, Z. Cui, and D. L. Valentine. 2018. The wax–liquid transition modulates hydrocarbon respiration rates in Alcanivorax borkumensis SK2. Environmental Science & Technology Letters 5(5):277-282.

Ma, X., A. Cogswell, Z. Li, and K. Lee. 2008. Particle size analysis of dispersed oil and oil mineral aggregates with an automated ultraviolet epi fluorescence microscopy system. Environmental Technology 29(7):739-748. DOI: 10.1080/09593330801987111.

Mabile, N. 2013. Considerations for the application of controlled in situ burning. Society of Petroleum Engineers, Oil and Gas Facilities 2(2):72-84.

MacDonald, I. R., O. Garcia Pineda, A. Beet, S. Daneshgar Asl, L. Feng, G. Graettinger, D. French McCay, J. Holmes, C. Hu, F. Huffer, I. Leifer, F. Muller Karger, A. Solow, M. Silva, and G. Swayze. 2015. Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research: Oceans 120:8364-8380. DOI: 10.1002/2015JC011062.

Macfadyen, A., G. Y. Watabayashi, C. H. Barker, and C. J. Beegle-Krause. 2013. Tactical modeling of surface oil transport during the Deepwater Horizon spill response. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Y. Liu, A. Macfadyen, Z.-G. Ji, and R. H. Weisberg, eds. Geophysical Monograph Series. Washington, DC: American Geophysical Union. 195:167-178. DOI: 10.1029/2011GM001128.

Mackay, D., and K. Hossain. 1982. An exploratory study of naturally and chemically dispersed oil.

Mackay, D., and W. Zagorski. 1982. Studies of Water-in-Oil Emulsions. Ottawa, Ontario, Canada: Environment Canada.

Mackay, D., I. A. Buistt, R. Mascarenhas, and S. Paterson. 1980. Oil Spill Processes and Models. Ottawa, Ontario, Canada: Environment Canada.

Macys, D., R. Carpenter, J. Risher, A. Vinegar, D. Dodd, and H. Wall. 1992. Results of a Workshop on Health Effects of Crude Oil Exposures Related to Operation Desert Storm. Bethesda, MD: Naval Medical Research Institute. 227 pp.

Mager, E. M., A. J. Esbaugh, J. D. Stieglitz, R. Hoenig, C. Bodinier, J. P. Incardona, N. L. Scholz, D. D. Benetti, and M. Grosell. 2014. Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). Environmental Science & Technology 48(12):7053-7061.

Major, D., Q. Zhang, G. Wang, and H. Wang. 2012. Oil-dispersant mixtures: Understanding chemical composition and its relation to human toxicity. Toxicological & Environmental Chemistry 94(9):1832-1845. DOI: 10.1080/02772248.2012.730202.

Major, D., R. S. Derbes, H. Wang, and A. Engel. 2016. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B. Gene Reports 3:22-30.

Maki, H., T. Sasaki, and S. Harayama. 2001. Photo-oxidation of biodegraded crude oil and toxicity of the photo-oxidized products. Chemosphere 44(5):1145-1151. https://doi.org/10.1016/S0045-6535(00)00292-7.

Mallakin, A., B. J. McConkey, G. Miao, B. McKibben, V. Snieckus, D. G. Dixon, and B. M. Greenberg. 1999. Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products. Ecotoxicology and Environmental Safety 43:204-212.

Malone, K., S. Pesch, M. Schluter, and D. Krause. 2018. Oil droplet size distributions in deep-sea blowouts: Influence of pressure and dissolved gases. Environmental Science & Technology 52(11):6326-6333. DOI: 10.1021/acs.est.8b00587.

Malone, K., Z. M. Aman, S. Pesch, M. Schlüter, and D. Krause. 2019. Jet formation at the spill site and resulting droplet size distributions. In Deep Oil Spills. S. Murawski et al., eds. London, UK: Springer Nature. Pp. 43-64.

Marietou, A., R. Chastain, F. Beulig, A. Scoma, T. C. Hazen, and D. H. Bartlett. 2018. The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology 9:808. DOI: 10.3389/fmicb.2018.00808.

Marusic, I., J. P. Monty, M. Hultmark, and A. J. Smits. 2013. On the logarithmic region in wall turbulence. Journal of Fluid Mechanics 716(R3):1-11.

Marzooghi, S. 2016. Phototoxic Target Lipid Model for Predicting the Toxicity of Polycyclic Aromatic Hydrocarbons and Petroleum to Aquatic Life. Ph.D. dissertation, University of Delaware.

Marzooghi, S., and D. M. Di Toro. 2017. A critical review of polycyclic aromatic hydrocarbon phototoxicity models. Environmental Toxicology and Chemistry 36(5):1138-1148.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Marzooghi, S., B. E. Finch, W. A. Stubblefield, O. Dmitrenko, S. L. Neal, and D. M. Di Toro. 2017. Phototoxic target lipid model of single polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry 36(4):926-937. DOI: 10.1002/etc.3601.

Marzooghi, S., B. E. Finch, W. A. Stubblefield, and D. M. Di Toro. 2018. Predicting phototoxicity of alkylated PAHs, mixtures of PAHs, and water accommodated fractions (WAF) of neat and weathered petroleum with the phototoxic target lipid model. Environmental Toxicology and Chemistry 37:2165-2174. DOI: 10.1002/etc.4173.

Mason, O. U., T. C. Hazen, S. Borglin, P. S. G. Chain, E. A. Dubinsky, J. L. Fortney, J. Han, H. Y. N. Holman, J. Hultman, R. Lamendella, R. Mackelprang, S. Malfatti, L. M. Tom, S. G. Tringe, T. Woyke, J. H. Zhou, E. M. Rubin, and J. K. Jansson. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. The ISME Journal 6(9):1715-1727. DOI: 10.1038/Ismej.2012.59.

Mason, O. U., N. M. Scott, A. Gonzalez, A. Robbins-Pianka, J. Bælum, J. Kimbrel, N. J. Bouskill, E. Prestat, S. Borglin, D. C. Joyner, J. L. Fortney, D. Jurelevicius, W. T. Stringfellow, L. Alvarez-Cohen, T. C. Hazen, R. Knight, J. A. Gilbert, and J. K. Jansson. 2014. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. The ISME Journal 8(7):1464-1475. DOI: 10.1038/ismej.2013.254.

Masutani, S. M., and E. E. Adams. 2000. Experimental Study of Multiphase Plumes and Application to Deep Ocean Oil Spills. Final report to the U.S. Department of the Interior, Minerals Management Service, contract No. 1435-01-98-CT-30946. Herndon, VA: U.S. Department of the Interior.

Mauer, M. P., K. R. Cummings, and R. Hoen. 2010. Long-term respiratory symptoms in World Trade Center responders. Occupational Medicine 60(2):145-151. DOI: 10.1093/occmed/kqp176.

Maxey, M. R., and J. J. Riley. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids 26(4):883-889. DOI: 10.1063/1.864230.

Mayer, P., T. F. Parkerton, R. G. Adams, J. G. Cargill, J. Gan, T. Gouin, P. M. Gschwend, S. B. Hawthorne, P. Helm, G. Witt, J. You, and B. I. Escher. 2014. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management 10(2):197-209. DOI: 10.1002/ieam.1508.

McConville, M. M., J. P. Roberts, M. Boulais, B. Woodall, J. D. Butler, A. D. Redman, T. F. Parkerton, W. R. Arnold, J. Guyomarch, and S. Le Floch. 2018. The sensitivity of a deep sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. Environmental Toxicology and Chemistry 37(8):2210-2221.

McDaniel, L. D., J. Basso, E. Pulster, and J. H. Paul. 2015. Sand patties provide evidence for the presence of Deepwater Horizon oil on the beaches of the West Florida Shelf. Marine Pollution Bulletin 97(1-2):67-77.

McFarlin, K. M., R. A. Perkins, W. W. Gardiner, J. D. Word, and J. Q. Word. 2011. Toxicity of physically and chemically dispersed oil to selected Arctic species. International Oil Spill Conference Proceedings 2011(1):abs149.

McFarlin, K. M., R. C. Prince, R. Perkins, and M. B. Leigh. 2014. Biodegradation of dispersed oil in Arctic seawater at –1°C. PLoS One 9(1):e84297. DOI: 10.1371/journal.pone.0084297.

McFarlin, K. M., M. J. Perkins, J. A. Field, and M. B. Leigh. 2018. Biodegradation of crude oil and Corexit 9500 in Arctic seawater. Frontiers in Microbiology 9:1788. DOI: 10.3389/fmicb.2018.01788.

McGenity, T. J., ed. 2018. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbe. Handbook of Hydrocarbon and Lipid Microbiology series. Cham, Switzerland: Springer. DOI: 10.1007/978-3-319-60053-6.

McGowan, C. J., R. K. Kwok, L. S. Engel, M. R. Stenzel, P. A. Stewart, and D. P. Sandler. 2017. Respiratory, dermal, and eye irritation symptoms associated with Corexit™ EC9527A/EC9500A following the Deepwater Horizon oil spill: Findings from the GuLF STUDY. Environmental Health Perspectives 125(9):097015. DOI: 10.1289/EHP1677.

McGrath, J. A., and D. M. Di Toro. 2009. Validation of the target lipid model for toxicity assessment of residual petroleum constituents: Monocyclic and polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry 28(6):1130-1148.

McGrath, J. A., T. F. Parkerton, F. L. Hellweger, and D. M. Di Toro. 2005. Validation of the narcosis target lipid model for petroleum products: Gasoline as a case study. Environmental Toxicology and Chemistry 24(9):2382-2394.

McGrath, J. A., C. J. Fanelli, D. M. Toro, T. F. Parkerton, A. D. Redman, M. L. Paumen, M. Comber, C. V. Eadsforth, and K. Haan. 2018. Re-evaluation of target lipid model derived HC5 predictions for hydrocarbons. Environmental Toxicology and Chemistry 37(6):1579-1593.

McKinney, K. 2017. The Effect of Dispersants on Mechanical Containment and Recovery. Presented at the 2017 Clean Gulf Conference and Exhibition, December 5-7, Houston, TX.

McNutt, M. K., S. Chu, J. Lubchenco, T. Hunter, G. Dreyfus, S. A. Murawski, and D. M. Kennedy. 2012. Applications of science and engineering to quantify and control Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20222.

Mearns, A., G. Watabayashi, and J. Lankford. 2001. Dispersing oil near shore in the California current region. California Cooperative Oceanic Fisheries Investigations Report 42:97-109.

Mearns, A., G. Watabayashi, and C. O’Connor. 2003. Using a new dispersed oil model to support ecological risk assessment. International Oil Spill Conference Proceedings 2003(1):523-530.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Mekenyan, O. G., G. T. Ankley, G. D. Veith, and D. J. Call. 1994. QSARs for photoinduced toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere 28(3):567-582.

Meo, S. A., A. M. Al-Drees, I. M. U. Meo, M. M. Al-Saadi, and M. A. Azeem. 2008. Lung function in subjects exposed to crude oil spill into sea water. Marine Pollution Bulletin 56(1):88-94. DOI: 10.1016/j.marpolbul.2007.09.039.

Meo, S. A., A. M. Al-Drees, S. Rasheed, I. M. Meo, M. M. Khan, M. M. Al-Saadi, and J. R. Alkandari. 2009a. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. International Journal of Occupational Medicine and Environmental Health 22(1):35-41. DOI: 10.2478/v10001-009-0007-6.

Meo, S., A. Al-Drees, S. Rasheed, I. Meo, M. Al-Saadi, H. Ghani, and J. Alkandari. 2009b. Health complaints among subjects involved in oil cleanup operations during oil spillage from a Greek tanker “Tasman Spirit.” International Journal of Occupational Medicine and Environmental Health 22(2):143-148. DOI: 10.2478/v10001-009-0011-x.

Michel, J., and N. Rutherford. 2014. Impacts, recovery rates, and treatment options for spilled oil in marshes. Marine Pollution Bulletin 82(1-2):19-25.

Middlebrook, A. M., D. M. Murphy, R. Ahmadov, E. Atlas, R. Bahreini, D. R. Blake, J. Brioude, J. A. de Gouw, F. C. Fehsenfeld, G. J. Frost, J. S. Holloway, D. A. Lack, J. M. Langridge, R. A. Lueb, S. A. McKeen, J. F. Meagher, S. Meinardi, J. A. Neuman, J. B. Nowak, D. D. Parrish, J. Peischl, A. E. Perring, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. P. Schwartz, J. R. Spackman, C. Warneke, and A. R. Ravishankara. 2012. Air quality implications of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20280-20285. DOI: 10.1073/pnas.1110052108.

Milgram, J. H. 1983. Mean flow in round bubble plumes. Journal of Fluid Mechanics 133:345-376.

Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press.

