National Academies Press: OpenBook
« Previous: 7 Potential Next Steps to Consider for Addressing Variability
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×

References

Badylak, S. F., T. Hoppo, A. Nieponice, T. W. Gilbert, J. M. Davison, and B. A. Jobe. 2011. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: A regenerative medicine approach with a biologic scaffold. Tissue Engineering, Part A 17(11–12):1643–1650.

Bornstein, P., J. McPherson, and H. Sage. 1982. Synthesis and secretion of structural macromolecules by endothelial cells in culture. In H. L. Nossel and H. J. Vogel (eds.), Pathobiology of the endothelial cell. New York: Academic Press. Pp. 215–228.

Bruce, H., and M. Lapsley. 2014. Acquisition and interpretation of biochemical data. In W. J. Marshall, M. Lapsley, A. P. Day, and R. M. Ayling (eds.), Clinical biochemistry: Metabolic and clinical aspects, 3rd ed. London, UK: Churchill Livingstone. Pp. 6–20.

Caralla, T., C. Boehm, V. Hascall, and G. Muschler. 2012. Hyaluronan as a novel marker for rapid selection of connective tissue progenitors. Annals of Biomedical Engineering 40(12):2559–2567.

Caralla, T., P. Joshi, S. Fleury, V. Luangphakdy, K. Shinohara, H. Pan, C. Boehm, A. Vasanji, T. E. Hefferan, E. Walker, M. Yaszemski, V. Hascall, M. Zborowski, and G. F. Muschler. 2013. In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Engineering, Part A 19(1–2):125–134.

Cyranoski, D. 2018. “Reprogrammed” stem cells approved to mend human hearts for the first time. Nature 557(7707):619–620.

Dziki, J., S. Badylak, M. Yabroudi, B. Sicari, F. Ambrosio, K. Stearns, N. Turner, A. Wyse, M. L. Boninger, E. H. Brown, and J. P. Rubin. 2016. An acellular biologic scaffold treatment for volumetric muscle loss: Results of a 13-patient cohort study. NPJ Regenerative Medicine 1:16008.

Ebert, A. D., B. C. Shelley, A. M. Hurley, M. Onorati, V. Castiglioni, T. N. Patitucci, S. P. Svendsen, V. B. Mattis, J. V. McGivern, A. J. Schwab, D. Sareen, H. W. Kim, E. Cattaneo, and C. N. Svendsen. 2013. EZ spheres: A stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Research 10(3):417–427.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×

Fernández-Avilés, F., R. Sanz-Ruiz, A. M. Climent, L. Badimon, R. Bolli, D. Charron, V. Fuster, S. Janssens, J. Kastrup, H. Kim, T. F. Lüscher, J. F. Martin, P. Menasché, R. D. Simari, G. W. Stone, A. Terzic, J. T. Willerson, J. C. Wu, and the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) writing group. 2017. Global position paper on cardiovascular regenerative medicine. European Heart Journal 38(33):2532–2546.

Florea, V., A. C. Rieger, D. L. DiFede, J. El-Khorazaty, M. Natsumeda, M. N. Banerjee, B. A. Tompkins, A. Khan, I. H. Schulman, A. M. Landin, M. Mushtaq, S. Golpanian, M. H. Lowery, J. J. Byrnes, R. C. Hendel, M. G. Cohen, K. Valasaki, M. V. Pujol, E. Ghersin, R. Miki, C. Delgado, F. Abuzeid, M. Vidro-Casiano, R. G. Saltzman, D. DaFonseca, L. V. Caceres, K. N. Ramdas, A. Mendizabal, A. W. Heldman, R. D. Mitrani, and J. M. Hare. 2017. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT study). Circulation Research 121(11):1279–1290.

Gerber, T., P. Murawala, D. Knapp, W. Masselink, M. Schuez, S. Hermann, M. Gac-Santel, S. Nowoshilow, J. Kageyama, S. Khattak, J. D. Currie, J. G. Camp, E. M. Tanaka, and B. Treutlein. 2018. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362(6413):0681.

