National Academies Press: OpenBook
« Previous: Front Matter
Page 2
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 2
Page 3
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 3
Page 4
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 4
Page 5
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 5
Page 6
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 6
Page 7
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 7
Page 8
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 8
Page 9
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 9
Page 10
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 10
Page 11
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 11
Page 12
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 12
Page 13
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 13
Page 14
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 14
Page 15
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 15
Page 16
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 16
Page 17
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 17
Page 18
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 18
Page 19
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 19
Page 20
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 20
Page 21
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 21
Page 22
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 22
Page 23
Suggested Citation:"Contents." National Academies of Sciences, Engineering, and Medicine. 2019. Relationship Between Erodibility and Properties of Soils. Washington, DC: The National Academies Press. doi: 10.17226/25470.
×
Page 23

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

v CONTENTS SUMMARY .................................................................................................................................... 1  CHAPTER 1 ................................................................................................................................. 12  1. INTRODUCTION ................................................................................................................ 12  1.1.  Erosion Definition .......................................................................................................... 12  Internal Erosion ....................................................................................................... 13  Surface Erosion ....................................................................................................... 13  1.2.  Soil Erodibility and Constitutive Models ....................................................................... 14  1.3.  Erodibility Parameters .................................................................................................... 16  Erosion Rate ............................................................................................................ 16  Slope of Erosion Function ...................................................................................... 17  Critical Velocity/ Shear Stress ................................................................................ 17  Erosion Category .................................................................................................... 17  1.4.  Research Approach and Project Tasks ........................................................................... 18  Identification of current knowledge on erosion and soil properties ....................... 18  Identification of current soil erodibility data correlations ...................................... 18  Assessment of current and promising erosion tests ................................................ 19  Perform erosion tests with different devices using the same soils .......................... 19  Perform erosion tests using many different soils to develop the erodibility equations 19  Development of regression equations and validation ............................................. 19  Verification, synthesis and analysis of all data to propose best solution ................ 20  CHAPTER 2 ................................................................................................................................. 21  2. EXISTING EROSION TESTS ............................................................................................. 21  2.1.  Laboratory Erosion Testing ............................................................................................ 21  Erosion Function Apparatus (EFA) ........................................................................ 21  Sediment Erosion Rate Flume (SERF) ................................................................... 23  Ex-situ Scour Testing Device (ESTD) .................................................................... 24  Sediment Erosion at Depth Flume (Sedflume) ....................................................... 25  Some other flume tests ............................................................................................ 27  Jet Erosion Test (JET) ............................................................................................. 29 

vi Jet apparatus to measure the tractive resistance of cohesive channel beds ............. 33  Submerged jet test at the University of Texas ........................................................ 33  Rotating cylinder apparatus developed in University of Texas .............................. 34  Improved rotating cylinder test ........................................................................... 36  Rotating Erosion Test Apparatus (RETA) .......................................................... 37  Pinhole Erosion Test ........................................................................................... 39  Drill Hole Test ..................................................................................................... 40  Hole Erosion Test (HET) .................................................................................... 42  Slot Erosion Test (SET) ...................................................................................... 44  Stress-Controlled Erosion Apparatus .................................................................. 44  True Triaxial Piping Test Apparatus (TTPTA) ................................................... 46  Constant Gradient Piping Test Apparatus ........................................................... 46  2.2.  Field Erosion Testing ..................................................................................................... 47  Pocket Erodometer Test (PET) ............................................................................... 47  In Situ Erosion Evaluation Probe (ISEEP) ............................................................. 49  Borehole Erosion Test (BET) ................................................................................. 51  In situ Scour Testing Device (ISTD) ...................................................................... 53  CHAPTER 3 ................................................................................................................................. 55  3. EXISTING CORRELATIONS BETWEEN SOIL ERODIBILITY AND SOIL PROPERTIES ............................................................................................................................... 55  3.1.  Existing Correlations ...................................................................................................... 55  3.2.  Influence Factors on Erosion .......................................................................................... 67  Effects of Less Typically Obtained Parameters ...................................................... 67  Mineralogy and particle size distribution ........................................................ 68  Structural or Cohesion Forces ......................................................................... 71  Disturbance of the Soil Structure ..................................................................... 73  Chemical Composition of Soil ........................................................................ 74  Organic Content of Soil ................................................................................... 74  Presence of Cracks and Fissures (Micro- and Macro-Scale) ........................... 75  Wet-Dry Cycles ............................................................................................... 75  CHAPTER 4 ................................................................................................................................. 76  4. EROSION EXPERIMENTS ................................................................................................. 76  4.1.  TAMU Erosion Lab and Testing Devices ...................................................................... 76 