Minerals Management Service. 1989. Southwest Florida OCS Drilling Impact Assessment Task Force Report. Prepared for the Governor of Florida and the Secretary of the Interior. Minerals Management Service, U.S. Department of the Interior, Washington, DC. 94 pp.

Mitchelmore, C., C. Bishop, and T. Collier. 2017. Toxicological estimation of mortality of oceanic sea turtles oiled during the Deepwater Horizon oil spill. Endangered Species Research 33:39-50.

Mitchelmore, C. L., R. Griffitt, G. M. Coelho, and D. L. Wetzel. 2020. Modernizing protocols for aquatic toxicity testing of oil and dispersant. In 2020 Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War. S. A. Murawski, D. Hollander, C. Ainsworth, S. Gilbert, C. B. Paris, M. Schlüter, and D. Wetzel, eds. New York: Springer.

Montagna, P. A., J. G. Baguley, C. Cooksey, I. Hartwell, L. J. Hyde, J. L. Hyland, R. D. Kalke, L. M. Kracker, M. Reuscher, and A. C. E. Rhodes. 2013. Deep-sea benthic footprint of the Deepwater Horizon blowout. PLoS One 8(8):e70540. DOI: 10.1371/journal.pone.0070540.

Morgan, M. G. 2014. Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences of the United States of America 111(20):7176-7184.

Morgan, D. D., and D. Warshawsky. 1977. The photodynamic immobilization of Artemia salina nauplii by polycyclic aromatic hydrocarbons and its relationship to carcinogenic activity. Photochemistry and Photobiology 25(1):39-46.

Morgan, D. D., D. Warshawsky, and T. Atkinson. 1977. The relationship between carcinogenic activities of polycyclic aromatic hydrocarbons and their singlet, triplet, and singlet-triplet splitting energies of phosphorescence lifetimes. Photochemistry and Photobiology 25(1):31-38.

Morita, A., Y. Kusaka, Y. Deguchi, A. Moriuchi, Y. Nakanaga, M. Iki, S. Miyazaki, and K. Kawahara. 1999. Acute health problems among the people engaged in the cleanup of the Nakhodka oil spill. Environmental Research 81(3):185-194. DOI: 10.1006/enrs.1999.3979.

Morris, J. M., M. Gielazyn, M. O. Krasnec, R. Takeshita, H. P. Forth, J. S. Labenia, T. L. Linbo, B. L. French, J. A. Gill, D. H. Baldwin, and N. L. Scholz. 2018. Crude oil cardiotoxicity to red drum embryos is independent of oil dispersion energy. Chemosphere 213:205-214.

Mukherjee, B. 2008. Effect of mixing energy, mixing time and settling time on dispersion effectiveness in two bench-scale testing systems. International Oil Spill Conference Proceedings DOI: 10.7901/2169-3358-2008-1-651.

Mukherjee, B., J. Turner, and B. A. Wrenn. 2011. Effect of oil composition on chemical dispersion of crude oil. Environmental Engineering Science 28(7):497-506.

Murphy, D. W., X. Xue, K. Sampath, and J. Katz. 2016a. Crude oil jets in crossflow: Effects of dispersant concentration on plume behavior. Journal of Geophysical Research: Oceans 121(6):4264-4281.

Murphy, D., B. Gemmell, L. Vaccari, C. Li, H. Bacosa, M. Evans, C. Gemmell, T. Harvey, M. Jalali, and T. H. Niepa. 2016b. An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon. Maring Pollution Bulletin 113(1-2):371-379. DOI: 10.1016/j.marpolbul.2016.10.028.

Murray, J. A., L. C. Sander, S. A. Wise, and C. M. Reddy. 2016. Gulf of Mexico research initiative 2014/2015 hydrocarbon intercalibration experiment: Description and results for SRM 2779 Gulf of Mexico crude oil and candidate SRM 2777 weathered Gulf of Mexico crude oil. DOI: 10.6028/NIST.IR.8123.

Nagamine, S. I. 2014. The Effects of Chemical Dispersants on Buoyant Oil Droplets. Thesis. Master of Science, Department of Mechanical Engineering. Honolulu, HI: University of Hawaii.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Spills of Diluted Bitumen from Pipelines: A Comparative Study of Environmental Fate, Effects, and Response. Chapter 5: Comparing Properties Affecting Transport, Fate, Effects, and Response. Washington, DC: The National Academies Press.

National Commission (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling). 2011. Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling. Washington, DC: National Commission.

Nedwed, T. 2017. Overview of the American Petroleum Institute (API) joint industry task force subsea dispersant injection project. International Oil Spill Conference Proceedings 2017(1):678-703.

Nedwed, T., J. L. M. Resby, and J. Guyomarch. 2006. Dispersant effectiveness after extended low-energy soak times. Proceedings from Interspill.

Nedwed, T., G. P. Canevari, R. Belore, J. Clark, T. Coolbaugh, and A. Tidwell. 2011. New dispersant gel effective on cold, viscous oils. International Oil Spill Conference Proceedings 2011(1):abs109.

Nel, A., T. Xia, and N. Li. 2006. Toxic potential of materials at the nanolevel. Science 311(5761):622.

Nelson, R. K., K. M. Gosselin, D. J. Hollander, S. A. Murawski, A. Gracia, C. M. Reddy, and J. R. Radović. 2019. Exploring the complexity of two iconic crude oil spills in the Gulf of Mexico (Ixtoc I and Deepwater Horizon) using comprehensive two-dimensional Gas Chromatography (GC×GC). Energy & Fuels 33(5):3925-3933.

Newsted, J. L., and J. P. Giesy. 1987. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea). Environmental Toxicology and Chemistry 6(6):445-461.

NFR (Norwegian Research Council). 2012. Long Term Environmental Impact of Discharges from the Norwegian Petroleum Industry. Review of a 10-year research program. Oslo, Norway: Norwegian Research Council.

Nicol, J.-P., W. R. Wise, F. J. Molz, and L. D. Benefield. 1994. Modeling biodegradation of residual petroleum in a saturated porous column. Water Resources Research 30(12):3313-3325. DOI: 10.1029/94WR01879.

NIEHS (National Institute of Environmental Health Sciences). 2012. Improving Safety and Health Training for Disaster Cleanup Workers. Lessons Learned from the 2010 Deepwater Horizon Oil Spill. A Report from the NIEHS Worker Education and Training Program (WETP). https://www.niehs.nih.gov/news/events/pastmtg/hazmat/assets/2011/wtp_workshop_report_spring_2011_training_disaster_cleanup_workers_508.pdf.

NIEHS. 2018. NIH Disaster Research Response (DR2). https://dr2.nlm.nih.gov.

Nissanka, I. D., and P. D. Yapa. 2016. Calculation of oil droplet size distribution in an underwater oil well blowout. Journal of Hydraulic Research 54(3):307-320.

Niu, H., Z. Li, K. Lee, P. Kepkay, and J. V. Mullin. 2011. Modelling the transport of Oil–Mineral-Aggregates (OMAs) in the marine environment and assessment of their potential risks. Environmental Modeling & Assessment 16(1):61-75. DOI: 10.1007/s10666-010-9228-0.

NMFS (National Marine Fisheries Service). 2010. Environmental Assessment for Emergency Action to Close Portions of Federal Waters in the Southeastern United States to Prohibit Fishing in Response to the Deepwater Horizon Oil Spill. https://repository.library.noaa.gov/view/noaa/52.

NOAA (National Oceanic and Atmospheric Administration). 2007. Dispersant Application Observer Job Aid. Office of Response and Restoration. https://response.restoration.noaa.gov/sites/default/files/dispersant-application-observer-job-aid.pdf (last updated August 2007).

NOAA. 2011. Summary of the Royal Red Shrimp Data Grids C11, 14, 15, 18 and 23. https://web.archive.org/web/20170513151112/http://sero.nmfs.noaa.gov/deepwater_horizon/previous_reopening/documents/pdfs/feb_2/summary_of_the_royal_red_shrimp_data.pdf.

NOAA. 2012. Review of Subsurface Dispersed Oil and Oxygen Levels Associated with the Deepwater Horizon MC252 Spill of National Significance. NOAA Technical Report NOS OR&R 27, p. 95. Joint Analysis Group, Deepwater Horizon Oil Spill.

NOAA ERD (Emergency Response Division). 2015. Chemical Aquatic Fate and Effects (CAFE) Database. Version 1.1 [Computer Software]. Seattle, WA: ERD, Office of Response and Restoration, NOAA.

NOAA/FDA (U.S. Food and Drug Administration). 2010. Protocol for Interpretation and Use of Sensory Testing and Analytical Chemistry Results for Re-Opening Oil-Impacted Areas Closed to Seafood Harvesting. https://www.fda.gov/Food/ucm217601.htm.

Noh, S. R., H.-K. Cheong, M. Ha, S.-Y. Eom, H. Kim, Y.-H. Choi, and D. Paek. 2015. Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill. Science of the Total Environment 515-516:207-214. DOI: 10.1016/j.scitotenv.2015.02.039.

Nordborg, F. M., F. Flores, D. L. Brinkman, S. Agustí, and A. P. Negri. 2018. Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Scientific Reports 8(1):8635.

Nordtug, T., A. J. Olsen, D. Altin, S. Meier, I. Overrein, B. H. Hansen, and Ø. Johansen. 2011. Method for generating parameterized ecotoxicity data of dispersed oil for use in environmental modelling. Marine Pollution Bulletin 62(10):2106-2113.

North, E. W., E. E. Adams, A. E. Thessen, Z. Schlag, R. He, S. A. Socolofsky, S. M. Masutani, and S. D. Peckham. 2015. The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon spill: A model sensitivity study. Environmental Research Letters 10(2):024016. DOI: 10.1088/1748-9326/10/2/024016.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

NPC (National Petroleum Council). 2015. Arctic Potential: Realizing the Promise of U.S. Arctic Oil and Gas Resources. Washington, DC: National Petroleum Council.

NRC (National Research Council). 1983. Risk Assessment in the Federal Government: Managing the Process. Washington, DC: National Academy Press.

NRC. 1985. Oil in the Sea: Inputs, Fates, and Effects. Washington, DC: National Academy Press.

NRC. 1989. Using Oil Spill Dispersants on the Sea. Washington, DC: National Academy Press.

NRC. 1994. Science and Judgment in Risk Assessment. Washington, DC: National Academy Press.

NRC. 2003. Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: The National Academies Press.

NRC. 2005. Oil Spill Dispersants: Efficacy and Effects. Washington, DC: The National Academies Press.

NRC. 2009. Science and Decisions: Advancing Risk Assessment. Washington, DC: The National Academies Press.

NRC. 2013. An Ecosystem Services Approach to Assessing the Impacts of the Deepwater Horizon Oil Spill in the Gulf of Mexico. Washington, DC: The National Academies Press.

NRC. 2014. Responding to Oil Spills in the U.S. Arctic Marine Environment. Washington, DC: The National Academies Press.

NRC. 2017. Effective Monitoring to Evaluate Ecological Restoration in the Gulf of Mexico. Washington, DC: The National Academies Press.

NRT (National Response Team). 2013. Environmental Monitoring for Atypical Dispersant Operations. https://www.nrt.org/sites/2/files/NRT_Atypical_Dispersant_Guidance_Final_5-30-2013.pdf.

O’Connor, B. S., F. E. Muller-Karger, R. W. Nero, C. Hu, and E. B. Peebles. 2016. The role of Mississippi River discharge in offshore phytoplankton blooming in the northeastern Gulf of Mexico during August 2010. Remote Sensing of Environment 173:133-144. DOI: 10.1016/j.rse.2015.11.004.

OECD (Organisation for Economic Co-operation and Development). 2002. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures, OECD Series on Testing and Assessment, No. 23. OECD Publishing.

O’Hara, P. D., and L. A. Morandin. 2010. Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds. Marine Pollution Bulletin 60(5):672-678.

Okubo, A. 1971. Oceanic diffusion diagrams. Journal of Deep-Sea Research 8:789-802.

Okubo, A. 1974. Some speculation on oceanic diffusion diagrams. In G. Kullenberg and J. Talbot, J.,eds. Physical Processes Responsible for Dispersal of Pollutants in the Sea. Rapports et Procès-Verbaux des Réunions du Conseil Permanent International pour l’Exploration de la Mer. 167:77–85.

O’Laughlin, C. M., B. A. Law, V. S. Zions, T. L. King, B. Robinson, and Y. Wu. 2017a. Settling of dilbit-derived Oil-Mineral Aggregates (OMAs) & transport parameters for oil spill modelling. Marine Pollution Bulletin 124(1):292-302. DOI: 10.1016/j.marpolbul.2017.07.042.

O’Laughlin, C. M., B. A. Law, V. S. Zions, T. L. King, B. Robinson, and Y. Wu. 2017b. The dynamics of diluted bitumen derived oil-mineral aggregates, Part II. Canadian Technical Report of Fisheries and Aquatic Sciences 3209:1-49.