Grogan, B. F., J. R. Hsu, and the Skeletal Trauma Research Consortium. 2011. Volumetric muscle loss. Journal of the American Academy of Orthopedic Surgery 19(Suppl 1):S35–S37.

Hare, J. M., J. E. Fishman, G. Gerstenblith, D. L. DiFede Velazquez, J. P. Zambrano, V. Y. Suncion, M. Tracy, E. Ghersin, P. V. Johnston, J. A. Brinker, E. Breton, J. Davis-Sproul, I. H. Schulman, J. Byrnes, A. M. Mendizabal, M. H. Lowery, D. Rouy, P. Altman, C. Wong Po Foo, P. Ruiz, A. Amador, J. Da Silva, I. K. McNiece, A. W. Heldman, R. George, and A. Lardo. 2012. Comparison of allogeneic vs. autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. Journal of the American Medical Association 308(22):2369–2379.

Hare, J. M., D. L. DiFede A. C. Rieger, V. Florea, A. M. Landin, J. El-Khorazaty, A. Khan, M. Mushtaq, M. H. Lowery, J. J. Byrnes, R. C. Hendel, M. G. Cohen, C. E. Alfonso, K. Valasaki, M. V. Pujol, S. Golpanian, E. Ghersin, J. E. Fishman, P. Pattany, S. A. Gomes, C. Delgado, R. Miki, F. Abuzeid, M. Vidro-Casiano, C. Premer, A. Medina, V. Porras, K. E. Hatzistergos, E. Anderson, A. Mendizabal, R. Mitrani, and A. W. Heldman. 2017. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. Journal of the American College of Cardiology 69(5):526–537.

Heldman, A. W., D. L. DiFede, J. E. Fishman, J. P. Zambrano, B. H. Trachtenberg, V. Karantalis, M. Mushtaq, A. R. Williams, V. Y. Suncion, I. K. McNiece, E. Ghersin, V. Soto, G. Lopera, R. Miki, H. Willens, R. Hendel, R. Mitrani, P. Pattany, G. Feigenbaum, B. Oskouei, J. Byrnes, M. H. Lowery, J. Sierra, M. V. Pujol, C. Delgado, P. J. Gonzalez, J. E. Rodriguez, L. L. Bagno, D. Rouy, P. Altman, C. W. Foo, J. da Silva, E. Anderson, R. Schwarz, A. Mendizabal, and J. M. Hare. 2014. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. Journal of the American Medical Association 311(1):62–73.

Jessop, Z. M., A. Al-Sabah, W. R. Francis, and I. S. Whitaker. 2016. Transforming healthcare through regenerative medicine. BMC Medicine 14(1):115.

Karantalis, V., and J. M. Hare. 2015. Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research 116(8):1413–1430.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×

Karantalis, V., D. L. DiFede, G. Gerstenblith, S. Pham, J. Symes, J. P. Zambrano, J. Fishman, P. Pattany, I. McNiece, J. Conte, S. Schulman, K. Wu, A. Shah, E. Breton, J. Davis-Sproul, R. Schwarz, G. Feigenbaum, M. Mushtaq, V. Y. Suncion, A. C. Lardo, I. Borrello, A. Mendizabal, T. Z. Karas, J. Byrnes, M. Lowery, A. W. Heldman, and J. M. Hare. 2014. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circulation Research 114(8):1302–1310.

Karantalis, V., V. Y. Suncion-Loescher, L. Bagno, S. Golpanian, A. Wolf, C. Sanina, C. Premer, A. J. Kanelidis, F. McCall, B. Wang, W. Balkan, J. Rodriguez, M. Rosado, A. Morales, K. Hatzistergos, M. Natsumeda, I. Margitich, I. H. Schulman, S. A. Gomes, M. Mushtaq, D. L. DiFede, J. E. Fishman, P. Pattany, J. P. Zambrano, A. W. Heldman, and J. M. Hare. 2015. Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. Journal of the American College of Cardiology 66(18):1990–1999.