vii Construction of the Hole Erosion Test (HET) Apparatus ....................................... 76  Construction of the Mini-JET Apparatus ................................................................ 82  Refurbishment of the EFA machines and the TAMU Erosion Lab ........................ 83  4.2.  Test Plan Matrix ............................................................................................................. 84  4.3.  Results of Erosion Tests ................................................................................................. 87  Ensuring the Repeatability of Erosion Tests and Field Demonstration .................. 87  Ensuring the repeatability of the EFA ............................................................. 88  Ensuring the repeatability of the PET .............................................................. 93  Ensuring the repeatability of the HET ............................................................. 94  Ensuring the repeatability of the JET ............................................................ 101  Field Erosion Device Demonstration ............................................................ 106  Erosion Tests Performed Using Many Different Soils ......................................... 117  4.4.  Soil Geotechnical Properties ........................................................................................ 120  CHAPTER 5 ............................................................................................................................... 123  5. ORGANIZATION AND INTERPRETATION OF THE DATA ...................................... 123  5.1.  Development and Organization of the TAMU-Erosion ............................................... 123  5.2.  Column Contents in TAMU-Erosion ........................................................................... 128  Part 1 – Record Information ................................................................................. 128  Part 2 – Erosion Information................................................................................. 130  Part 3 – Soil Properties Information ..................................................................... 131  5.3.  TAMU-Erosion Manual ............................................................................................... 133  Description of Embedded Sheets in TAMU-Erosion ........................................... 133  Inquiry Operation Manual ..................................................................................... 135  CHAPTER 6 ............................................................................................................................... 141  6. COMPARISON OF SELECTED SOIL EROSION TESTS BY NUMERICAL SIMULATIONS ......................................................................................................................... 141  6.1.  Results of Numerical Simulation on Non-Erodible Soils ............................................ 141  CHEN4D Code ..................................................................................................... 141  JET Simulations .................................................................................................... 142  HET Simulations ................................................................................................... 146  EFA Simulations ................................................................................................... 149  BET Simulations ................................................................................................... 154  6.2.  Results of Numerical Simulation Including Erosion .................................................... 158 

viii Methodology ......................................................................................................... 158  Mesh Geometry and Soil-Water Interface ............................................................ 160  Model Development .............................................................................................. 162  EFA’s Erosion Function on the JET .............................................................. 162  EFA’s Erosion Function on the HET ............................................................ 167  EFA’s Erosion Function on the BET ............................................................. 170  Comparison and Uniformity ................................................................................. 172  CHAPTER 7 ............................................................................................................................... 174  7. CORRELATION EQUATIONS DEVELOPMENT .......................................................... 174  7.1.  Determining the Erosion Resistance Using the USCS ................................................. 174  7.2.  Plots of Critical Velocity and Shear Stress versus Mean Particle Size ........................ 191  7.3.  Deterministic (Frequentists) Regression Analysis ....................................................... 193  First Order Statistical Analysis ............................................................................. 193  Second Order Statistical Analysis ......................................................................... 202  Experimental Design ............................................................................................. 204  Model Expression .......................................................................................... 204  Measures of Statistical Significance .............................................................. 204  Probability of Over/Under-Predicting (POO/POU) ...................................... 206  Regression, Optimization, and Model Selection ................................................... 208  Critical Shear Stress ( ) ............................................................................... 208  Critical Velocity ( ) ..................................................................................... 228  Initial Slope of Erosion Rate-Shear Stress ( ) ............................................ 235  Initial Slope of Erosion Rate-Velocity ( ) .................................................. 256  Erosion Category (EC) .................................................................................. 262  7.4.  Probabilistic (Bayesian) Analysis ................................................................................ 281  Motivation ............................................................................................................. 282  Hypotheses ............................................................................................................ 283  Methodology ......................................................................................................... 283  Uncertainty quantification framework ........................................................... 283  Bayesian probabilistic calibration ................................................................. 284  Probabilistic calibration for varying data scenarios .............................................. 285  Power model for erosion category EC, EFA/Fine dataset ............................. 286 

ix Linear model for erosion category EC, EFA/Fine dataset ............................. 296  CHAPTER 8 ............................................................................................................................... 301  8. MOST ROBUST CORRELATION EQUATIONS............................................................ 301  8.1.  Differences between the EFA, the JET, and the HET .................................................. 301  8.2.  Deterministic (Frequentists’ Regression) Analysis ...................................................... 304  CHAPTER 9 ............................................................................................................................... 324  9. CONCLUSIONS AND RECOMMENDATIONS ............................................................. 324  9.1.  Chapter 1 - Introduction ............................................................................................... 324  9.2.  Chapter 2 - Existing Erosion Tests ............................................................................... 324  9.3.  Chapter 3 – Existing Correlations between Soil Erodibility and Soil Properties ......... 326  9.4.  Chapter 4 – Erosion Experiments ................................................................................. 327  9.5.  Chapter 5 – Organization and Interpretation of the Data ............................................. 327  9.6.  Chapter 6 – Comparison of Selected Soil Erosion Tests by Numerical Simulations .. 327  9.7.  Chapter 7 – Correlation Equation Development .......................................................... 328  9.8.  Chapter 8 – Most Robust Correlation Equations ......................................................... 331  9.9.  Recommendations on How to Approach the Erosion-Related Design Problems ........ 332  Step 1- Probe the TAMU-Erosion ........................................................................ 332  Step 2- Use the USCS-Erosion Charts to estimate the erosion resistance ............ 332  Step 3- Use the deterministic regression results ................................................... 333  Step 4- Use the Bayesian inference results ........................................................... 333  9.10.  Example Applications............................................................................................... 333  Gravel Site ......................................................................................................... 335  Sand Site ............................................................................................................ 335  Silt Site .............................................................................................................. 337  Clay Site ............................................................................................................ 338  9.11.  General Observations on the Effect of Geotechnical Properties on Soil Erodibility 340  REFERENCES ........................................................................................................................... 342 