Oldenburg, C. M., B. M. Freifeld, K. Pruess, L. Pan, S. Finsterle, and G. J. Moridis. 2012. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas. Proceedings of the National Academy of Sciences of the United States of America 109(50):20254-20259. DOI: 10.1073/pnas.1105165108.

Olsen, G. H., M. G. Smit, J. Carroll, I. Jæger, T. Smith, and L. Camus. 2011. Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Marine Environmental Research 72(4):179-187.

Olsen, G. H., N. Coquille, S. Le Floch, P. Geraudie, M. Dussauze, P. Lemaire, and L. Camus. 2016. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil. Environmental Science and Pollution Research 23(7):6497-6505. DOI: 10.1007/s11356-015-5869-5.

Omotoso, O. E., V. A. Munoz, and R. J. Mikula. 2002. Mechanisms of crude oil–mineral interactions. Spill Science & Technology Bulletin 8(1):45-54. DOI: 10.1016/S1353-2561(02)00116-0.

Oris, J. T., and J. P. Giesy, Jr. 1985. The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology 6(2):133-146.

OSAT (Operational Science Advisory Team). 2010. Summary Report for Sub-Sea and Sub-Surface Oil and Dispersant Detection: Sampling and Monitoring. http://www.restorethegulf.gov/sites/default/files/documents/pdf/OSAT_Report_FINAL_17DEC.pdf.

OSHA (Occupational Safety and Health Administration). 2018. Occupational Safety and Health Administration (OSHA) Activities During the Deepwater Horizon Oil Spill. https://web.archive.org/web/20170428151739/https://www.osha.gov/oilspills/index_sampling.html.

Overmans, S., M. Nordborg, R. Díaz-Rúa, D. L. Brinkman, A. P. Negri, and S. Agustí. 2018. Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae. Aquatic Toxicology 198:165-174.

Owens, E. H., and K. Lee. 2003. Interaction of oil and mineral fines on shorelines: Review and assessment. Marine Pollution Bulletin 47(9):397-405. DOI: 10.1016/S0025-326X(03)00209-1.

Owens, E. H., and G. A. Sergy. 1997. Application of recent technical advances to the decision process for shoreline treatment. International Oil Spill Conference Proceedings 1997(1):289-295. DOI: 10.7901/2169-3358-1997-1-289.

Palinkas, L. A., J. S. Petterson, J. Russell, and M. A. Downs. 1993a. Community patterns of psychiatric disorders after the Exxon Valdez oil spill. The American Journal of Psychiatry 150(10):1517-1523. DOI: 10.1176/ajp.150.10.1517.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Palinkas, L. A., M. A. Downs, J. S. Petterson, and J. Russell. 1993b. Social, Cultural, and Psychological Impacts of the “Exxon Valdez” Oil Spill. Human Organization 52(1):1-13.

Panetta, P. D., L. G. Bland, G. Cartwright, and C. T. Friedrichs. 2012. Acoustic Scattering to Measure Dispersed Oil Droplet Size and Sediment Particle Size. Presented at Institute of Electrical and Electronics Engineers 2012 Oceans Conference, October 14-19, Hampton Roads, VA.

Panetta, P. D., D. McElhone, L. Carr, K. Winfield, G. G. Cartwright, and C. T. Friedrichs. 2013. Acoustic Assessment of Subsea Chemical Dispersant Efficacy. Washington, DC: U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement.

Paquin, P. R., J. McGrath, C. J. Fanelli, and D. M. Di Toro. 2018. The aquatic hazard of hydrocarbon liquids and gases and the modulating role of pressure on dissolved gas and oil toxicity. Marine Pollution Bulletin 133(August):930-942. https://doi.org/10.1016/j.marpolbul.2018.04.051.

Paris, C. B., M. L. Hénaff, Z. M. Aman, A. Subramaniam, J. Helgers, D. P. Wang, V. H. Kourafalou, and A. Srinivasan. 2012. Evolution of the Macondo well blowout: Simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environmental Science & Technology 46(24):13293-13302. DOI: 10.1021/es303197h.

Parkerton, T. F., M. A. Stone, and D. J. Letinski. 2000. Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicology Letters 112:273-282. DOI: 10.1016/s0378-4274(99)00237-4.

Passow, U. 2016. Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Research Part II: Topical Studies in Oceanography 129:232-240. DOI: 10.1016/j.dsr2.2014.10.001.

Passow, U., and K. Ziervogel. 2016. Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29(3):118-125.

Passow, U., K. Ziervogel, V. Asper, and A. Diercks. 2012. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Research Letters 7(3):035301.

Passow, U., J. Sweet, and A. Quigg. 2017. How the dispersant Corexit impacts the formation of sinking marine oil snow. Marine Pollution Bulletin 125(1-2):139-145. DOI: 10.1016/j.marpolbul.2017.08.015.

Payne, J. R., and G. D. McNabb, Jr. 1984. Weathering of petroleum in the marine environment. Marine Technology Society Journal 18(3):24-42.

Payne, J. R., and C. R. Phillips. 1985. Photochemistry of petroleum in water. Environmental Science & Technology 19(7):569-579.

Payne, J., B. Kirstein, J. Clayton, C. Clary, R. Redding, D. McNabb, and G. Farmer. 1987. Integration of Suspended Particulate Matter and Oil Transportation Study. Final report to the Minerals Management Service. Anchorage, AK: Minerals Management Service.

Payne, J. R., J. John R. Clayton, J. G. Daniel McNabb, Jr., B. E. Kirstein, C. L. Clary, R. T. Redding, J. S. Evans, E. Reimnitz, and E. W. Kempema. 1989. Oil-Ice Sediment Interactions During Freeze-Up and Break-Up: Final Report. San Diego, CA: Applied Environmental Sciences Department, Science Applications International Corporation.

Payne, J. R., J. R. Clayton, and B. E. Kirstein. 2003. Oil/Suspended Particulate Material Interactions and Sedimentation. Spill Science & Technology Bulletin 8(2):201-221. DOI: 10.1016/S1353-2561(03)00048-3.

Pegau, W. S., J. Garron, L. Zabilansky, C. Bassett, J. Bello, J. Bradford, R. Carns, Z. Courville, H. Eicken, B. C. Elder, P. Eriksen, A. C. Lavery, B. Light, T. Maksym, H.-P. Marshall, M. Oggier, D. Perovich, P. Pocwiardowski, H. Singh, D. Tang, C. Wiggins, and J. Wilkinson. 2017. Detection of oil in, with, and under ice. International Oil Spill Conference Proceedings 2017(1):1857-1876.

Pepper, I., C. Gerba, and T. Gentry. 2015. Environmental Microbiology. Third Edition. I. L. Pepper, C. P. Gerba, and T. J. Gentry, eds. San Diego, CA: Academic Press.

Pérez-Cadahía, B., B. Laffon, M. Porta, A. Lafuente, T. Cabaleiro, T. López, A. Caride, J. Pumarega, A. Romero, E. Pásaro, and J. Méndez. 2008a. Relationship between blood concentrations of heavy metals and cytogenetic and endocrine parameters among subjects involved in cleaning coastal areas affected by the “Prestige” tanker oil spill. Chemosphere 71(3):447-455. DOI: 10.1016/j.chemosphere.2007.10.053.

Pérez-Cadahía, B., B. Laffon, V. Valdiglesias, E. Pásaro, and J. Méndez. 2008b. Cytogenetic effects induced by Prestige oil on human populations: The role of polymorphisms in genes involved in metabolism and DNA repair. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 653(1):117-123. DOI: 10.1016/j.mrgentox.2008.04.002.

Perkins, R. A., S. Rhoton, and C. Behr-Andres. 2005. Comparative marine toxicity testing: A cold-water species and standard warm-water test species exposed to crude oil and dispersant. Cold Regions Science and Technology 42(3):226-236. DOI: 10.1016/j.coldregions.2005.02.001.

Perkins, M. J., S. B. Joye, and J. A. Field. 2017. Selective quantification of DOSS in marine sediment and sediment-trap solids by LC-QTOF-MS. Analytical and Bioanalytical Chemistry 409:971-978.

Pesch, S., P. Jaeger, A. Jaggi, K. Malone, M. Hoffman, D. Krause, T. B. P. Oldenburgm, and M. Schlüter. 2018. Rise velocity of live-oil droplets in deep-sea oil spills. Environmental Engineering Science 35(4):289-299. DOI: 10.1089/ees.2017.0319.

Peters, K. K., C. C. Walters, and J. M. Moldowan. 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History. Volume 2, 2nd Edition. Cambridge, UK: Cambridge University Press.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Pew Charitable Trusts. 2013. Arctic standards: Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean. https://www.pewtrusts.org/-/media/assets/2013/09/23/arcticstandardsfinal.pdf.

Pew Environment Group. 2010. Oil Spill Prevention and Response in the U.S. Arctic Ocean Unexamined Risks, Unacceptable Consequences. https://www.pewtrusts.org/-/media/legacy/uploadedfiles/peg/publications/report/oil20spill20preventionpdf.pdf.

Piacentino, J., S. Silver, B. Bernard, D. G. DeBord, R. Funk, and J. Decker. 2014. Study methodology prevents interpretation of findings in workers involved in Gulf oil spill cleanup activities. The American Journal of Medicine 127(9):e25-e26. DOI: 10.1016/j.amjmed.2013.11.028.

Picou, S., D. Gill, C. L. Dyer, and E. W. Curry. 1992. Disruption and stress in an Alaskan fishing community: Initial and continuing impacts of the Exxon Valdez oil spill. Industrial Crisis Quarterly 6(3):235-257.

Place, B., B. Anderson, A. Mekebri, E. T. Furlong, J. L. Gray, R. Tjeerdema, and J. Field. 2010. A role for analytical chemistry in advancing our understanding of the occurrence, fate, and effects of Corexit oil dispersants. Environmental Science & Technology 44:e6016-e6018.

Place, B. J., M. J. Perkins, E. Sinclair, A. L. Barsamian, P. R. Blakemore, and J. A. Field. 2016. Trace analysis of surfactants in Corexit oil dispersant formulations and seawater. Deep Sea Research Part II: Topical Studies in Oceanography 129:273-281. DOI: 10.1016/j.dsr2.2014.01.015.

Popovech, M. 2017. Analysis of hazards of dispersant constituents and review of toxicological studies. International Oil Spill Conference Proceedings 2017(1):311-330.

Potter, S., I. Buist, K. Trudel, D. Dickens, and E. Owens. 2012. Spill Response in the Arctic Offshore. Prepared for the American Petroleum Institute and the Joint Industry Programme on Oil Spill Recovery in Ice. http://www.dfdickins.com/pdf/Spill-Response-in-the-Arctic-Offshore.pdf.

Prince, R. C., and J. D. Butler. 2014. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environmental Science and Pollution Research 21(16):9506-9510. DOI: 10.1007/s11356-013-2053-7.

Prince, R. C., R. M. Garrett, R. E. Bare, M. J. Grossman, T. Townsend, J. M. Suflita, K. Lee, E. H. Owens, G. A. Sergy, J. F. Braddock, J. E. Lindstrom, and R. R. Lessard. 2003. The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Science & Technology Bulletin 8(2):145-156.

Prince, R. C., K. M. McFarlin, J. D. Butler, E. J. Febbo, F. C. Y. Wang, and T. J. Nedwed. 2013. The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521-526. DOI: 10.1016/j.chemosphere.2012.08.020.

Prince, R. C., T. S. Coolbaugh, and T. F. Parkerton. 2016. Oil dispersants do facilitate biodegradation of spilled oil. Proceedings of the National Academy of Sciences of the United States of America 113(11):E1421. DOI: 10.1073/pnas.1525333113.

Rabl, A., and J. V. Spadaro. 1999. Damages and costs of air pollution: An analysis of uncertainties. Environment International 25(1):29-46.

Radović, J. R., C. Aeppli, R. K. Nelson, N. Jimenez, C. M. Reddy, J. M. Bayona, and J. Albaigés. 2014. Assessment of photochemical processes in marine oil spill fingerprinting. Marine Pollution Bulletin 79(1-2):268-277.

Rand, G. M., and S. R. Petrocelli. 1985. Fundamentals of Aquatic Toxicology: Methods and Applications. Washington, DC: Hemisphere Publishing Corporation.

Rangwala, A. S., K. S. Arsava, G. Mahnken, and S. Xiaochuan. 2015. A Novel Experimental Approach to Enhance Burning of Oil-Water Emulsions by Immersed Objects. BSEE Final Report OSRR-1049. https://www.bsee.gov/research-record/osrr-1049-novel-experimental-approach-enhance-burning-oil-water-emulsions-immersed.

Reddy, C. M., J. S. Arey, J. S. Seewald, S. P. Sylva, K. L. Lemkau, R. K. Nelson, C. A. Carmichael, C. P. McIntyre, J. Fenwick, G. T. Ventura, B. A. Van Mooy, and R. Camilli. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20229-20234. DOI: 10.1073/pnas.1101242108.