Laurencin, C. T., and Y. Khan. 2012. Regenerative engineering. Science Translational Medicine 4(160):160ed9.

Manuchehrabadi, N., Z. Gao Z, J. Zhang, H. L. Ring, Q. Shao, F. Liu, M. McDermott, A. Fok, Y. Rabin, K. G. Brockbank, M. Garwood, C. L. Haynes, and J. C. Bischof. 2017. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Science Translational Medicine 9(379):eaah4586.

Marks, P., and S. Gottlieb. 2018. Balancing safety and innovation for cell-based regenerative medicine. New England Journal of Medicine 378(10):954–959.

Menasché, P., V. Vanneaux, A. Hagège, A. Bel, B. Cholley, I. Cacciapuoti, A. Parouchev, N. Benhamouda, G. Tachdjian, L. Tosca, J. H. Trouvin, J. R. Fabreguettes, V. Bellamy, R. Guillemain, C. Suberbielle Boissel, E. Tartour, M. Desnos, and J. Larghero. 2015. Human embryonic stem cell–derived cardiac progenitors for severe heart failure treatment: First clinical case report. European Heart Journal 36(30):2011–2017.

Muschler, G. F., C. Boehm, and K. Easley. 1997. Aspiration to obtain osteoblast progenitor cells from human bone marrow: The influence of aspiration volume. Journal of Bone and Joint Surgery, American edition 79(11):1699–1709.

Muschler, G. F., R. J. Midura, and C. Nakamoto. 2003. Practical modeling concepts for connective tissue stem cell and progenitor compartment kinetics. Journal of Biomedicine and Biotechnology 2003(3):170–193.

Nguyen, P. K., E. Neofytou, J. W. Rhee, and J. C. Wu. 2016. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: A review. Journal of the American Medical Association Cardiology 1(8):953–962.

NRC (National Research Council). 2014. Convergence: Facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond. Washington, DC: The National Academies Press.

Perin, E. C., J. T. Willerson, C. J. Pepine, T. D. Henry, S. G. Ellis, D. X. Zhao, G. V. Silva, D. Lai, J. D. Thomas, M. W. Kronenberg, A. D. Martin, R. D. Anderson, J. H. Traverse, M. S. Penn, S. Anwaruddin, A. K. Hatzopoulos, A. P. Gee, D. A. Taylor, C. R. Cogle, D. Smith, L. Westbrook, J. Chen, E. Handberg, R. E. Olson, C. Geither, S. Bowman, J. Francescon, S. Baraniuk, L. B. Piller, L. M. Simpson, C. Loghin, D. Aguilar, S. Richman, C. Zierold, J. Bettencourt, S. L. Sayre, R. W. Vojvodic, S. I. Skarlatos, D. J. Gordon, R. F. Ebert, M. Kwa, L. A. Moyé, R. D. Simari, and the Cardiovascular Cell Therapy Research Network (CCTRN). 2012. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: The FOCUS–CCTRN trial. Journal of the American Medical Association 307(16):1717–1726.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×

Powell, K. A., C. Nakamoto, S. Villarruel, C. Boehm, and G. Muschler. 2007. Quantitative image analysis of connective tissue progenitors. Analytical and Quantitative Cytology and Histology 29(2):112–121.

Qadan, M. A., N. S. Piuzzi, C. Boehm, W. Bova, M. Moos, Jr., R. J. Midura, V. C. Hascall, C. Malcuit, and G. F. Muschler. 2018. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface, and adipose tissue. Cytotherapy 20(3):343–360.

Sadtler, K., K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan, A. J. Tam, C. H. Patel, B. S. Luber, H. Wang, K. R. Wagner, J. D. Powell, F. Housseau, D. M. Pardoll, and J. H. Elisseeff. 2016. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352(6283):366–370.