x LIST OF FIGURES Figure 1. Free body diagram of a soil particle or rock block in two different stages a) no-flow condition, b) with the water flow (Briaud, 2008) ......................................................................... 12  Figure 2. Examples of erosion function (Briaud, 2013) ............................................................... 16  Figure 3. Erosion category for soils and rocks based on velocity and shear stress proposed by Briaud (2008) ................................................................................................................................ 17  Figure 4. Schematic diagram of the Erosion Function Apparatus and a photograph of the testing apparatus (Texas A&M University). ............................................................................................. 21  Figure 5. SERF apparatus at University of Florida (Trammel, 2004) .......................................... 23  Figure 6. Schematic diagram and photograph of Ex-situ Scour Testing Device .......................... 25  Figure 7. Schematic diagram of Sedflume with a Sedflume photograph ..................................... 26  Figure 8. A schematic diagram of the flume test used by Shaikh et al. (1988) ............................ 28  Figure 9. A schematic diagram of the constructed enclosed flume (Ghebreiyessus et al., 1994) 29  Figure 10. Schematic diagram of submerged JET apparatus for field testing (ASTM D5852-95) along with the photographs of lab version and in situ version of JET (Hanson and Hunt, 2007) 30  Figure 11. Stress distribution at the soil surface in Jet Erosion Test ............................................ 31  Figure 12. Jet Erosion Test: Hanson’s classification according to the erosion coefficient (Hanson and Simon, 2001; Chedid et al., 2018).......................................................................................... 32  Figure 13. Schematic diagram of the vertical jet scour test developed by Moore and Masch (1962) ....................................................................................................................................................... 34  Figure 14. Schematic diagram of the rotating cylinder test developed by Moore and Masch (1962) ....................................................................................................................................................... 35  Figure 15. A photograph of the improved rotating cylinder test (Chapuis and Gatian, 1986) ..... 37  Figure 16. A schematic and a photograph of the Rotating Erosion Testing Apparatus (RETA) at University of Florida (Bloomquist et al., 2012) ............................................................................ 39  Figure 17. A schematic diagram of the Pinhole Erosion Test apparatus (ASTM D4647) ........... 39  Figure 18. Schematic diagrams of the whole Drill Hole Test assembly along with the sample setup (Lefebvre et al., 1985) ................................................................................................................... 41  Figure 19. A schematic diagram of the HET and a photograph of the sample setup ................... 43  Figure 20. A schematic diagram of the HET and a photograph of the sample setup ................... 44  Figure 21. A schematic diagram of the stress-controlled erosion apparatus (Chang and Zhang, 2011) ............................................................................................................................................. 45  Figure 22. A schematic diagram of the TTPTA (Richards and Reddy, 2010) ............................. 46  Figure 23. A schematic presentation of the constant gradient piping test apparatus (Fleshman and Rice, 2013) .................................................................................................................................... 47  Figure 24. Schematic diagram of Pocket Erodometer Test and a photograph of the test device . 48  Figure 25. Erosion depth ranges of Pocket Erodometer Test (PET), depicted on the erosion categories proposed by EFA ......................................................................................................... 49  Figure 26. ISEEP apparatus prototype at NCSU (Gabr et al., 2013) ............................................ 50  Figure 27. A schematic diagram of Borehole Erosion (BET) test and photographs of the test at the Riverside campus at Texas A&M University (Briaud et al., 2016) .............................................. 52  Figure 28. A schematic diagram of the cylindrical ISTD concept (Zinner et al., 2016) .............. 53 

xi Figure 29. Flume test results of the critical shear stress versus natural dry density and liquid limit and the proposed erosion categories (Gibbs, 1962) ...................................................................... 56  Figure 30. Proposed charts by Arulanandan and Perry (1983) for relating erosion rate, critical shear stress, and eroding fluid concentration ......................................................................................... 60  Figure 31. Plots of critical velocity and shear stress versus the mean particle size (Briaud, 2008) ....................................................................................................................................................... 63  Figure 32. Estimated versus actual critical shear stress from the Wyoming channels (Thoman and Niezgoda, 2008) ............................................................................................................................ 65  Figure 33. Clay mineral microstructure (Mitchell, 1993 after Tovey, 1971) a- kaolinite, b- halloysite, c- montmorillonite, d- illite. ........................................................................................ 70  Figure 34. Critical velocity of water flow in different soils (Maslov, 1968; Justin 1923) ........... 71  Figure 35. Critical velocity vs. cohesion for saturated soil (Mirzhulava, 1967) .......................... 73  Figure 36. Relationship between the critical velocity and the undrained shear strength for clays 73  Figure 37. Schematic of the Hole Erosion Test assembly (Wan and Fell, 2002) ......................... 77  Figure 38. Drawing of the whole assembly in one glance (all dimensions are in mm) ................ 78  Figure 39. Drawings associated with the “Part A: End Plate” (all dimensions are in mm) .......... 79  Figure 40. Drawings associated with the “Part B: Middle Cylinder” (all dimensions are in mm)80  Figure 41. Drawings associated with the “Part C: Inlet Plate” (all dimensions are in mm) ......... 81  Figure 42. Photos taken from the HET assembly at Texas A&M University .............................. 82  Figure 43. Photos taken from the JET assembly at Texas A&M University ................................ 83  Figure 44. Erosion laboratory at Texas A&M University, showing the two EFAs and the control desk ............................................................................................................................................... 84  Figure 45. EFA test results based on velocity for ensuring the repeatability of the EFA on clay samples .......................................................................................................................................... 89  Figure 46. EFA test results based on shear stress for ensuring the repeatability of the EFA on clay samples .......................................................................................................................................... 89  Figure 47. EFA result spreadsheet for CE-1 ................................................................................. 90  Figure 48. EFA test results based on velocity for ensuring the repeatability of the EFA on silt samples .......................................................................................................................................... 90  Figure 49. EFA test results based on shear stress for ensuring the repeatability of the EFA on clay samples .......................................................................................................................................... 91  Figure 50. EFA test results based on velocity for ensuring the repeatability of the EFA on sand samples .......................................................................................................................................... 91  Figure 51. EFA test results based on shear stress for ensuring the repeatability of the EFA on sand samples .......................................................................................................................................... 92  Figure 52. EFA test results based on velocity for ensuring the repeatability of the EFA on gravel samples .......................................................................................................................................... 92  Figure 53. EFA test results based on shear stress for ensuring the repeatability of the EFA on gravel samples .......................................................................................................................................... 93  Figure 54. Erosion categories for the tested samples according to the PET Category Chart ....... 94  Figure 55. HET data for CH-1 ...................................................................................................... 95  Figure 56. HET data for CH-2 ...................................................................................................... 96  Figure 57. Erosion part of the clay HET curves plotted on the Erosion Category Chart ............. 96 