Reddy, C. M., S. A. Wise, L. C. Sander, and J. A. Murray. 2015. Summary of results from the 2014/2015 Hydrocarbon Intercalibration Experiment (HIE). https://gulfresearchinitiative.org/hydrocarbon-intercalibration-experiment.

Redman, A. R. 2018. Application of Modeling and Analytical Methods for Characterizing Aquatic Toxicity and Toxicokinetics of Petroleum Substances. Ph.D thesis. University of Delaware. http://udspace.udel.edu/bitstream/handle/19716/23916/Redman_udel_0060D_13382.pdf?sequence=1&isAllowed=y.

Redman, A. D., and T. F. Parkerton. 2015. Guidance for improving comparability and relevance of oil toxicity tests. Marine Pollution Bulletin 98(1-2):156-170. DOI: 10.1016/j.marpolbul.2015.06.053.

Redman, A. D., J. A. McGrath, W. A. Stubblefield, A. W. Maki, and D. M. Di Toro. 2012a. Quantifying the concentration of crude oil microdroplets in oil–water preparations. Environmental Toxicology and Chemistry 31(8):1814-1822.

Redman, A. D., T. F. Parkerton, J. A. McGrath, and D. M. Di Toro. 2012b. PETROTOX: An aquatic toxicity model for petroleum substances. Environmental Toxicology and Chemistry 31(11):2498-2506. DOI: 10.1002/etc.1982.

Redman, A. D., T. F. Parkerton, D. J. Letinski, R. G. Manning, J. E. Adams, and P. V. Hodson. 2014. Evaluating toxicity of heavy fuel oil fractions using complementary modeling and biomimetic extraction methods. Environmental Toxicology and Chemistry 33(9):2094-2104.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Redman, A. D., J. D. Butler, D. J. Letinski, and T. F. Parkerton. 2017. Investigating the role of dissolved and droplet oil in aquatic toxicity using dispersed and passive dosing systems. Environmental Toxicology and Chemistry 36(4):1020-1028. DOI: 10.1002/etc.3624.

Redman, A. D., J. D. Butler, D. J. Letinski, D. M. Di Toro, M. Leon Paumen, and T. F. Parkerton. 2018. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. Chemosphere 199:585-594. DOI: 10.1016/j.chemosphere.2018.02.024.

Redmond, M. C., and D. L. Valentine. 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20292-20297. DOI: 10.1073/pnas.1108756108.

Reed, M., and B. Hetland. 2002. DREAM: A Dose-Related Exposure Assessment Model Technical Description of Physical-Chemical Fates Components. Presented at the Society of Petroleum Engineers International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, March 20-22, Kuala Lumpur, Malaysia.

Reed, M., and H. Rye. 1995. A three-dimensional oil and chemical spill model for environmental impact assessment. International Oil Spill Conference Proceedings 1995(1):61-66. DOI: 10.7901/2169-3358-1995-1-61.

Reed, M., O. M. Aamo, and P. S. Daling. 1995. Quantitative analysis of alternate oil spill response strategies using OSCAR. Spill Science & Technology Bulletin 2:67-74.

Reed, M., Ø. Johansen, P. J. Brandvik, P. Daling, A. Lewis, R. Fiocco, D. Mackay, and R. Prentki. 1999. Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science & Technology Bulletin 5(1):3-16. DOI: 10.1016/S1353-2561(98)00029-2.

Reed, M., I. Singsaas, P. S. Daling, L. G. Faksness, O. G. Brakstad, B. Hetland, and J. N. Hokstad. 2001. Modeling the water-accomodated fraction in OSCAR. International Oil Spill Conference.

Rehder, G., I. Leifer, P. G. Brewer, G. Friederich, and E. T. Peltzer. 2009. Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. Marine Chemistry 114(1-2):19-30. DOI: 10.1016/j.marchem.2009.03.004.

Reilly, T. I., and R. K. York. 2001. Guidance on Sensory Testing and Monitoring of Seafood for Presence of Petroleum Taint Following an Oil Spill. Seattle, WA: NOAA.

Reissman, D. B., and J. Howard. 2008. Responder safety and health: Preparing for future disasters. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine 75(2):135-141. DOI: 10.1002/msj.20024.

Renegar, D. A., N. R. Turner, B. M. Riegl, R. E. Dodge, A. H. Knap, and P. A. Schuler. 2017a. Acute and subacute toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to the shallow-water coral Porites divaricata: Application of a novel exposure protocol. Environmental Toxicology and Chemistry 36(1):212-219. DOI: 10.1002/etc.3530.

Renegar, D. A., P. Schuler, N. Turner, R. Dodge, B. Riegl, A. Knap, G. Bera, R. Jézéquel, and B. Benggio. 2017b. Tropics field study (Panama), 32-year site visit: Observations and conclusions for near shore dispersant use NEBA and tradeoffs. International Oil Spill Conference Proceedings 2017(1):3030-3050. DOI: 10.7901/2169-3358-2017.1.3030.

Ribicic, D., R. Netzer, T. C. Hazen, S. M. Techtmann, F. Drablos, and O. G. Brakstad. 2018. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Marine Pollution Bulletin 129(1):370-378. DOI: 10.1016/j.marpolbul.2018.02.034.

Rich, V. I., and R. M. Maier. 2015. Chapter 6—Aquatic environments. In Environmental Microbiology. Third Edition. I. L. Pepper, C. P. Gerba, and T. J. Gentry, eds. San Diego, CA: Academic Press.

Rivers, A. R., S. Sharma, S. G. Tringe, J. Martin, S. B. Joye, and M. A. Moran. 2013. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. The ISME Journal 7(12):2315-2329. DOI: 10.1038/ismej.2013.129.

Roberts, J. R., J. S. Reynolds, J. A. Thompson, E. J. Zaccone, M. J. Shimko, W. T. Goldsmith, M. Jackson, W. McKinney, D. G. Frazer, A. Kenyon, M. L. Kashon, G. Piedimonte, V. Castranova, and J. S. Fedan. 2011. Pulmonary effects after acute inhalation of oil dispersant (COREXIT EC9500A) in rats. Journal of Toxicology and Environmental Health, Part A 74(21):1381-1396.

Roberts, J. R., S. E. Anderson, H. Kan, K. Krajnak, J. A. Thompson, A. Kenyon, W. T. Goldsmith, W. McKinney, D. G. Frazer, M. Jackson, and J. S. Fedan. 2014. Evaluation of pulmonary and systemic toxicity of oil dispersant (COREXIT EC9500A®) following acute repeated inhalation exposure. Environmental Health Insights 8(Suppl. 1):63-74. DOI: 10.4137/EHI.S15262.

Robinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis. 2007. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315(5816):1259-1262. DOI: 10.1126/science.1133061.

Rodríguez-Trigo, G., J. Zock, F. Pozo-Rodríguez, F. P. Gómez, G. Monyarch, L. Bouso, M. D. Coll, H. Verea, J. M. Antó, C. Fuster, J. A. Barberà, and SEPAR-Prestige Study Group. 2010. Health changes in fishermen 2 years after clean-up of the Prestige oil spill. Annals of Internal Medicine 153(8):489-498. DOI: 10.7326/0003-4819-153-8-201010190-00279.

Romero, I. C., P. T. Schwing, G. R. Brooks, R. A. Larson, D. W. Hastings, G. Ellis, E. A. Goddard, and D. J. Hollander. 2015. Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the northeast Gulf of Mexico. PLoS One 10(5):e0128371. DOI: 10.1371/journal.pone.0128371.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Romero, I. C., G. Toro-Farmer, A. R. Diercks, P. Schwing, F. Muller-Karger, S. Murawski, and D. J. Hollander. 2017. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environmental Pollution 228:179-189. DOI: 10.1016/j.envpol.2017.05.019.

Romero, I. C., T. Sutton, B. Carr, E. Quintana-Rizzo, S. W. Ross, D. J. Hollander, and J. J. Torres. 2018. Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes from the gulf of mexico reveals exposure to oil-derived sources. Environmental Science & Technology 52(19):10985-10996. https://doi.org/10.1021/acs.est.8b02243.

Ross, S. L. 2016. Meso-Scale Flume Testing of Dispersant Effectiveness in Frazil Ice. U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement. https://www.bsee.gov/sites/bsee.gov/files/research-reports//1047aa.pdf.

Ross, S. L., and I. Buist. 1995. Preliminary Laboratory Study to Determine the Effect of Emulsification on Oil Spill Evaporation. Ottawa, Ontario, Canada: S.L. Ross Environmental Research Ltd. http://slross.com/publications/amop/1995-EmulsionEvaporation.pdf.

Ross, J. L., R. J. Ferek, and P. V. Hobbs. 1996. Particle and gas emissions from an in situ burn of crude oil on the ocean. Journal of the Air and Waste Management Association 46(3):251-259. DOI: 10.1080/10473289.1996.10467459.

Rotkin-Ellman, M., K. K. Wong, and G. M. Solomon. 2012. Seafood contamination after the BP Gulf oil spill and risks to vulnerable populations: A critique of the FDA risk assessment. Environmental Health Perspectives 120(2):157-161. DOI: 10.1289/ehp.1103695.

Rowe, J., A. Morandi, Z. Li, A. H. Walker, J. Joeckel, M. McPeek, P. Blanc, and A. Basseres. 2017. Oil Spill Response Technologies (OSR) since Macondo—a review of improvements and novelties. International Oil Spill Conference Proceedings 2017(1):1698-1717. https://doi.org/10.7901/2169-3358-2017.1.1698.

Rubin-Blum, M., C. P. Antony, C. Borowski, L. Sayavedra, T. Pape, H. Sahling, G. Bohrmann, M. Kleiner, M. C. Redmond, D. L. Valentine, and N. Dubilier. 2017. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology 2:17093. DOI: 10.1038/nmicrobiol.2017.93.

Rusiecki, J. A., M. Alexander, E. G. Schwartz, L. Wang, L. Weems, J. Barrett, K. Christenbury, D. Johndrow, R. H. Funk, and L. S. Engel. 2017. The Deepwater Horizon Oil Spill Coast Guard Cohort study. Occupational and Environmental Medicine 75(3):165-175.

Rusina, T. P., P. Carlsson, B. Vrana, and F. Smedes. 2017. Equilibrium passive sampling of POP in lipid-rich and lean fish tissue: Quality control using performance reference compounds. Environmental Science & Technology 51(19):11250-11257.

Ryerson, T. B., K. C. Aikin, W. M. Angevine, E. L. Atlas, D. R. Blake, C. A. Brock, F. C. Fehsenfeld, R.-S. Gao, J. A. de Gouw, D. W. Fahey, J. S. Holloway, D. A. Lack, R. A. Lueb, S. Meinardi, A. M. Middlebrook, D. M. Murphy, J. A. Neuman, J. B. Nowak, D. D. Parrish, J. Peischl, A. E. Perring, I. B. Pollack, A. R. Ravishankara, J. M. Roberts, J. P. Schwarz, J. R. Spackman, H. Stark, C. Warneke, and L. A. Watts. 2011. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters 38(7):L07803. DOI: 10.1029/2011GL046726.

Ryerson, T. B., R. Camilli, J. D. Kessler, E. B. Kujawinski, C. M. Reddy, D. L. Valentine, E. Atlas, D. R. Blake, J. de Gouw, S. Meinardi, D. D. Parrish, J. Peischl, J. S. Seewald, and C. Warneke. 2012. Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America 109(50):20246-20253. DOI: 10.1073/pnas.1110564109.

Sabucedo, J. M., C. Arce, M. J. Ferraces, H. Merino, and M. Durán. 2009. Psychological impact of the Prestige catastrophe. International Journal of Clinical and Health Psychology 9(1):105-116.

Sabucedo, J. M., C. Arce, C. Senra, G. Seoane, and I. Vázquez. 2010. Symptomatic profile and health-related quality of life of persons affected by the Prestige catastrophe. Disasters 34(3):809-820. DOI: 10.1111/j.1467-7717.2010.01170.x.

Salvo, L. M., D. Severino, H. C. de Assis, and J. R. da Silva. 2016. Photochemical degradation increases polycyclic aromatic hydrocarbon (PAH) toxicity to the grouper Epinephelus marginatus as assessed by multiple biomarkers. Chemosphere 144:540-547.

Sampath, K., N. Afshar-Mohajer, W.-S. Heo, J. Gilbert, D. Austin, K. Koehler, and J. Katz. 2017. Aerosolization of Crude Oil and Dispersant Slicks Due to Bubble Bursting. Presented at the 70th Annual Meeting of the APS Division of Fluid Dynamics, November 19-21, Denver, CO.

Sandifer, P. A., A. E. Sutton-Grier, and B. P. Ward. 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services 12:1-15. DOI: 10.1016/j.ecoser.2014.12.007.

