National Academies Press: OpenBook
« Previous: Summary
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 15
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 16
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 17
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 18
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 19
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 20
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 21
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 22
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 23
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 24
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 25
Suggested Citation:"1 Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. doi: 10.17226/25424.
×
Page 26

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

1 Introduction Coral reef managers are faced with a new decision crisis: deteriorating environmental conditions are reducing the health and functioning of coral reef ecosystems worldwide, creating a need for new management responses. Established tools for managing coral reefs are not sufficient, nor designed, to preserve coral reefs as the climate changes. Increasing episodes of sustained above- average water temperatures have increased the frequency of coral bleaching events—where corals expel their symbiotic algae—from which many corals do not recover (Hughes et al., 2018; NOAA, 2018). Increased temperatures are also linked to increasing disease prevalence, which has devastated reefs already in decline from multiple stressors (Carpenter et al., 2008; Harvell et al., 2007). As excess atmospheric carbon dioxide dissolves into the ocean and lowers the pH of seawater, corals will have a reduced ability to calcify and grow their hard skeletons that support the reef structure. These stresses will compound the impacts from local sources such as pollution, habitat destruction, overfishing, and invasive species (Bellwood et al., 2004; Pandolfi et al., 2003). Local stressors have historically been the main cause of coral reef loss and degradation, and control of local stressors is integral to continued coral persistence (McLeod et al., 2019; but see Bruno et al., 2019 for questions regarding the contribution of local management to coral reef resilience). However, even in areas free from local stress, coral reef cover is being lost (Hughes et al., 2017a). At the same time, limiting future greenhouse gas emissions is necessary to maintain a global environment within which corals can survive; average temperature increases as little as 1˚C -2˚C can lead to coral bleaching (Donner et al., 2005; Frieler et al., 2013; Hoegh- Guldberg, 1999; Sheppard, 2003; van Hooidonk et al., 2013, 2014). These powerful changes have driven interest in approaches that improve the ability of corals to survive in a high emission environment (as described in NASEM, 2019). These “coral interventions” include those that affect the corals’ genetics, reproduction, physiology, ecology, or local environment. Many arise from a growing understanding of how the coral holobiont—the coral and its symbiotic algae and the rest of the microbiome—responds, acclimatizes, and adapts to stress. These interventions will alter the reef in some way, frequently by shifting population structures, altering genes, or changing the composition of symbiont communities. Their ultimate goal is stabilization or increases in coral cover, diversity, and reef functioning. However, these changes provide very different benefits across sites and may have unintended consequences that will similarly vary across locations. A committee was convened by the National Academies of Sciences, Engineering, and Medicine to consider interventions that have the potential to increase the survival and persistence of coral reefs in deteriorating environmental conditions. This study was requested and funded by the National Oceanic and Atmospheric Administration, with additional support from the Paul G. Allen Family Foundation. In their first report (NASEM, 2019), the Committee described 23 interventions that have the potential to increase the persistence of coral reefs as environmental conditions deteriorate. While management of the entire reef community is essential for coral persistence and delivery of vital reef services, the interventions explored by the committee are PREPUBLICATION COPY 15