xii Figure 58. HET result spreadsheet for the sample CH-1 .............................................................. 97  Figure 59. HET data for MH-1 ..................................................................................................... 98  Figure 60. HET data for MH-2 ..................................................................................................... 98  Figure 61. Erosion part of the silt HET curves plotted on the Erosion Category Chart ............... 99  Figure 62. HET result for SH-1 .................................................................................................... 99  Figure 63. HET result for SH-2 .................................................................................................. 100  Figure 64. Erosion part of the sand HET curves plotted on the Erosion Category Chart ........... 100  Figure 65. Example of the (a) reading inputs during a JET, (b) results of a sample JET spread sheet ..................................................................................................................................................... 103  Figure 66. JET result spreadsheet for CJ-1 ................................................................................. 105  Figure 67. Photographs taken from the mechanical caliper (3 arms) in closed-arm and opened-arm conditions .................................................................................................................................... 108  Figure 68. Circulating the drilling fluid in the borehole in order to flush .................................. 108  Figure 69. Photograph of the pump and the in-line flowmeter assembly on the drill rig ........... 109  Figure 70. Clay borehole diameter profile at different stages during the BET ........................... 111  Figure 71. LBET Results - erosion function curves for each of the 2 ft. intervals in the clay site ..................................................................................................................................................... 112  Figure 72. EFA Results - erosion function curves for each of the 2 ft. intervals in the clay site 112  Figure 73. Sand borehole diameter profile at different stages during the BET .......................... 114  Figure 74. LBET Results - erosion function curves for each of the 2 ft intervals in the sand site ..................................................................................................................................................... 115  Figure 75. EFA Results - erosion function curves for each of the 2 ft intervals in the sand site 116  Figure 76. BBET Results - erosion function associated with the bottom of the sand borehole . 116  Figure 77. Page 1 of the “soil properties spread sheet” for B-7-16 (13’-15.5’) ......................... 121  Figure 78. Page 2 of the “soil properties spread sheet” for B-7-16 (13’-15.5’) ......................... 122  Figure 79. Summary chart of data compilation for TAMU-Erosion since the start of the project ..................................................................................................................................................... 125  Figure 80. An example showing how critical shear stress is obtained when erosion curve itself does not cross the horizontal axis ........................................................................................................ 127  Figure 81. An example showing how EC is obtained for a sample erosion curve – EC for this example is 2.25 ........................................................................................................................... 127  Figure 82. General view of TAMU-Erosion ............................................................................... 129  Figure 83. Record information (Part 1) of TAMU-Erosion ........................................................ 130  Figure 84. Erosion information (Part 2) of TAMU-Erosion ....................................................... 131  Figure 85. Geotechnical Properties (Part 3-Section 1) of TAMU-Erosion ................................ 132  Figure 86. Geotechnical Properties (Part 3-Section 2) of TAMU-Erosion ................................ 132  Figure 87. An image of the first sheet named as “About” in TAMU-Erosion ........................... 134  Figure 88.The image of a small part of TAMU-Erosion focusing on the embedded sheets ...... 135  Figure 89. Filtering the data with regard to the contact person/organization – In this example inquiry: Steps 1 and 2 show how to filter data to show only the data from Jean-Louis Briaud . 136  Figure 90. Filtering the data with regard to the soil type ............................................................ 136  Figure 91. Filtering the data with regard to the USCS ............................................................... 137 