Sandoval, K., Y. Ding, and P. Gardinali. 2017. Characterization and environmental relevance of oil water preparations of fresh and weathered MC-252 Macondo oils used in toxicology testing. Science of the Total Environment 576:118-128. DOI: 10.1016/j.scitotenv.2016.09.171.

Santamaria, F., G. Boffetta, M. Martins Afonso, A. Mazzino, M. Onorato, and D. Pugliese. 2013. Stokes drift for inertial particles transported by water waves. EPL 102(1):14003. DOI: 10.1209/0295-5075/102/14003.

Sathiakumar, N., M. Tipre, A. Turner-Henson, L. Chen, M. Leader, and J. Gohlke. 2017. Post-Deepwater Horizon blowout seafood consumption patterns and community-specific levels of concern for selected chemicals among children in Mobile County, Alabama. International Journal of Hygiene and Environmental Health 220(1):1-7.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Schaum, J., M. Cohen, S. Perry, R. Artz, R. Draxler, J. B. Frithsen, D. Heist, M. Lorber, and L. Phillips. 2010. Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deepwater Horizon Gulf of Mexico spill. Environmental Science & Technology 44(24):9383-9389. DOI: 10.1021/es103559w.

Schünemann, H., S. Hill, G. Guyatt, E. A. Akl, and F. Ahmed. 2011. The GRADE approach and Bradford Hill’s criteria for causation. Journal of Epidemiology and Community Health 65(5):392.

Schvoerer, C., C. Gourier-Frery, M. Ledrans, et al. 2000. Etude épidémiologique des troubles de santé survenus à court terme chez les personnes ayant participé au nettoyage des sites pollués par le fioul de l’Erika. Paris, France: Institut de Veille Sanitaire.

Schwacke, L. H., C. R. Smith, F. I. Townsend, R. S. Wells, L. B. Hart, B. C. Balmer, T. K. Collier, S. De Guise, M. M. Fry, and L. J. Guillette, Jr. 2013. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environmental Science & Technology 48(1):93-103.

Schwing, P. T., I. C. Romero, G. R. Brooks, D. W. Hastings, R. A. Larson, and D. J. Hollander. 2015. A decline in benthic foraminifera following the Deepwater Horizon event in the northeastern Gulf of Mexico. PLoS One 10(3). DOI: 10.1371/journal.pone.0120565.

Schwing, P. T., G. R. Brooks, R. A. Larson, C. W. Holmes, B. J. O’Malley, and D. J. Hollander. 2017. Constraining the spatial extent of marine oil snow sedimentation and flocculent accumulation following the Deepwater Horizon event using an excess 210Pb flux approach. Environmental Science & Technology 51(11):5962-5968. DOI: 10.1021/acs.est.7b00450.

Schwing, P. T., B. J. O’Malley, and D. J. Hollander. 2018. Resilience of benthic Foraminifera in the northern Gulf of Mexico following the Deepwater Horizon event (2011-2015). Ecological Indicators 84:753-764. DOI: 10.1016/j. ecolind.2017.09.044.

Seemann, R., K. Malone, K. Laqua, J. Schmidt, A. Meyer, D. Krause, and M. Schlüter. 2014. A New High-Pressure Laboratory Setup for the Investigation of Deep-Sea Oil Spill Scenarios Under In-Situ Conditions. Presented at the 7th International Symposium on Environmental Hydraulics, January 7-9, Singapore.

Seiter, K., C. Hensen, E. Schroter, and M. Zabel. 2004. Organic carbon content in surface sediments—Defining regional provinces. Deep-Sea Research Part I-Oceanographic Research Papers 51(12):2001-2026.

Sellin Jeffries, M. K., C. Claytor, W. Stubblefield, W. H. Pearson, and J. T. Oris. 2013. Quantitative risk model for polycyclic aromatic hydrocarbon photoinduced toxicity in pacific herring following the Exxon Valdez oil spill. Environmental Science & Technology 47(10):5450-5458.

Shankar, R., W. J. Shim, J. G. An, and U. H. Yim. 2015. A practical review on photooxidation of crude oil: Laboratory lamp setup and factors affecting it. Water Research 68(January):304-315. https://doi.org/10.1016/j.watres.2014.10.012.

Shi, Y., A. M. Roy-Engel, and H. Wang. 2013. Effects of COREXIT dispersants on cytotoxicity parameters in a cultured human bronchial airway cells, BEAS-2B. Journal of Toxicology and Environmental Health Part A 76(13):827–835. https://doi.org/10.1080/15287394.2013.821396.

Shiller, A. M., E. W. Chan, D. J. Joung, M. C. Redmond, and J. D. Kessler. 2017. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Scientific Reports 7(1):10389. DOI: 10.1038/s41598-017-11060-z.

Short, J. W. 2013. Susceptibility of Diluted Bitumen Products from the Alberta Tar Sands to Sinking in Water. Juneau, AK: JWS Consulting LLC. https://www.ceaa-acee.gc.ca/050/documents/p21799/88502E.pdf.

Singer, M. M., S. George, I. Lee, S. Jacobson, L. L. Weetman, G. Blondina, R. S. Tjeerdema, D. Aurand, and M. L. Sowby. 1998. Effects of dispersant treatment on the acute aquatic toxicity of petroleum hydrocarbons. Archives of Environmental Contamination and Toxicology 34:177–178.

Singer, M. M., D. Aurand, G. E. Bragin, J. R. Clark, G. M. Coelho, M. L. Sowby, and R. S. Tjeerdema. 2000. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Marine Pollution Bulletin 40(11):1007-1016. DOI: 10.1016/s0025-326x(00)00045-x.

Singer, M. M., D. V. Aurand, G. M. Coelho, G. E. Bragin, J. R. Clark, M. Sowby, and R. S. Tjeerdema. 2001. Making, measuring, and using water-accommodated fractions of petroleum for toxicity testing. International Oil Spill Conference Proceedings 2001(2):1269-1274. DOI: 10.7901/2169-3358-2001-2-1269.

Skadsheim, A., S. Sanni, L. Pinturier, U. E. Moltu, M. Buffagni, and L. Bracco. 2009. Assessing and monitoring local and long-range-transported hydrocarbons as potential stressors to fish stocks. Deep Sea Research II 56:2037-2043.

Skancke, J., O. Johansen, P. J. Brandvik, and O. G. Brakstad. 2016. Implementing new features in OSCAR; Oil temperature and viscosity during droplet formation and area specific biodegradation. Report A27807, unrestricted access. Trondheim, Norway: SINTEF.

SL Ross. 2008. Alaska Shippers Skimming Tests, Phase 2: Testing at Ohmsett to Determine Nameplate Capacity Supplementary Tests with Modified Crucial Disc Skimmer.

Slaughter, A., G. Coelho, and J. Stave. 2017. Spill Impact Mitigation Assessment (SIMA) in Support of BP Canada Energy Group ULC, Scotian Basin Exploration Project. Sposon Group Technical Report 17-03.

Sloan, C. A., D. W. Brown, R. W. Pearce, R. H. Boyer, J. L. Bolton, D. G. Burrows, D. P. Herman, and M. M. Krahn. 2004. Extraction, Cleanup, and Gas Chromatography/Mass Spectrometry Analysis of Sediments and Tissues for Organic Contaminants. NOAA Technical Memorandum. Seattle, WA: NOAA.

Slovic, P. 1987. Perception of Risk. Science 236(4799):280-285. DOI: 10.1126/science.3563507.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Socolofsky, S. A., and E. E. Adams. 2002. Multi-phase plumes in uniform and stratified crossflow. Journal of Hydraulic Research 40(6):661-672. DOI: 10.1080/00221680209499913.

Socolofsky, S. A., and E. E. Adams. 2005. Role of slip velocity in the behavior of stratified multiphase plumes. Journal of Hydraulic Engineering 131(4):273-282. DOI: 10.1061/(ASCE)0733-9429(2005)131:4(273).

Socolofsky, S. A., E. E. Adams, and C. R. Sherwood. 2011. Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophysical Research Letters 38(9):L09602. DOI: 10.1029/2011GL047174.

Socolofsky, S. A., E. E. Adams, M. C. Boufadel, Z. M. Aman, Ø. Johansen, W. J. Konkel, D. Lindo, M. N. Madsen, E. W. North, C. B. Paris, D. Rasmussen, M. Reed, P. Rønningen, L. H. Sim, T. Uhrenholdt, K. G. Anderson, C. Cooper, and T. J. Nedwed. 2015. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. Marine Pollution Bulletin 96(1):110-126. DOI: 10.1016/j.marpolbul.2015.05.039.

Solsberg, L. 2008. Countermeasures for the Beaufort transition season. In Oil Spill Response: A Global Perspective. W. F. Davidson, K. Lee, and A. Cogswell, eds. NATO Science for Peace and Security Series C: Environmental Security. Dordrecht, the Netherlands: Springer.

Sørhus, E., R. B. Edvardsen, Ø. Karlsen, T. Nordtug, T. van der Meeren, A. Thorsen, C. Harman, S. Jentoft, and S. Meier. 2015. Unexpected interaction with dispersed crude oil droplets drives severe toxicity in Atlantic haddock embryos. PLoS One 10(4):e0124376.

Soto, L. A., A. V. Botello, S. Licea-Durán, M. Lizárraga-Partida, and A. Yáñez-Arancibia. 2014. The environmental legacy of the Ixtoc-1 oil spill in Campeche Sound, southwestern Gulf of Mexico. Frontiers in Marine Science 1:1-9.

Spaulding, M., D. Mendelsohn, D. Crowley, Z. Li, and A. Bird. 2015. Draft Technical Reports for Deepwater Horizon Water Column Injury Assessment: WC_TR. 13: Application of OILMAP DEEP to the Deepwater Horizon Blowout. DWH NRDA Water Column Technical Working Group Report. Prepared for National Oceanic and Atmospheric Administration by RPS ASA, South Kingstown, RI, 2879.

Spaulding, M., Z. Li, D. Mendelsohn, D. Crowley, D. French-McCay, and A. Bird. 2017. Application of an integrated blowout model system, OILMAP DEEP, to the Deepwater Horizon (DWH) Spill. Marine Pollution Bulletin 120(1-2):37-50. DOI: 10.1016/j.marpolbul.2017.04.043.

Sponson Group. 2017. Scotian Basin Spill Impact Mitigation Assessment. Technical Report 17-03. Mansfield, TX.

Sriram, K., G. X. Lin, A. M. Jefferson, W. T. Goldsmith, M. Jackson, W. McKinney, D. G. Frazer, V. A. Robinson, and V. Castranova. 2011. Neurotoxicity following acute inhalation exposure to the oil dispersant Corexit EC9500A. Journal of Toxicology and Environmental Health Part A 74(21):1405-1418. DOI: 10.1080/15287394.2011.606796.

Steffek, T., K. Bittler, and A. Guarino. 2016. Comparative Testing of Corexit EC9500A, Finasol OSR 52, Accell Clean DWD, and ZI 400 at Ohmsett in a Simulated Arctic Environment. Sterling, VA: U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement.

Steffy, D., A. Nichols, and J. Morgan. 2016. Investigating the impact of the BP Deepwater Horizon oil spill on trace metal concentrations in bottom sediments retrieved from the outer continental shelf (OCS) of Alabama and Western Florida, Gulf of Mexico. International Journal of Advanced Earth Science and Engineering 5(1):430.

Stephen, C. E., D. I. Mount, D. J. Hansen, J. Gentile, G. A. Chapman and W. A. Brungs. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. Washington, DC: U.S. Environmental Protection Agency.

Sterling, M. C., R. L. Autenrieth, J. S. Bonner, C. B. Fuller, C. A. Page, T. Ojo, and A. N. S. Ernest. 2003. Dispersant effectiveness and toxicity—An integrated approach. International Oil Spill Proceedings 2003(1):335–339.

Sterling, M. C., J. S. Bonner, C. A. Page, C. B. Fuller, A. N. S. Ernest, and R. L. Autenrieth. 2004. Modeling crude oil droplet—Sediment aggregation in nearshore waters. Environmental Science and Technology 38(17):4627-4634. DOI: 10.1021/es035467z.

Stevens, L., and D. Aurand. 2008. Criteria for Evaluating Oil Spill Planning and Response Operations. Lusby, MD: Ecosystem Management & Associates, Inc.

Stevens, C. C., L. J. Thibodeaux, E. B. Overton, K. T. Valsaraj, K. Nandakumar, A. Rao, and N. D. Walker. 2015. Sea surface oil slick light component vaporization and heavy residue sinking: Binary mixture theory and experimental proof of concept. Environmental Engineering Science 32(8):694-702. DOI: 10.1089/ees.2015.0022.