16 A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs those that improve the resilience of individuals, populations, or communities of corals directly. Reef-associated species are often targets of existing management practices, such as control of overfishing and invasive species. The committee has used the term “resilience” to refer to a system’s ability to both resist disturbances and recover from them (Edmunds et al., 2019; Holling, 1973; Hughes et al., 2010). To date, most of the conventional approaches used to manage reefs, such as improving water quality and managing herbivores, have tended to focus on ways that facilitate the recovery potential of reefs following disturbances, and many of these approaches have drawn their inspiration from the study of Caribbean reefs (e.g., Hughes, 1994). Most of the novel approaches and interventions discussed in this report and its predecessor (NASEM, 2019) emphasize approaches that increase the resistance of the coral organisms to disturbances (particularly climate change and disease) in order to avert widespread coral mortality, or for the community to recover to a coral-dominated state on its own through inclusion of stress-resistant types. It should be noted that the committee included some interventions which may improve coral persistence by reducing their exposure to disturbance, though may not improve their resilience. These interventions are summarized in Table 1.1. The interventions fall into the four categories: • Genetic and reproductive interventions provide an opportunity for increased selection and breeding of stress-tolerant traits that may improve the resilience of coral populations and species. In addition to naturally resilient corals or members of their microbiome, genetic manipulation may provide the opportunity to create corals that can withstand increasingly severe environmental conditions. • Physiological interventions influence the physiological responses of corals without changing their genomes (though it may be through genetic mechanisms) through improvements in health and resilience. • Coral population and community interventions seek to directly alter the composition of an entire population or communities of corals through managed relocation at varying scales—from movement within their range to across ocean basins. • Environmental interventions reduce exposure of coral reefs to increasing temperatures or acidifying waters at a local level (as opposed to methods of global climate engineering). The previous report reviews the state of science on each of the interventions covering the following categories: What it Is, How to Do It, Benefit and Goals, Current Feasibility, Potential Scale, Risk, Limitations, and Infrastructure. The report is a snapshot of a fast-moving field of research; for example, since publication of the report, Hagedorn et al. (2018) published their demonstration of the use of cryopreserved coral sperm to conduct assisted gene flow across genetically-isolated Acropora palmata populations in the Caribbean. While the information in the first report informs the framework laid out in this second report, it is important to realize that the state of science will continue to change. New ideas might arise, uncertainty might diminish, and perceptions of risks and benefits may change with new information.

Introduction 17 PREPUBLICATION COPY

18 A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs

Introduction 19 PREPUBLICATION COPY

20 A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs STUDY TASK AND APPROACH Coral interventions have varying degrees of benefits and risks, and there are varying degrees of probability and certainty around these benefits and risks. At the same time, there is a strong possibility that the risks of not intervening to increase coral persistence are growing as greenhouse gases continue to accumulate. Moreover, different interventions vary in their feasibility in different places and at different times. Whether action or inaction on specific interventions is more likely to produce coral reef gains is the heart of the decision that will need to be made in local regions across the tropical oceans. In this report, the committee builds upon its first report by outlining the necessary components of a structured decision process and providing an example framework within which to evaluate the information available about risks and benefits of novel interventions. The specific tasks of the committee are outlined in Box 1.1; this report addresses items 2 through 5. In addition to the workshops held in Miami, Florida and Honolulu, Hawaii during the development of their first report, the committee held an open meeting on October 30, 2018 in Washington, DC with experts in decision science to explore these elements of their task. BOX 1.1 Statement of Task An ad hoc study committee will be assembled to review the science and assess potential risks and benefits of ecological and genetic interventions that have potential to enhance the recovery and persistence of coral reefs threatened by rapidly deteriorating environmental conditions that are warmer, less favorable for calcification, have impaired water quality, and pose continuing disease threats. Given these environmental conditions, the committee will consider interventions to address near-future (e.g., 5-20 years) and long-term environmental scenarios as part of an overall risk assessment in an ecosystem context. The coral intervention strategies will be assessed with regard to the goal of increasing the long-term persistence and resilience of tropical coral reefs and their ecological functions. Specifically, this review shall: 1. Review and summarize scientific research on a range of intervention strategies, either designed specifically for coral or with the potential to be applied to coral, including evaluation of the state of readiness. Strategies of interest include, but are not limited to, stress-hardening, translocation of non-native coral stocks or species, manipulation of symbiotic partnerships within the coral holobiont, managed selection, genetic modification, and to the extent possible, proposed engineering solutions to promote reef persistence, such as shading/cooling during bleaching events. 2. Provide an environmental risk assessment framework for evaluating the likelihood of potential ecological benefits and harms of the novel interventions. The framework will include the following elements, as probabilistically as possible, to support decision making. • Assess the likelihood that implementation of particular intervention strategies will substantively improve the persistence and resilience of coral reefs and their ecological functions, including support of reef-associated ecosystems and fisheries, over and above conventional management regimes;