xiii Figure 92. Filtering the data with regard to the USCS – In this example inquiry: Steps 1 and 2 show how to filter data to show only the low plastic clay (CL) soils out of all clay data .......... 138  Figure 93. Clearing the filters ..................................................................................................... 138  Figure 94. Filtering the data with regard to the erosion test type - In this example inquiry: Steps 1 and 2 show how to filter data to show only the EFA data .......................................................... 139  Figure 95. Filtering data with regard to the liquid limit ............................................................. 140  Figure 96. Custom AutoFilter window in the Microsoft Excel - In this example inquiry: The data is filtered to show only the liquid limit between 5% and 30% ................................................... 140  Figure 97. Photograph of large laboratory JET device used in the numerical simulations, along with a schematic diagram of that with dimensions ..................................................................... 143  Figure 98. Shear stress distribution on the soil surface from the center of the surface to the sides in different time steps ...................................................................................................................... 144  Figure 99. Average-time shear stress distribution for smooth and with 5% roughness surfaces. ..................................................................................................................................................... 144  Figure 100. Velocity results of submerged jet evolution in different time steps for the smooth surface (starting from top left to bottom right) ........................................................................... 145  Figure 101. Velocity results of submerged jet evolution in different time steps for the rough surface (starting from top left to bottom right) ........................................................................................ 146  Figure 102. Photograph and diagram of the HET used in numerical simulations ...................... 147  Figure 103. Shear stress distribution through the drilled hole along the length of the sample for both smooth and 5% rough surfaces, considering an average velocity of 2.5 m/s in the hole ... 147  Figure 104. Moody diagram (Moody, 1944) .............................................................................. 148  Figure 105. Velocity evolution for the smooth case ................................................................... 149  Figure 106. Shear stress distribution on both top surface (which is smoot) and bottom surface (which encompasses the rough soil surface) for the U = 1 m/s .................................................. 150  Figure 107. Shear stress distribution on both top surface (which is smoot) and bottom surface (which encompasses the rough soil surface) for the U = 3 m/s .................................................. 151  Figure 108. Shear stress distribution on both top surface (which is smoot) and bottom surface (which encompasses the rough soil surface) for the U = 6 m/s .................................................. 151  Figure 109. Shear stress evolution captured in six time steps, when the flow velocity in the conduit is 1 m/s (starting from top left to bottom right) .......................................................................... 152  Figure 110. Shear stress evolution captured in six time steps, when the flow velocity in the conduit is 3 m/s (starting from top left to bottom right) .......................................................................... 153  Figure 111. Shear stress evolution captured in six time steps, when the flow velocity in the conduit is 6 m/s (starting from top left to bottom right) .......................................................................... 154  Figure 112. Shear stress distribution within the circular bottom surface of the drilled hole with 1 inch, 3-inch, and 6-inch gap between the jet orifice and borehole bottom surface, when the flow rate is 90 gpm .............................................................................................................................. 155  Figure 113. Shear stress distribution along the side wall surface of the drilled hole with 1 inch, 3- inch, and 6-inch gap between the jet orifice and borehole bottom surface, when the flow rate is 90 gpm ............................................................................................................................................. 155 

xiv Figure 114. Shear stress distribution within the circular bottom surface of the drilled hole with 1 inch, 3-inch, and 6-inch gap between the jet orifice and borehole bottom surface, when the flow rate is 23 gpm .............................................................................................................................. 156  Figure 115. Shear stress distribution along the side wall surface of the drilled hole with 1 inch, 3- inch, and 6-inch gap between the jet orifice and borehole bottom surface, when the flow rate is 23 gpm ............................................................................................................................................. 157  Figure 116. An example of velocity results of jet evolution in different time steps for the rough when the gap between orifice and bottom surface is 1 inch (starting from top left to bottom right) ..................................................................................................................................................... 158  Figure 117. The procedure of the numerical simulations conducted to compare the results of the EFA with the results of the HET, the JET, and the BET ............................................................ 159  Figure 118. The axisymmetric model for the JET ...................................................................... 160  Figure 119. The axisymmetric model for the HET ..................................................................... 161  Figure 120. The axisymmetric model for the BET ..................................................................... 161  Figure 121. The scour depth versus time for observed JET & simulated JET for Sand #1 ........ 163  Figure 122. An example of the moving boundary for Sand #1 with RH = 0.5 mm. .................. 164  Figure 123. The scour depth versus time for observed JET & simulated JET for Sand #2 ........ 165  Figure 124. The scour depth versus time for observed JET & simulated JET for B-1 (4’-6’) ... 166  Figure 125. The scour depth versus time for observed JET & simulated JET for FHWA Sample 2 ..................................................................................................................................................... 167  Figure 126. The average hole diameter versus time for observed HET & simulated HET for SH-1 ..................................................................................................................................................... 168  Figure 127. An example of the moving boundary for SH-1 with RH = 0.5 mm ........................ 169  Figure 128. The average hole diameter versus time for observed HET & simulated HET for Teton Sample......................................................................................................................................... 170  Figure 129. Results of the BET numerical simulation after 20 minutes using the EFA’s erosion function ....................................................................................................................................... 171  Figure 130. An example of the moving boundary for the Riverside Sample with RH = 0.5 mm ..................................................................................................................................................... 172  Figure 131. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for fat clay (CH) soils176  Figure 132. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for lean clay (CL) soils ..................................................................................................................................................... 177  Figure 133. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for poorly grqded gravel (GP) soils .................................................................................................................................... 178  Figure 134. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for clayey gravel (GC) soils ............................................................................................................................................. 179  Figure 135. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for high plasticity silt (MH) soils ................................................................................................................................... 180  Figure 136. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for low plasticity silt (ML) soils ............................................................................................................................................. 181  Figure 137. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for low plasticity silty clay (ML-CL) soils ............................................................................................................................. 182 