Stewart, P. A., M. R. Stenzel, G. Ramachandran, S. Banerjee, T. B. Huynh, C. P. Groth, R. K. Kwok, A. Blair, L. S. Engel, and D. P. Sandler. 2018. Development of a total hydrocarbon ordinal job-exposure matrix for workers responding to the Deepwater Horizon disaster: The GuLF STUDY. Journal of Exposure Science and Environmental Epidemiology 28:223. DOI: 10.1038/jes.2017.16. https://www.nature.com/articles/jes201716#supplementary-information.

Stieglitz, J. D., E. M. Mager, R. H. Hoenig, D. D. Benetti, and M. Grosell. 2016. Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environmental Toxicology and Chemistry 35(10):2613-2622. DOI: 10.1002/etc.3436.

Stiver, W., and D. Mackay. 1984. Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environmental Science and Technology 18(11):834-840. DOI: 10.1021/es00129a006. https://pubs.acs.org/doi/abs/10.1021/es00129a006.

Stoffyn-Egli, P., and K. Lee. 2002. Formation and characterization of oil–mineral aggregates. Spill Science & Technology Bulletin 8(1):31-44. DOI: 10.1016/S1353-2561(02)00128-7.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Stolper, D. A., A. M. Martini, M. Clog, P. M. Douglas, S. S. Shusta, D. L. Valentine, A. L. Sessions, and J. M. Eiler. 2015. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta 161:219-247. DOI: 10.1016/j.gca.2015.04.015.

Stone, K., and A. G. Guarino. 2017. Realistic stable water-in-oil emulsions at Ohmsett. International Oil Spill Conference Proceedings 2017(1):2826-2850. DOI: 10.7901/2169-3358-2017.1.2826.

Stout, S. A., and C. R. German. 2018. Characterization and flux of marine oil snow settling toward the seafloor in the northern Gulf of Mexico during the Deepwater Horizon incident: Evidence for input from surface oil and impact on shallow shelf sediments. Marine Pollution Bulletin 129(2):695-713. DOI: 10.1016/j.marpolbul.2017.10.059.

Stout, S. A., and J. R. Payne. 2016a. Macondo oil in deep-sea sediments: Part 1—Sub-sea weathering of oil deposited on the seafloor. Marine Pollution Bulletin 111(1-2):365-380. DOI: 10.1016/j.marpolbul.2016.07.036.

Stout, S. A., and J. R. Payne. 2016b. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Marine Pollution Bulletin 108(1-2):186-202. DOI: 10.1016/j.marpolbul.2016.04.031.

Stout, S. A., and J. R. Payne. 2017. Footprint, weathering, and persistence of synthetic-base drilling mud olefins in deep-sea sediments following the Deepwater Horizon disaster. Marine Pollution Bulletin 118(1-2):328-340. DOI: 10.1016/j. marpolbul.2017.03.013.

Stout, S. A., J. R. Payne, R. W. Ricker, G. Baker, and C. Lewis. 2016. Macondo oil in deep-sea sediments: Part 2—Distribution and distinction from background and natural oil seeps. Marine Pollution Bulletin 111(1-2):381-401. DOI: 10.1016/j.marpolbul.2016.07.041.

Stout, S. A., S. Rouhani, B. Liu, J. Oehrig, R. W. Ricker, G. Baker, and C. Lewis. 2017. Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill. Marine Pollution Bulletin 114(1):327-342. DOI: 10.1016/j.marpolbul.2016.09.046.

Strøm-Kristiansen, T., J. N. Hokstad, A. Lewis, and P. J. Brandvik. 1997. NOFO 1996 oil on water exercise—Analysis of sample material. Data report STF66 A97050. Trondheim, Norway: SINTEF.

Stubblefield, W., and B. De Jourdan. 2017. Differences in Exposure Media Profile and Toxicity Following Preparation of Water-Accommodated Fractions Along an Energy Continuum. Presented at SETAC EUROPE 27th Annual Meeting, May 7-11, Brussels, Belgium.

Suárez, B., V. Lope, B. Pérez-Gómez, N. Aragonés, F. Rodríguez-Artalejo, F. Marqués, A. Guzmán, L. J. Viloria, J. M. Carrasco, J. M. Martín-Moreno, G. López-Abente, and M. Pollán. 2005. Acute health problems among subjects involved in the cleanup operation following the Prestige oil spill in Asturias and Cantabria (Spain). Environmental Research 99(3):413-424. DOI: 10.1016/j.envres.2004.12.012.

Subedi R. K., S. Y. Oh, M. K. Chun, and H. K. Choi. 2010. Recent advances in transdermal drug delivery. Archives of Pharmacal Research 33(3):339-351. DOI: 10.1007/s12272-010-0301-7.

Suja, L. D., S. Summers, and T. Gutierrez. 2017. Role of EPS, dispersant and nutrients on the microbial response and MOS formation in the subarctic northeast Atlantic. Frontiers in Microbiology 8:676. DOI: 10.3389/fmicb.2017.00676.

Sun, J., and X. Zheng. 2009. A review of oil-suspended particulate matter aggregation—A natural process of cleansing spilled oil in the aquatic environment. Journal of Environmental Monitoring 11(10):1801-1809. DOI: 10.1039/B904829B.

Sun, J., A. Khelifa, X. Zheng, Z. Wang, L. L. So, S. Wong, C. Yang, and B. Fieldhouse. 2010. A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Marine Pollution Bulletin 60(10):1701-1707. DOI: 10.1016/j.marpolbul.2010.06.044.

Sun, J., A. Khelifa, C. Zhao, D. Zhao, and Z. Wang. 2014. Laboratory investigation of oil-suspended particulate matter aggregation under different mixing conditions. The Science of the Total Environment 473-474:742-749. DOI: 10.1016/j. scitotenv.2013.12.078.

Sun, S., C. Hu, O. Garcia-Pineda, V, Kourafalou, M. Le Hénaff, and Y. Androulidakis. 2018. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. Marine Pollution Bulletin 136:141-151. DOI: 10.1016/j. marpolbul.2018.09.004.

Sunagawa, S., L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B. Djahanschiri, G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C. Cruaud, F. D’Ovidio, S. Engelen, I. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F. Kokoszka, C. Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H. Sarmento, S. Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, E. Boss, M. Follows, L. Karp-Boss, U. Krzic, E. G. Reynaud, C. Sardet, M. Sieracki, D. Velayoudon, C. Bowler, C. De Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. Jaillon, F. Not, H. Ogata, S. Pesant, S. Speich, L. Stemmann, M. B. Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. Raes, S. G. Acinas, and P. Bork. 2015. Structure and function of the global ocean microbiome. Science 348(6237):1261359. DOI: 10.1126/science.1261359.

Sutton, O. G. 1934. Wind structure and evaporation in a turbulent atmosphere. Proceedings of the Royal Society of London Series A 146(858):701-722. https://www.jstor.org/stable/2935619?seq=1#metadata_info_tab_contents.

Swan, B. K., B. Tupper, A. Sczyrba, F. M. Lauro, M. Martinez-Garcia, J. M. González, H. Luo, J. J. Wright, Z. C. Landry, N. W. Hanson, B. P. Thompson, N. J. Poulton, P. Schwientek, S. G. Acinas, S. J. Giovannoni, M. A. Moran, S. J. Hal-lam, R. Cavicchioli, T. Woyke, and R. Stepanauskas. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America 110(28):11463-11468. DOI: 10.1073/pnas.1304246110.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Takeshita, R., L. Sullivan, C. Smith, T. Collier, A. Hall, T. Brosnan, T. Rowles, and L. Schwacke. 2017. The Deepwater Horizon oil spill marine mammal injury assessment. Endangered Species Research 33:95-106.

Tarnecki, J. H., and W. F. Patterson. 2015. Changes in red snapper diet and trophic ecology following the Deepwater Horizon oil spill. Marine and Coastal Fisheries 7(1):135-147. DOI: 10.1080/19425120.2015.1020402.

Taylor, G. I. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London Series A 219(1137):186.

Teal, J. M., and R. W. Howarth. 1984. Oil spill studies: A review of ecological effects. Environmental Management 8(1):27-43. DOI: 10.1007/BF01867871.

Techtmann, S. M., M. Zhuang, P. Campo, E. Holder, M. Elk, T. C. Hazen, R. Conmy, and J. W. Santo Domingo. 2017. Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Applied and Environmental Microbiology 83(10):e03462-16. https://doi.org/10.1128/AEM.03462-16.

Temkin, A. M., R. R. Bowers, M. E. Magaletta, S. Holshouser, A. Maggi, P. Ciana, L. J. Guillette, J. A. Bowden, J. R. Kucklick, J. E. Baatz, and D. D. Spyropoulos. 2016. Effects of crude oil/dispersant mixture and dispersant components on PPARγ activity in vitro and in vivo: Identification of dioctyl sodium sulfosuccinate (DOSS; CAS #577-11-7) as a probable obesogen. Environmental Health Perspectives 124(1):112-119. DOI: 10.1289/ehp.1409672.

Testa, J. M., E. Eric Adams, E. W. North, and R. He. 2016. Modeling the influence of deep water application of dispersants on the surface expression of oil: A sensitivity study. Journal of Geophysical Research: Oceans 121(8):5995-6008. DOI: 10.1002/2015JC011571.

Thibodeaux, L., and E. Overton. 2014. ADIOS3 dissolution module for Deepwater oil spills. 14 pp. Unpublished.

Thrift-Viveros, D. L., R. Jones, and M. Boufadel. 2015. Development of a New Oil Biodegradation Algorithm for NOAA’s Oil Spill Modelling Suite (GNOME/ADIOS). Paper presented at the Proceedings of the Thirty-Eighth AMOP Technical Seminar.

Townsend, A. A. 1980. The response of sheared turbulence to additional distortion. Journal of Fluid Mechanics 98(1):171-191.

Trudel, B. K., R. C. Belore, A. Guarino, A. Lewis, and J. Mullin. 2005. Determining the viscosity limits for effective chemical dispersion: Relating Ohmsett results to those from tests at-sea. International Oil Spill Conference Proceedings 2005(1):71-76. DOI: 10.7901/2169-3358-2005-1-71.

Trudel, K., R. C. Belore, J. V. Mullin, and A. Guarino. 2010. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank. Marine Pollution Bulletin 60(9):1606-1614. DOI: 10.1016/j. marpolbul.2010.01.010.

Tseng, Y.-H., and A. Prosperetti. 2015. Local interfacial stability near a zero vorticity point. Journal of Fluid Mechanics 776:5-36. DOI: 10.1017/jfm.2015.246.

Turner, N. R., and D. A. Renegar. 2017. Petroleum hydrocarbon toxicity to corals: A review. Marine Pollution Bulletin 119(2):1-16.

USARC (United States Arctic Research Commission). 2012. Oil Spills in Arctic waters: An Introduction and Inventory of Research Activities and USARC Recommendations. Arlington, VA: USARC.

USCG (U.S. Coast Guard). 2002. Evaluation of New Approaches to the Containment and Recovery of Oil in Fast Water, USCG Research and Development Center, Washington, DC.

USCG. 2011. On Scene Coordinator Report Deepwater Horizon Oil Spill. https://repository.library.noaa.gov/view/noaa/283.

USCG. 2014. United States Coast Guard Incident Management Handbook. https://www.atlanticarea.uscg.mil/Portals/7/Ninth%20District/Documents/USCG_IMH_2014_COMDTPUB_P3120.17B.pdf?ver=2017-06-14-122531-930 (last accessed April 5, 2019).

Valentine, D. 2010. Measure methane to quantify the oil spill. Nature 465:421. DOI: 10.1038/465421a.

Valentine, D. L., J. D. Kessler, M. C. Redmond, S. D. Mendes, M. B. Heintz, C. Farwell, L. Hu, F. S. Kinnaman, S. Yvon-Lewis, M. Du, E. W. Chan, F. G. Tigreros, and C. J. Villanueva. 2010. Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208-211. DOI: 10.1126/science.1196830.

Valentine, D. L., I. Mezić, S. Maćešić, N. Črnjarić-Žic, S. Ivić, P. J. Hogan, V. A. Fonoberov, and S. Loire. 2012. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proceedings of the National Academy of Sciences of the United States of America 109(50):20286. DOI: 10.1073/pnas.1108820109.

Valentine, D. L., G. B. Fisher, S. C. Bagby, R. K. Nelson, C. M. Reddy, S. P. Sylva, and M. A. Wood. 2014. Fallout plume of submerged oil from Deepwater Horizon. Proceedings of the National Academy of Sciences of the United States of America 111(45):15906-15911. DOI: 10.1073/pnas.1414873111.

van Eenennaam, J. S., Y. Wei, K. C. F. Grolle, E. M. Foekema, and A. J. Murk. 2016. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria. Marine Pollution Bulletin 104(1-2):294-302. DOI: 10.1016/j. marpolbul.2016.01.005.

van Eenennaam, J. S., S. Rahsepar, J. R. Radović, T. B. P. Oldenburg, J. Wonink, A. A. M. Langenhoff, A. J. Murk, and E. M. Foekema. 2018. Marine snow increases the adverse effects of oil on benthic invertebrates. Marine Pollution Bulletin 126:339-348. DOI: 10.1016/j.marpolbul.2017.11.028.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Van Leeuwen, C. J., P. T. Van Der Zandt, T. Aldenberg, H. J. Verhaar, and J. L. Hermens. 1992. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environmental Toxicology and Chemistry 11(2):267-282.