Introduction 21 • Describe the nature and likelihood of predicted risks (e.g. disease introduction; loss of reefs, ecological functions, or coral species) and potential unintended consequences (e.g., species invasions, loss of genetic diversity) and tradeoffs of specific intervention strategies; • Assess the relative harms and benefits of different interventions compared with one another and the status quo of conventional management techniques. 3. Develop a decision pathway (a conceptual sequence of events) spanning initial research, laboratory and field-based research, to implementation and monitoring of the potential interventions. The pathway will include identification of specific ecological criteria or thresholds (e.g. population or environmental tipping points such as onset of annual bleaching) that may justify implementation of a more risky intervention strategy depending on the magnitude and urgency of the degradation. Case studies may be used to illustrate how the decision pathway could guide selection of an intervention strategy under different scenarios of near-future conditions for tropical coral reef systems. 4. Identify the research needs to refine the intervention strategies and reduce uncertainties in the environmental risk assessments. The research should include activities that could increase confidence in predicted net benefits and minimize, avoid, or mitigate risks of implementation. 5. Assess interventions under near- future conditions (e.g., 5-20 years, as projected under the IPCC Representative Concentration Pathway 8.5) for Atlantic/Caribbean coral reef systems based on the risk assessment framework and available information. Intervention strategies should be assessed relative to the objectives and performance measures, identified by the committee, for sustaining coral reefs and their ecological functions. Interventions should be characterized, using designations such as "not appropriate", "needs further investigation", "feasible for field testing", "feasible for implementation. Atlantic/Caribbean coral reef systems are specified for this assessment due to their advanced state of coral reef degradation, less complex ecological conditions (e.g., smaller basin, lower diversity), and imperiled status of foundational reef building coral species, compared to the Indo-Pacific. Two reports will be produced. The first interim report will address task 1 and second report will address the other elements of the task. This study is focused on the state-of-the-science of novel intervention strategies to identify and compare potential ecological risks and benefits. Although these interventions also raise societal, policy, legal, and likely ethical implications for decision making, these considerations are beyond the scope of this review. Effectiveness of reef management and restoration activities currently underway will be considered only to the extent that they set a baseline for use in the risk assessment of the novel interventions. The committee is not tasked with developing a framework that can be immediately applied to an individual area. This is primarily because it is outside the committee’s task to consider the social, policy, legal, and ethical drivers that would be central to any management decisions. Because these drivers need to be defined and comprehensively explored with a broad set of stakeholders for any specific decision, the committee’s goal is to highlight universal concepts and best practices of structured decision making, and provide an illustrative model of a simplified reef PREPUBLICATION COPY

22 A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs and decision scenario based on an example set of interventions. In Chapter 2, the committee first reviews the interventions from the first report to assess their practical readiness and context dependencies to illuminate how managers may select interventions most suited to their situation for further assessment in a decision framework. Chapter 3 describes the best practices for structured decision making and risk assessment for taking an intervention from research to inclusion in a management strategy, and the available decision tools that have been, or might be, applied to coral reef management. In Chapter 4, the committee provides an illustrative model and decision analysis to exemplify the challenges and insights associated with decision making around coral interventions. In Chapter 5, the committee identifies research areas that would inform decision making by improving understanding of the baseline reef system, assessing risks, and managing the beneficial impacts of potential interventions. Finally, Chapter 6 highlights the tropical western Atlantic/Caribbean region as a case study for how managers may consider their individual context and objectives in an evaluation of possible intervention strategies. REEF MANAGEMENT CONTEXT The process described in this report is meant to guide a particular component of the reef management decision process, where reef managers and other decision-makers evaluate the risks and benefits of using innovative interventions within their restoration and conservation programs. Overarching questions driving the selection and implementation of interventions presented in this report begin with addressing the present status and trends of coral reefs in a jurisdiction, the needs of stakeholders, and the mandates of local, state, and federal regulatory agencies. While the committee does not incorporate these broader questions into their example framework, highlight here are the intersections with the committee’s task and other management considerations. Management objectives against which to evaluate interventions are driven by the state of the ecological community and physical environment, local priorities, and risk tolerance in a particular area as well as ethical, economic, cultural, and legal constraints. A clear articulation of objectives is a vital component of the decision process described in this report. Management agencies have the dual responsibilities of protecting both reef resources and the people who depend on them. Thus, the anticipated outcomes of any intervention will be tied to the objectives of affected human communities. Because these ecosystems provide a variety of ecological, cultural, and economic services, and are at various stages of health, the selection of interventions will vary among sites and jurisdictions. For example, to address the need for coastal protection from wave damage, coral species with massive growth morphologies might be the appropriate choice for restoration and management objectives, as they are often more resistant to wave energy, sediment, and turbidity than branching corals (Ferrario et al., 2014). Alternatively, to replace essential fish habitat through enhanced rugosity, the use of branching, table, columnar, and arborescent growth forms would be appropriate (Komyakova et al., 2018). Rugosity, or structural complexity, is also an important attribute supporting coral larval recruitment, and provides spatial refugia for UV sensitive and less competitive species and life history stages. Such differences in objectives from place to place might be a common feature of coral management. The clarification of these objectives is an important starting point in the evaluation of management options, described further in Chapter 3.