xv Figure 138. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for clayey sand (SC) soils ..................................................................................................................................................... 183  Figure 139. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for clayey silty sand (SC- SM) soils ..................................................................................................................................... 184  Figure 140. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for silty sand (SM) soils ..................................................................................................................................................... 185  Figure 141. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for poorly graded sand (SP) soils ..................................................................................................................................... 186  Figure 142. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for poorly graded sand with clay (SP-SC) soils ............................................................................................................... 187  Figure 143. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for poorly graded sand with silt (SP-SM) soils ................................................................................................................ 188  Figure 144. Velocity-Erosion Rate and Shear Stress-Erosion Rate Plots for well graded sand with silt (SW-SM) soils....................................................................................................................... 189  Figure 145. Erosion Category Charts with the USCS Symbols.................................................. 190  Figure 146. Mean particle size vs. critical velocity .................................................................... 192  Figure 147. Mean particle size vs. critical shear stress ............................................................... 192  Figure 148. Flowchart diagram of the grouping procedure ........................................................ 194  Figure 149. PDF, ECDF, and Histogram Plots for Critical Velocity in the TAMU/Global Dataset ..................................................................................................................................................... 199  Figure 150. PDF, ECDF, and Histogram Plots for Critical Velocity in the TAMU/Coarse Dataset ..................................................................................................................................................... 200  Figure 151. PDF, ECDF, and Histogram Plots for Critical Velocity in the TAMU/Fine Dataset ..................................................................................................................................................... 201  Figure 152. Correlation Matrix for EFA-Fine Data .................................................................... 203  Figure 153. An example of how POU is obtained for two different correction factors ............. 207  Figure 154. Number of data in each 135 soil parameter combination groups for the TAMU/Global dataset – Critical Shear Stress ..................................................................................................... 209  Figure 155. R2 results for the “Linear Models” in TAMU/Global dataset – Critical Shear Stress ..................................................................................................................................................... 209  Figure 156. R2 results for the “Power Models” in TAMU/Global dataset – Critical Shear Stress ..................................................................................................................................................... 210  Figure 157. Number of data in each 135 combination groups for the EFA/Fine dataset – Critical Shear Stress ................................................................................................................................. 210  Figure 158. R2 results for the “Linear Models” in EFA/Fine dataset – Critical Shear Stress .... 210  Figure 159. R2 results for the “Power Models” in EFA/Fine dataset – Critical Shear Stress ..... 211  Figure 160. MSE results for “Linear Models” in EFA/Fine dataset – Critical Shear Stress ...... 211  Figure 161. MSE results for “Power Models” in EFA/Fine dataset – Critical Shear Stress ...... 212  Figure 162. Plot of POU vs. correction factor for the Group 110 (Power) - in the EFA/Fine dataset ......................................................................................................................................... 213  Figure 163. Plot of POU vs. correction factor for the Group 124 (Power) - in the EFA/Fine dataset ......................................................................................................................................... 214 

xvi Figure 164. Number of data in each 105 combination groups for the EFA/Coarse dataset – Critical Shear Stress ................................................................................................................................. 214  Figure 165. R2 results for the “Linear Models” in EFA/Coarse dataset – Critical Shear Stress 215  Figure 166. R2 results for the “Power Models” in EFA/Coarse dataset – Critical Shear Stress . 215  Figure 167. MSE results for “Linear Models” in EFA/Coarse dataset – Critical Shear Stress .. 215  Figure 168. MSE results for “Power Models” in EFA/Coarse dataset – Critical Shear Stress .. 216  Figure 169. Plot of POU vs. correction factor for the Group 77 (Power) - in the EFA/Coarse dataset ......................................................................................................................................... 218  Figure 170. Number of data in each 135 combination groups for the JET/Global dataset – Critical Shear Stress ................................................................................................................................. 219  Figure 171. Number of data in each 105 combination groups for the JET/Coarse dataset – Critical Shear Stress ................................................................................................................................. 219  Figure 172. R2 results for the “Linear Models” in JET/Global dataset – Critical Shear Stress .. 220  Figure 173. R2 results for the “Power Models” in EFA/Coarse dataset – Critical Shear Stress . 220  Figure 174. MSE results for “Linear Models” in JET/Global dataset – Critical Shear Stress ... 220  Figure 175. MSE results for “Power Models” in JET/Global dataset – Critical Shear Stress .... 221  Figure 176. Plot of POU vs. correction factor for the Group 113 (Linear) - in the JET/Global dataset ......................................................................................................................................... 223  Figure 177. Number of data in each 135 combination groups for the HET/Global dataset – Critical Shear Stress ................................................................................................................................. 224  Figure 178. Number of data in each 105 combination groups for the HET/Coarse dataset – Critical Shear Stress ................................................................................................................................. 224  Figure 179. R2 results for the “Linear Models” in HET/Global dataset – Critical Shear Stress 225  Figure 180. R2 results for the “Power Models” in HET/Global dataset – Critical Shear Stress . 225  Figure 181. MSE results for “Linear Models” in HET/Global dataset – Critical Shear Stress .. 225  Figure 182. MSE results for “Power Models” in HET/Global dataset – Critical Shear Stress .. 226  Figure 183. Plot of POU vs. correction factor for the Group 19 (Power) - in the HET/Global dataset ......................................................................................................................................... 228  Figure 184. Number of data in each 135 combination groups for the EFA/Fine dataset – Critical Velocity ....................................................................................................................................... 229  Figure 185. R2 results for the “Linear Models” in EFA/Fine dataset – Critical Velocity .......... 229  Figure 186. R2 results for the “Power Models” in EFA/Fine dataset – Critical Velocity ........... 229  Figure 187. MSE results for “Linear Models” in EFA/Fine dataset – Critical Velocity ............ 230  Figure 188. MSE results for “Power Models” in EFA/Fine dataset – Critical Velocity ............ 230  Figure 189. Plot of POU vs. correction factor for the Group 117 (Power) - in the EFA/Fine dataset ......................................................................................................................................... 232  Figure 190. Number of data in each 105 combination groups for the EFA/Coarse dataset – Critical Velocity ....................................................................................................................................... 232  Figure 191. R2 results for the “Linear Models” in EFA/Coarse dataset – Critical Velocity ...... 233  Figure 192. R2 results for the “Power Models” in EFA/Coarse dataset – Critical Velocity ....... 233  Figure 193. MSE results for “Linear Models” in EFA/Coarse dataset – Critical Velocity ........ 233  Figure 194. MSE results for “Power Models” in EFA/Coarse dataset – Critical Velocity ........ 234 