Van Meter, R. J., J. R. Spotila, and H. W. Avery. 2006. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings. Environmental Pollution 142:466-475.

Varanasi, U. 1989. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Boca Raton, FL: CRC Press.

Veith, G. D., D. J. Call, and L. Brooke. 1983. Structure–toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Canadian Journal of Fisheries and Aquatic Sciences 40(6):743-748.

Veith, G. D., O. G. Mekenyan, G. T. Ankley, and D. J. Call. 1995. A QSAR analysis of substituent effects on the photoinduced acute toxicity of PAHs. Chemosphere 30(11):2129-2142.

Venkatesh, S., H. El Tahan, G. Comfort, and R. Abdelnour. 1990. Modelling the behaviour of oil spills in ice-infested waters. Atmosphere-Ocean 28(3):303-329. DOI: 10.1080/07055900.1990.9649380.

Venosa, A. D., and E. L. Holder. 2007. Biodegradability of dispersed crude oil at two different temperatures. Marine Pollution Bulletin 54(5):545-553. DOI: 10.1016/j.marpolbul.2006.12.013.

Venosa, A. D., M. T. Suidan, B. A. Wrenn, K. L. Strohmeier, J. R. Haines, B. L. Eberhart, D. King, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environmental Science & Technology 30(5):1764-1775. DOI: 10.1021/es950754r.

Venosa, A. D., D. W. King, and G. A. Sorial. 2002. The baffled flask test for dispersant effectiveness: A round robin evaluation of reproducibility and repeatability. Spill Science & Technology Bulletin 7(5):299-308. DOI: 10.1016/S1353-2561(02)00072-5.

Venosa, A. D., P. Campo, and M. T. Suidan. 2010. Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil spill. Environmental Science & Technology 44(19):7613-7621. DOI: 10.1021/es101042h.

Verbruggen, E. M. J., W. H. J. Vaes, T. F. Parkerton, and L. M. Hermens. 2000. Polyacrylate coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environmental Science & Technology 34(2):324-331. DOI: 10.1021/es990616s.

Vergeynst, L., K. U. Kjeldsen, P. Lassen, and S. Rysgaard. 2018a. Bacterial community succession and degradation patterns of hydrocarbons in seawater at low temperature. Journal of Hazardous Materials 353:127-134. DOI: 10.1016/j. jhazmat.2018.03.051.

Vergeynst, L., S. Wegeberg, J. Aamand, P. Lassen, U. Gosewinkel, J. Fritt-Rasmussen, K. Gustavson, and A. Mosbech. 2018b. Biodegradation of marine oil spills in the Arctic with a Greenland perspective. Science of the Total Environment 626:1243-1258. DOI: 10.1016/j.scitotenv.2018.01.173.

Vergeynst, L., J. H. Christensen, K. U. Kjeldsen, L. Meire, W. Boone, L. M. V. Malmquist, and S. Rysgaard. 2019. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. Water Research 148(January):459-468. https://doi.org/10.1016/j.watres.2018.10.066.

Vignier, J., P. Soudant, F. L. Chu, J. M. Morris, M. W. Carney, C. R. Lay, M. O. Krasnec, R. Robert, and A. K. Volety. 2016. Lethal and sub-lethal effects of Deepwater Horizon slick oil and dispersant on oyster (Crassostrea virginica) larvae. Marine Environmental Research 120:20-31. DOI: 10.1016/j.marenvres.2016.07.006.

Vilcáez, J., L. Li, and S. S. Hubbard. 2013. A new model for the biodegradation kinetics of oil droplets: Application to the Deepwater Horizon oil spill in the Gulf of Mexico. Geochemical Transactions 14:4. DOI: 10.1186/1467-4866-14-4.

Vinardell, M. P., and M. R. Infante. 1999. The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 124(2):117-120. DOI: 10.1016/S0742-8413(99)00057-2.

Visser, A. 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Marine Ecology Progress Series 158:275-281.

Viveros, D., R. Jones, and M. Boufadel. 2015. Development of a new oil biodegradation algorithm for NOAA’s oil spill modelling suite (GNOME/ADIOS). In Proceedings of the 38th Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Vancouver, British Columbia, Canada: Environment Canada.

von Netzer, F., G. Pilloni, S. Kleindienst, M. Kruger, K. Knittel, F. Grundger, and T. Lueders. 2013. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Applied and Environmental Microbiology 79(2):543-552.

Vonk, S. M., D. J. Hollander, and A. J. Murk. 2015. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Marine Pollution Bulletin 100(1):5-12. DOI: 10.1016/j.marpolbul.2015.08.023.

Walker, A. H. 2016. Oil spills and risk perceptions. In Oil Spill Science and Technology. M. Fingas, ed. Houston, TX: Gulf Professional Publishing.

Walker, A. H., R. Pavia, A. Bostrom, T. M. Leschine, and K. Starbird. 2015. Communication practices for oil spills: Stakeholder engagement during preparedness and response. Human and Ecological Risk Assessment: An International Journal 21(3):667-690. DOI: 10.1080/10807039.2014.947869.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Walker, A. H., C. Stern, D. Scholz, E. Nielsen, F. Csulak, and R. Gaudiosi. 2016. Consensus ecological risk assessment of potential transportation-related Bakken and Dilbit crude oil spills in the Delaware Bay Watershed, USA. Journal of Marine Science and Engineering 4(1):23. DOI: 10.3390/jmse4010023.

Walker, A. H., D. Scholz, M. McPeek, D. French-McCay, J. Rowe, M. Bock, H. Robinson, and R. Wenning. 2018a. Comparative risk assessment of spill response options for a deepwater oil well blowout: Part III. Stakeholder engagement. Marine Pollution Bulletin 133:970-983. DOI: 10.1016/j.marpolbul.2018.05.009.

Walker, A. H., D. Scholz, A. C. Bejarano, and A. M. Hess (Compilers). 2018b. Hawaii Net Environmental Benefit Analysis: Consensus Evaluation of Tradeoffs Associated with Oil Spill Response Options. A Report to the Oceania Regional Response Team. Cape Charles, VA: SEA Consulting Group. 182 pp.

Wammer, K. H., and C. A. Peters. 2005. Polycyclic aromatic hydrocarbon biodegradation rates: A structure-based study. Environmental Science and Technology 39(8):2571-2578. DOI: 10.1021/es048939y.

Wang, D., and E. E. Adams. 2016. Intrusion dynamics of particle plumes in stratified water with weak crossflow: Application to deep ocean blowouts. Journal of Geophysical Research: Oceans 121(6):3820-3835. DOI: 10.1002/2015JC011324.

Wang, C. Y., and R. V. Calabrese. 1986. Drop breakup in turbulent stirred-tank contactors. Part II: Relative influence of viscosity and interfacial tension. AIChE Journal 32(4):667-676.

Wang, W., Y. Zheng, Z. Li, and K. Lee. 2011. PIV investigation of oil–mineral interaction for an oil spill application. Chemical Engineering Journal 170(1):241-249. DOI: 10.1016/j.cej.2011.03.062.

Wang, H., Y. Shi, D. Major, and Z. Yang. 2012. Lung epithelial cell death induced by oil-dispersant mixtures. Toxicology in Vitro 26(5):746-751. DOI: 10.1016/j.tiv.2012.03.011.

Wang, W., Y. Zheng, and K. Lee. 2013. Chemical dispersion of oil with mineral fines in a low temperature environment. Marine Pollution Bulletin 72(1):205-212. DOI: 10.1016/j.marpolbul.2013.03.042.

Wang, B., S. A. Socolofsky, J. A. Breier, and J. S. Seewald. 2016a. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. Journal of Geophysical Research: Oceans 121(4):2203-2230. DOI: 10.1002/2015JC011452.

Wang, J., K. Sandoval, Y. Ding, D. Stoeckel, A. Minard-Smith, G. Andersen, E. A. Dubinsky, R. Atlas, and P. Gardinali. 2016b. Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Science of the Total Environment 557-558:453-468. DOI: 10.1016/j.scitotenv.2016.03.015.

Wang, Z., S. F. DiMarco, and S. A. Socolofsky. 2016c. Turbulence measurements in the northern Gulf of Mexico: Application to the Deepwater Horizon oil spill on droplet dynamics. Deep-Sea Research Part I: Oceanographic Research Papers 109:40-50. DOI: 10.1016/j.dsr.2015.12.013.

Ward, C. P., C. J. Armstrong, R. N. Conmy, D. P. French-Mccay, and C. M. Reddy. 2018a. Photochemical oxidation of oil reduced the effectiveness of aerial dispersants applied in response to the Deepwater Horizon spill. Environmental Science & Technology Letters 5(5):226-231. DOI: 10.1021/acs.estlett.8b00084.

Ward, C. P., C. M. Sharpless, D. L. Valentine, D. P. French-McCay, C. Aeppli, H. K. White, R. P. Rodgers, K. M. Gosselin, R. K. Nelson, and C. M. Reddy. 2018b. Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil. Environmental Science and Technology 52(4):1797-1805. DOI: 10.1021/acs.est.7b05948.

Wardlaw, G. D., J. S. Arey, C. M. Reddy, R. K. Nelson, G. T. Ventura, and D. L. Valentine. 2008. Disentangling oil weathering at a marine seep using GCxGC: Broad metabolic specificity accompanies subsurface petroleum biodegradation. Environmental Science and Technology 42(19):7166-7173. DOI: 10.1021/es8013908.

Wardlaw, G. D., R. K. Nelson, C. M. Reddy, and D. L. Valentine. 2011. Biodegradation preference for isomers of alkylated napthalenes and benzothiophenes in marine sediment contaminated with crude oil. Organic Geochemistry 42:630-639.

Warren, C. J., A. MacFadyen, and C. Henry. 2014. Mapping oil for the destroyed Taylor Energy site in the Gulf of Mexico. International Oil Spill Conference Proceedings 2014(1):299931.

Warzinski, R. P., R. Lynn, I. Haljasmaa, I. Leifer, F. Shaffer, B. J. Anderson, and J. S. Levine. 2014. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models. Geophysical Research Letters 41(19):6841-6847. DOI: 10.1002/2014GL061665.

Waterman, D. M., and M. H. Garcia. 2015. Laboratory Tests of Oil-Particle Interactions in a Freshwater Riverine Environment with Cold Lake Blend Weathered Bitumen. U.S. Environmental Protection Agency Archive Document. Chicago, IL: U.S. Environmental Protection Agency.

Wawrik, B., M. Mendivelso, V. A. Parisi, J. M. Suflita, I. A. Davidova, C. R. Marks, J. D. Van Nostrand, Y. Liang, J. Zhou, B. J. Huizinga, D. Strapoć, and A. V. Callaghan. 2011. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiology Ecology 81(1):26-42. DOI: 10.1111/j.1574-6941.2011.01272.x.

Weise, A. M., C. Nalewajko, and K. Lee. 1999. Oil-mineral fine interactions facilitate oil biodegradation in seawater. Environmental Technology 20(8):811-824. DOI: 10.1080/09593332008616877.

Wenning, R. J. 2005. Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. Pensacola, FL: SETAC.

Wereley, S. 2010. Appendix 5: Gulf oil spill particle image velocimetry (PIV) analysis. In Deepwater Horizon Release Estimate of Rate by PIV. A. Aliseda, P. Bommer, P. Espina, O. Flores, J. C. Lasheras, B. Lehr, I. Leifer, A. Possolo, J. Riley, O. Savas, F. Schaffer, S. Wereley, and P. Yapa, eds. https://engineering.purdue.edu/~wereley/oilspill/Deepwater_Horizon_June_V.pdf.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

White, F. M. 2005. Viscous Fluid Flow. 3rd ed. New York: McGraw-Hill.

White, P. A., S. Robitaille, and J. B. Rasmussen. 1999. Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 18(8):1843-1847.

White, H. K., P. Y. Hsing, W. Cho, T. M. Shank, E. E. Cordes, A. M. Quattrini, R. K. Nelson, R. Camilli, A. W. J. Demopoulos, C. R. German, J. M. Brooks, H. H. Roberts, W. Shedd, C. M. Reddy, and C. R. Fisher. 2012. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences of the United States of America 109(50):20303-20308. DOI: 10.1073/pnas.1118029109.

White, H. K., S. L. Lyons, S. J. Harrison, D. M. Findley, Y. Liu, and E. B. Kujawinski. 2014. Long-term persistence of dispersants following the Deepwater Horizon oil spill. Environmental Science & Technology Letters 1(7):295-299. DOI: 10.1021/ez500168r.