Seif-Naraghi, S. B., J. Singelyn, M. A. Salvatore, K. G. Osborn, J. J. Wang, U. Sampat, O. L. Kwan, G. M. Strachan, J. Wong, P. J. Schup-Magoffin, R. L. Braden, K. Bartels, J. A. DeQuach, M. Preul, A. M. Kinsey, A. N. DeMaria, N. Dib, and K. L. Christman. 2013. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Science Translational Medicine 5(173):173ra25.

Sharma, A. K., M. I. Bury, N. J. Fuller, A. J. Marks, D. M. Kollhoff, M. V. Rao, P. V. Hota, D. J. Matoka, S. L. Edassery, H. Thaker, J. F. Sarwark, J. A. Janicki, G. A. Ameer, and E. Y. Cheng. 2013. Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proceedings of the National Academy of Sciences 110(10):4003–4008.

Sharp, P. A., C. L. Cooney, M. A. Kastner, J. Lees, R. Sasisekharan, M. B. Yaffe, S. N. Bhatia, T. E. Jacks, D. A. Lauffenburger, R. Langer, P. T. Hammond, and M. Sur. 2011. The third revolution: The convergence of the life sciences, physical sciences, and engineering. Cambridge, MA: Massachusetts Institute of Technology.

Shelley, B. C., G. Gowing, and C. N. Svendsen. 2014. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue. Journal of Visualized Experiments (88):51219.

Singelyn, J. M., J. A. DeQuach, S. B. Seif-Naraghi, R. B. Littlefield, P. J. Schup-Magoffin, and K. L. Christman. 2009. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29):5409–5416.

Stroncek, D. F., J. Ren, D. W. Lee, M. Tran, S. E. Frodigh, M. Sabatino, H. Khuu, M. S. Merchant, and C. L. Mackall. 2016. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy 18(7):893–901.

Vrtovec, B., G. Poglajen, L. Lezaic, M. Sever, A. Socan, D. Domanovic, P. Cernelc, G. Torre-Amione, F. Haddad, and J. C. Wu. 2013. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 128(11 Suppl 1):S42–S49.

Wassenaar, J. W., R. Gaetani, J. J. Garcia, R. L. Braden, C. G. Luo, D. Huang, A. N. DeMaria, J. H. Omens, and K. L. Christman. 2016. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. Journal of the American College of Cardiology 67(9):1074–1086.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×
Page 85
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×
Page 86
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×
Page 87
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25371.
×
Page 88
Next: Appendix A: Workshop Agenda »
Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop Get This Book
×
Buy Paperback | $60.00 Buy Ebook | $48.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The emerging multidisciplinary field of regenerative engineering is devoted to the repair, regeneration, and replacement of damaged tissues or organs in the body. To accomplish this it uses a combination of principles and technologies from disciplines such as advanced materials science, developmental and stem cell biology, immunology, physics, and clinical translation. The term "regenerative engineering" reflects a new understanding of the use of tissue engineering for regeneration and also the growing number of research and product development efforts that incorporate elements from a variety of fields. Because regenerative engineered therapies rely on live cells and scaffolds, there are inherent challenges in quality control arising from variability in source and final products. Furthermore, each patient recipient, tissue donor, and product application is unique, meaning that the field faces complexities in the development of safe and effective new products and therapies which are not faced by developers of more conventional therapies. Understanding the many sources of variability can help reduce this variability and ensure consistent results.

The Forum on Regenerative Medicine hosted a public workshop on October 18, 2018, in Washington, DC, to explore the various factors that must be taken into account in order to develop successful regenerative engineering products. Invited speakers and participants discussed factors and sources of variability in the development and clinical application of regenerative engineering products, characteristics of high-quality products, and how different clinical needs, models, and contexts can inform the development of a product to improve patient outcomes. This publication summarizes the presentation and discussion of the workshop.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!