xvii Figure 195. Plot of POU vs. correction factor for the Group 27 (Power) - in the EFA/Coarse dataset ......................................................................................................................................... 235  Figure 196. Number of data in each 135 combination groups for the EFA/Fine dataset – ... 236  Figure 197. R2 results for the “Linear Models” in EFA/Fine dataset – ................................. 236  Figure 198. R2 results for the “Power Models” in EFA/Fine dataset – ................................. 237  Figure 199. MSE results for the “Power Models” in EFA/Fine dataset – ............................. 237  Figure 200. Plot of POO vs. correction factor for the Group 134 (Power) - in the EFA/Fine dataset ......................................................................................................................................... 238  Figure 201. Number of data in each 105 combination groups for the EFA/Coarse dataset – 239  Figure 202. R2 results for the “Linear Models” in EFA/Coarse dataset – ............................. 239  Figure 203. R2 results for the “Power Models” in EFA/Coarse dataset – ............................. 239  Figure 204. MSE results for the “Linear Models” in EFA/Coarse dataset – ........................ 240  Figure 205. MSE results for the “Power Models” in EFA/Coarse dataset – ......................... 240  Figure 206. Plot of POO vs. correction factor for the Group 77 (Power) - in the EFA/Coarse dataset ......................................................................................................................................... 242  Figure 207. Number of data in each 135 combination groups for the JET/Fine dataset – .... 243  Figure 208. R2 results for the “Linear Models” in JET/Fine dataset – .................................. 243  Figure 209. R2 results for the “Power Models” in JET/Fine dataset – .................................. 243  Figure 210. MSE results for the “Linear Models” in JET/Fine dataset – .............................. 244  Figure 211. MSE results for the “Power Models” in JET/Fine dataset – .............................. 244  Figure 212. Plot of POO vs. correction factor for the Group 15 (Power) - in the JET/Fine dataset ..................................................................................................................................................... 246  Figure 213. Number of data in each 105 combination groups for the JET/Coarse dataset – 246  Figure 214. R2 results for the “Linear Models” in JET/Coarse dataset – .............................. 247  Figure 215. R2 results for the “Power Models” in JET/Coarse dataset – .............................. 247  Figure 216. Plot of POO vs. correction factor for the Group 5 (Power) - in the JET/Coarse dataset ......................................................................................................................................... 248  Figure 217. Number of data in each 105 combination groups for the HET/Coarse dataset – 249  Figure 218. R2 results for the “Linear Models” in HET/Coarse dataset – ............................ 249  Figure 219. R2 results for the “Power Models” in HET/Coarse dataset – ............................. 250  Figure 220. Plot of POO vs. correction factor for the Group 40 (Power) - in the HET/Coarse dataset ......................................................................................................................................... 251  Figure 221. Number of data in each 135 combination groups for the HET/Global dataset – 251  Figure 222. R2 results for the “Linear Models” in HET/Global dataset – ............................. 252  Figure 223. R2 results for the “Power Models” in HET/Global dataset – ............................. 252  Figure 224. MSE results for the “Linear Models” in HET/Global dataset – ........................ 252  Figure 225. MSE results for the “Power Models” in HET/Global dataset – ......................... 253  Figure 226. Plot of POO vs. correction factor for the Group 108 (Power) - in the HET/Global dataset ......................................................................................................................................... 256  Figure 227. Number of data in each 135 combination groups for the EFA/Fine dataset – .. 257  Figure 228. R2 results for the “Linear Models” in EFA/Fine dataset – ................................ 257  Figure 229. R2 results for the “Power Models” in EFA/Fine dataset – ................................. 257 