White, H. K., R. N Conmy, I. R. MacDonald, and C. M. Reddy. 2016. Methods of oil detection in response to the Deepwater Horizon oil spill. Special Issue on GoMRI Deepwater Horizon Oil Spill and Ecosystem Science. Oceanography 29(3):76-87.

Whitehead, A., B. Dubansky, C. Bodinier, T. I. Garcia, S. Miles, C. Pilley, V. Raghunathan, J. L. Roach, N. Walker, R. B. Walter, C. D. Rice, and F. Galvez. 2011. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences of the United States of America 109(50):20298-20302. DOI: 10.1073/pnas.1109545108.

Whitmer, E. R., B. A. Elias, D. J. Harvey, and M. H. Ziccardi. 2017. An experimental study of the effects of chemically dispersed oil on feather structure and waterproofing in common murres (Uria aalge). Journal of Wildlife Diseases 54(2):315-328.

Wickliffe, J., E. Overton, S. Frickel, J. Howard, M. Wilson, B. Simon, S. Echsner, D. Nguyen, D. Gauthe, D. Blake, C. Miller, C. Elferink, S. Ansari, H. Fernando, E. Trapido, and A. Kane. 2014. Evaluation of polycyclic aromatic hydrocarbons using analytical methods, toxicology, and risk assessment research: Seafood safety after a petroleum spill as an example. Environmental Health Perspectives 122(1):6-9. DOI: 10.1289/ehp.1306724.

Wilkinson, J., C. J. Beegle-Krause, K.-U. Evers, N. Hughes, A. Lewis, M. Reed, and P. Wadhams. 2017. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices. Ambio 46(3):423-441. DOI: 10.1007/s13280-017-0958-y.

Wincele, D. E., B. A. Wrenn, and A. D. Venosa. 2004. Sedimentation of oil-mineral aggregates for remediation of vegetable oil spills. Journal of Environmental Engineering 130(1):50-58. DOI: 10.1061/(ASCE)0733-9372(2004)130:1(50).

Wise, C. F., J. T. F. Wise, S. S. Wise, W. D. Thompson, J. P. Wise, Jr., and J. P. Wise, Sr. 2014. Chemical dispersants used in the Gulf of Mexico oil crisis are cytotoxic and genotoxic to sperm whale skin cells. Aquatic Toxicology 152:335-340. DOI: 10.1016/j.aquatox.2014.04.020.

Wood, P. A., T. Lunel, F. Daniel, R. Swannell, K. Lee, and P. Stoffyn-Egli. 1998. Influence of oil and mineral characteristics on oil-mineral interaction. In Proceedings of the 21st Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Edmonton, Alberta, Canada: Environment Canada.

Wooten, K. J., B. E. Finch, and P. N. Smith. 2012. Embryotoxicity of Corexit 9500 in mallard ducks (Anas platyrhynchos). Ecotoxicology 21(3):662-666.

Xia, K., G. Hagood, C. Childers, J. Atkins, B. Rogers, L. Ware, K. Armbrust, J. Jewell, D. Diaz, N. Gatian, and H. Folmer. 2012. Polycyclic Aromatic Hydrocarbons (PAHs) in Mississippi seafood from areas affected by the Deepwater Horizon oil spill. Environmental Science & Technology 46(10):5310-5318. DOI: 10.1021/es2042433.

Xie, H., P. D. Yapa, and K. Nakata. 2007. Modeling emulsification after an oil spill in the sea. Journal of Marine Systems 68(3-4):489-506.

Xu, E. G., E. M. Mager, M. Grosell, C. Pasparakis, L. S. Schlenker, J. D. Stieglitz, D. Benetti, E. S. Hazard, S. M. Courtney, G. Diamante, J. Freitas, G. Hardiman, and D. Schlenk. 2016. Time- and oil-dependent transcriptomic and physiological responses to Deepwater Horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae. Environmental Science & Technology 50(14):7842-7851. DOI: 10.1021/acs.est.6b02205.

Yang, C., G. Zhang, Z. Wang, Z. Yang, B. Hollebone, M. Landriault, K. Shah, and C. E. Brown. 2014. Development of a methodology for accurate quantitation of alkylated polycyclic aromatic hydrocarbons in petroleum and oil contaminated environmental samples. Analytical Methods 6(19):7760-7771.

Yang, Z., B. P. Hollebone, Z. Wang, C. Yang, C. Brown, G. Zhang, M. Landriault, X. Ruan. 2015. A preliminary study for the photolysis behavior of biodiesel and its blends with petroleum oil in simulated freshwater. Fuel 139:248-256.

Yang, D., B. Chen, S. A. Socolofsky, M. Chamecki, and C. Meneveau. 2016a. Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow. Journal of Fluid Mechanics 794:798-833. DOI: 10.1017/jfm.2016.191.

Yang, Z., B. P. Hollebone, C. E. Brown, C. Yang, Z. Wang, G. Zhang, P. Lambert, M. Landriault, and K. Shah. 2016b. The photolytic behavior of diluted bitumen in simulated seawater by exposed to the natural sunlight. Fuel 186:128-139.

Yang, Z., G. Zhang, B. P. Hollebone, C. E. Brown, C. Yang, P. Lambert, Z. Wang, M. Landriault, and K. Shah. 2017. Fate of oxygenated intermediates in solar irradiated diluted bitumen mixed with saltwater. Environmental Pollution 231:622-634.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×

Yassine, M. H., M. T. Suidan, and A. D. Venosa. 2013. Microbial kinetic model for the degradation of poorly soluble organic materials. Water Research 47(4):1585-1595. DOI: 10.1016/j.watres.2012.12.013.

Yender, R., J. Michel, and C. Lord. 2002. Managing Seafood Safety after an Oil Spill. Seattle, WA: Office of Response and Restoration, National Oceanic and Atmospheric Administration.

Yergeau, E., C. Maynard, S. Sanschagrin, J. Champagne, D. Juck, K. Lee, and C. W. Greer. 2015. Microbial community composition, functions, and activities in the Gulf of Mexico 1 year after the Deepwater Horizon accident. Applied and Environmental Microbiology 81(17):5855.

Yergeau, E., C. Michel, J. Tremblay, A. Niemi, T. L. King, J. Wyglinski, K. Lee, and C. W. Greer. 2017. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Scientific Reports 7:42242. DOI: 10.1038/srep42242.

Ylitalo, G. M., M. M. Krahn, W. W. Dickhoff, J. E. Stein, C. C. Walker, C. L. Lassitter, E. S. Garrett, L. L. Desfosse, K. M. Mitchell, B. T. Noble, S. Wilson, N. B. Beck, R. A. Benner, P. N. Koufopoulos, and R. W. Dickey. 2012. Federal seafood safety response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20274.

Yvon-Lewis, S. A., L. Hu, and J. Kessler. 2011. Methane flux to the atmosphere from the Deepwater Horizon oil disaster. Geophysical Research Letters 38(1). DOI: 10.1029/2010GL045928.

Zeinstra-Helfrich, M., W. Koops, and A. J. Murk. 2017. Predicting the consequence of natural and chemical dispersion for oil slick size over time. Journal of Geophysical Research: Oceans 122(9):7312-7324. DOI: 10.1002/2017JC012789.

Zhang, H., M. Khatibi, Y. Zheng, K. Lee, Z. Li, and J. V. Mullin. 2010. Investigation of OMA formation and the effect of minerals. Marine Pollution Bulletin 60(9):1433-1441. DOI: 10.1016/j.marpolbul.2010.05.014.

Zhao, L., M. C. Boufadel, S. A. Socolofsky, E. Adams, T. King, and K. Lee. 2014a. Evolution of droplets in subsea oil and gas blowouts: Development and validation of the numerical model VDROP-J. Marine Pollution Bulletin 83(1):58-69. DOI: 10.1016/j.marpolbul.2014.04.020.

Zhao, L., J. Torlapati, M. C. Boufadel, T. King, B. Robinson, and K. Lee. 2014b. VDROP: A comprehensive model for droplet formation of oils and gases in liquids—Incorporation of the interfacial tension and droplet viscosity. Chemical Engineering Journal 253:93-106. DOI: 10.1016/j.cej.2014.04.082.

Zhao, L., M. C. Boufadel, E. Adams, S. A. Socolofsky, T. King, K. Lee, and T. Nedwed. 2015. Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout. Marine Pollution Bulletin 101(1):304-319. DOI: 10.1016/j. marpolbul.2015.10.068.

Zhao, L., M. Boufadel, K. Lee, T. King, N. Loney, and X. Geng. 2016a. Evolution of bubble side distribution from gas blowout in shallow water. Journal of Geophysical Research: Oceans 121(3):1573-1599.

Zhao, L., M. C. Boufadel, X. Geng, K. Lee, T. King, B. H. Robinson, and F. A. Fitzpatrick. 2016b. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs). Marine Pollution Bulletin 106(1-2):245-259. DOI: 10.1016/j.marpolbul.2016.02.057.

Zhao, X., W. Liu, J. Fu, Z. Cai, S. E. O’Reilly, and D. Zhao. 2016c. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems. Marine Pollution Bulletin 109:526-538.

Zhao, L., F. Shaffer, B. Robinson, T. King, C. D’Ambrose, Z. Pan, F. Gao, R. S. Miller, R. N. Conmy, and M. C. Boufadel. 2016d. Underwater oil jet: Hydrodynamics and droplet size distribution. Chemical Engineering Journal 299:292-303.

Zhao, L., M. C. Boufadel, T. King, B. Robinson, P. Gao, S. A. Socolfosky, and K. Lee. 2017a. Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Marine Pollution Bulletin 120(1-2):203-216. DOI: 10.1016/j. marpolbul.2017.05.010.

Zhao, L., F. Gao, M. C. Boufadel, T. King, B. Robinson, K. Lee, and R. Conmy. 2017b. Oil jet with dispersant: Macro-scale hydrodynamics and tip streaming. AIChE Journal 63(11):5222-5234. DOI: 10.1002/aic.15864.

Zhao, L., M. C. Boufadel, J. Katz, G. Haspel, K. Lee, T. King, and B. Robinson. 2017c. A new mechanism of sediment attachment to oil in turbulent flows: Projectile particles. Environmental Science & Technology 51(19):11020-11028. DOI: 10.1021/acs.est.7b02032.

Zheng, L., and P. D. Yapa. 2000. Buoyant velocity of spherical and nonspherical bubbles/droplets. Journal of Hydraulic Engineering 126(11):852-854. DOI: 10.1061/(ASCE)0733-9429(2000)126:11(852).

Zheng, L., and P. D. Yapa. 2002. Modeling gas dissolution in deepwater oil/gas spills. Journal of Marine Systems 31(4):299-309. DOI: 10.1016/S0924-7963(01)00067-7.

Zheng, M., M. Ahuja, D. Bhattacharya, T. P. Clement, J. S. Hayworth, and M. Dhanasekaran. 2014. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sciences 95(2):108-117.

Zock, J. P., G. Rodríguez-Trigo, E. Rodríguez-Rodríguez, A. Espinosa, F. Pozo-Rodríguez, F. Gómez, C. Fuster, G. Castaño-Vinyals, J. M. Antó, and J. A. Barberà. 2012. Persistent respiratory symptoms in clean-up workers 5 years after the Prestige oil spill. Occupational and Environmental Medicine 69(7):508-513. DOI: 10.1136/oemed-2011-100614.

Zock, J.-P., G. Rodríguez-Trigo, E. Rodríguez-Rodríguez, A. Souto-Alonso, A. Espinosa, F. Pozo-Rodríguez, F. P. Gómez, C. Fuster, G. Castaño-Vinyals, J. M. Antó, and J. A. Barberà. 2014. Evaluation of the persistence of functional and biological respiratory health effects in clean-up workers 6 years after the Prestige oil spill. Environment International 62:72-77. DOI: 10.1016/j.envint.2013.09.020.

Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 229
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 230
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 231
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 232
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 233
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 234
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 235
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 236
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 237
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 238
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 239
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 240
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 241
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 242
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 243
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 244
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 245
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 246
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 247
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 248
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 249
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 250
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 251
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 252
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 253
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 254
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 255
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 256
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 257
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 258
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 259
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 260
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 261
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 262
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 263
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 264
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 265
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 266
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 267
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 268
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 269
Suggested Citation:"REFERENCES." National Academies of Sciences, Engineering, and Medicine. 2020. The Use of Dispersants in Marine Oil Spill Response. Washington, DC: The National Academies Press. doi: 10.17226/25161.
×
Page 270
Next: APPENDIX A: COMMITTEE AND STAFF BIOGRAPHIES »
The Use of Dispersants in Marine Oil Spill Response Get This Book
×
Buy Paperback | $75.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response options—including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools.

This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!