Introduction 23 A key influence on management options is the existing regulatory framework, where management authorities, such as permitting and other approvals, are distributed across local, regional, state, and/or federal entities. For example, in the United States, there are eight jurisdictions that possess and regulate reef-building corals: the states of Florida, Hawaii, and Texas; the Territories of American Samoa, Guam, and the U.S. Virgin Islands; and the Commonwealths of the Northern Mariana Islands and Puerto Rico. The U.S. federal government has sole authority and responsibility for other coral reef areas including the Pacific Remote Islands (U.S. Minor Outlying Islands) which are part of a Marine National Monument. Additionally, there are the three Freely Associated States, which receive federal funding under the Compacts of Free Association (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau). In all cases, any activity that includes U. S. federal funding must comply with the appropriate U.S. federal regulations. There are 14 laws and statutes that regulate activities involving corals in the United States (summarized in Richmond et al., 2007): • 1899 – Rivers and Harbors Act (33 U.S.C. § 403) • 1900 – The Lacey Act (16 U.S.C. §§ 3371–3378) • 1958 – Fish and Wildlife Coordination Act (16 U.S.C. §§ 661-667e) • 1969 – The National Environmental Policy Act (NEPA) (codified as amended at 42 U.S.C. § 4321 et seq.). • 1970 – Council for Environmental Quality (sec. 201 [42 U.S.C. §§ 4341–4347 and 4372– 4375] under NEPA) • 1972 – Coastal Zone Management Act (codified as amended at 16 U.S.C. §§ 1451-66) • 1973 – Endangered Species Act (16 USC §§ 1531-1544) • 1975 –Convention on International Trade of Endangered Species of Wild Fauna and Flora (CITES; the United States is a signatory) • 1977 – Clean Water Act (codified as amended at 33 U.S.C. §§ 1251-1387) • 1980 – The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (codified as amended at 42 U.S.C. §§ 9601-9675) • 1996 – Magnuson-Stevens Fishery Conservation and Management Act (codified as amended at 16 U.S.C. §§ 1801 et seq.). • 1998 – Executive Order No. 13,089, 3 C.F.R. § 193 on Coral Reef Protection • 2000 – Executive Order No. 13,158, 3 C.F.R. § 34909 on Marine Protected Areas • 2000 – Coral Reef Conservation Act (16 U.S.C. §§ 6401 et seq.) The overriding philosophy behind a set of regulations is to prevent activities that harm corals and coral reefs. This can create challenges for activities and interventions that intend to restore reef resources but that also have unintended or unknown risks. By permitting and/or funding these activities, the various federal and local agencies balance allowing activities that might damage corals with the likelihood of damage should no action be taken. Without a clear recognition of how and when inaction could result in greater resource losses than the interventions identified by the committee, there may be difficulty fitting new interventions into the existing regulatory framework. It is important that addressing the regulatory and policy framework for intervention implementation be undertaken concurrently with the scientific and management directed tasks. While this is not within the scope of this report, the ability to evaluate risks and benefits, which PREPUBLICATION COPY

24 A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs is the focus of the report, will still be important for informing future regulatory and policy changes. Social Capital and Stakeholder Buy-in Coral reefs are social-ecological systems; humans are responsible for the greatest threats to reef persistence and resilience, yet are also among the primary beneficiaries of healthy and functional coral ecosystems that provide a variety of ecosystem services and benefit streams (Anthony et al., 2015; Aswani et al., 2015; Cinner et al., 2009; Folke, 2006; Hicks et al., 2015; Kittinger et al., 2012). Under global environmental change, ecological, economic, and social elements of reefs will all be affected, and both conventional and new management strategies thus need to incorporate the environmental and human dimension. With the well-recognized economic, ecological, and cultural benefits of coral reefs to hundreds of millions of people worldwide (Burke et al., 2011), there are many stakeholder groups that are interested and involved in the decisions surrounding interventions that sustain these ecosystems. There is an important role for the social sciences to be included in future intervention study design, implementation efforts, and the collection of evaluation effectiveness metrics. Management Resources A decision pathway from theory to practice involves a multitude of stakeholders. Novel approaches have originated from the growing understanding of coral biology and ecology, which inspires new theories upon which new interventions are built. While experimentation in controlled laboratory settings can inform the potential of many intervention approaches, moving into the field improves real-world understanding. This will significantly increase capacity needs, including for data collection and development of models that support decision making. Additionally, cooperation and collaboration with resource managers in one or multiple jurisdictions will inform research priorities and ensure regulatory compliance. Coordinating and convening activities amongst managers and stakeholders help integrate management strategies, align science with policy, and facilitate buy-in from the general public. In the United States, the Coral Reef Task Force established in 1998 under Executive Order 13089 is already functioning in this convening role and can move quickly to develop guidance and lines of responsibility for intervention strategies. When developing their first report, the committee was unable to find or estimate potential costs of deploying the interventions; however, just like risks and benefits, costs are likely to vary across interventions and over time. Generally, research and development costs will be high in early stages, and can decrease as technologies are refined. For example, initial costs of selective breeding might include genotyping, husbandry, outplanting of offspring, and monitoring. Some of these costs might be able to be estimated but only in a research setting, and not at regional or global scales. Deployment after the research and development phase can require large investments in infrastructure or in operations, depending on the intervention. It is important to note that costs of deploying an intervention would be evaluated against the expected benefit, as well as the cost of inaction. It is not in the committee’s scope to do a cost-benefit analysis, but it is important to note that the ecosystem services provided by coral reefs provide high monetary value (e.g., Beck et al., 2018; Costanza et al., 2014; Storlazzi et al., 2019) and expensive

Introduction 25 approaches could be justified. For example, the Great Barrier Reef contributed an estimated $6.4 billion to the Australian economy from 2015-2016, mainly from tourism but also from fishing, recreation, and scientific activities (Deloitte Access Economics, 2017). Global estimates of the economic value of coral reefs to fisheries, tourism, coastal protection, and biodiversity value (research, conservation, and nonuse) are on the order of $30 billion (Burke et al., 2011; Cesar et al., 2003). The scale of the problem is massive; global environmental change is causing tropical reefs around the world to be susceptible to increasing loss and degradation. Reef managers will necessarily be addressing coral reef persistence at smaller scales. An important, though not essential, consideration for selecting interventions is their ability to be implemented at relatively large scales. Many small-scale efforts are possible, but expensive. Interventions that depend on coral gardening approaches will benefit by improvements made in the field of restoration. Scalability can be achieved through research, such as in the development of new treatment methods. For example, it is possible to treat individual coral polyps or colonies with antibiotics or nutritional supplements, but there are no known methods of deployment to an entire reef without expensive individual treatments or risky broadcasts to an entire reef. Ultimately, the ability to scale the wide-ranging approaches will vary. PREPUBLICATION COPY

Next: 2 Selecting Interventions for Decision Analysis »
A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs Get This Book
×
Buy Paperback | $65.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Coral reefs are critical to ocean and human life because they provide food, living area, storm protection, tourism income, and more. However, human-induced stressors, such as overfishing, sediment, pollution, and habitat destruction have threatened ocean ecosystems globally for decades. In the face of climate change, these ecosystems now face an array of unfamiliar challenges due to destructive rises in ocean temperature, acidity and sea level. These factors lead to an increased frequency of bleaching events, hindered growth, and a decreasing rate of calcification. Research on interventions to combat these relatively new stressors and a reevaluation of longstanding interventions is necessary to understand and protect coral reefs in this changing climate. Previous research on these methods prompts further questions regarding the decision making process for site-specific interventions.

A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs builds upon a previous report that reviews the state of research on methods that have been used, tested, or proposed to increase the resilience of coral reefs. This new report aims to help coral managers evaluate the specific needs of their site and navigate the 23 different interventions described in the previous report. A case study of the Caribbean, a region with low coral population plagued by disease, serves as an example for coral intervention decision making. This report provides complex coral management decision making tools, identifies gaps in coral biology and conservation research, and provides examples to help individuals and communities tailor a decision strategy to a local area.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!