xviii Figure 230. MSE results for the “Linear Models” in EFA/Fine dataset – ............................ 258  Figure 231. MSE results for the “Power Models” in EFA/Fine dataset – ............................ 258  Figure 232. Plot of POO vs. correction factor for the Group 126 (Power) - in the EFA/Fine dataset ......................................................................................................................................... 259  Figure 233. Number of data in each 105 combination groups for the EFA/Coarse dataset – ..................................................................................................................................................... 260  Figure 234. R2 results for the “Linear Models” in EFA/Coarse dataset – ............................ 260  Figure 235. R2 results for the “Power Models” in EFA/Coarse dataset – ............................. 260  Figure 236. Plot of POO vs. correction factor for the Group 86 (Power) - in the EFA/Coarse dataset ......................................................................................................................................... 262  Figure 237. Number of data in each 135 combination groups for the EFA/Fine dataset – EC .. 263  Figure 238. R2 results for the “Linear Models” in EFA/Fine dataset – EC ................................ 263  Figure 239. R2 results for the “Power Models” in EFA/Fine dataset – EC ................................ 264  Figure 240. MSE results for the “Linear Models” in EFA/Fine dataset – EC ............................ 264  Figure 241. MSE results for the “Power Models” in EFA/Fine dataset – EC ............................ 264  Figure 242. Plot of POU vs. correction factor for the Group 132 (Power) - EC in the EFA/Fine dataset ......................................................................................................................................... 266  Figure 243. Number of data in each 105 combination groups for the EFA/Coarse dataset – EC ..................................................................................................................................................... 266  Figure 244. R2 results for the “Linear Models” in EFA/Coarse dataset – EC ............................ 267  Figure 245. R2 results for the “Power Models” in EFA/Coarse dataset – EC ............................ 267  Figure 246. Plot of POU vs. correction factor for the Group 91 (Power) - EC in the EFA/Coarse dataset ......................................................................................................................................... 269  Figure 247. Number of data in each 135 combination groups for the JET/Global dataset – EC 270  Figure 248. R2 results for the “Linear Models” in JET/Global dataset – EC ............................. 270  Figure 249. R2 results for the “Power Models” in JET/Global dataset – EC .............................. 271  Figure 250. Plot of POU vs. correction factor for the Group 88 (Linear) - EC in the JET/Global dataset ......................................................................................................................................... 273  Figure 251. Number of data in each 135 combination groups for the HET/Fine dataset – EC .. 274  Figure 252. R2 results for the “Linear Models” in HET/Fine dataset – EC ................................ 274  Figure 253. R2 results for the “Power Models” in HET/Fine dataset – EC ................................ 274  Figure 254. MSE results for the “Linear Models” in HET/Fine dataset – EC ............................ 275  Figure 255. MSE results for the “Power Models” in HET/Fine dataset – EC ............................ 275  Figure 256. Plot of POU vs. correction factor for the Group 12 (Power) - EC in the HET/Fine dataset ......................................................................................................................................... 277  Figure 257. Number of data in each 105 combination groups for the HET/Coarse dataset – EC ..................................................................................................................................................... 278  Figure 258. R2 results for the “Linear Models” in HET/Coarse dataset – EC ............................ 278  Figure 259. R2 results for the “Power Models” in HET/Coarse dataset – EC ............................ 278  Figure 260. Plot of POU vs. correction factor for the Group 48 (Power) - EC in the HET/Coarse dataset ......................................................................................................................................... 281  Figure 261. Experimental observations and model predictions along variable domains, (a) soil activity, (b) water content, (c) undrained shear strength, (d) mean particle size. ....................... 287 

xix Figure 262. (a) Histogram and kernel density estimate of error (b) eCDF and Gaussian fit of error ..................................................................................................................................................... 288  Figure 263. Random samples of model parameters, (a) 0, (b) , (c) , (d) , (e) 50 ..................................................................................................................................................... 289  Figure 264. Cumulative mean of sample sequences for each parameter, (a) 0, (b) , (c) , (d) , (e) 50 ....................................................................................................................... 290  Figure 265. Cumulative standard deviation of sample sequences for each parameter, (a) 0, (b) , (c) , (d) , (e) 50 ................................................................................................ 291  Figure 266. Joint relative frequency histogram of model parameters, two at a time. ................. 292  Figure 267. Model realizations coupling with observed dataset along each variable domain, (a) soil activity, (b) water content, (c) undrained shear strength, (d) mean particle size. ....................... 294  Figure 268. Mean and standard deviations of model predictions vs. observed data, (a) soil activity, (b) water content, (c) undrained shear strength, (d) mean particle size. ..................................... 295  Figure 269. Measured EC vs. Predicted EC, based on optimization and probabilistic calibration results .......................................................................................................................................... 296  Figure 270. (a) 1,000 realizations of POU vs. correction factor, (b) Mean and HPD intervals of POU............................................................................................................................................. 296  Figure 271. Joint relative frequency histogram of model parameters, two at a time .................. 297  Figure 272. Model realizations coupling with observed dataset along each variable domain, (a) percent clay, (b) water content, (c) undrained shear strength, (d) mean particle size ................ 299  Figure 273. Mean and standard deviations of model predictions vs. observed data, (a) percent clay, (b) water content, (c) undrained shear strength, (d) mean particle size ...................................... 299  Figure 274. Measured EC vs. Predicted EC, based on optimization and probabilistic calibration results .......................................................................................................................................... 300  Figure 275. (a) 1,000 realizations of POU vs. correction factor, (b) Mean and HPD intervals of POU............................................................................................................................................. 300 

xx LIST OF TABLES Table 1. Threshold velocities and shear stress associated with each erosion category ................ 18  Table 2. Interpretation the results of the pinhole test (ASTM D4647) ......................................... 40  Table 3. Hole Erosion Test – Fell’s classification according to the erosion index (Wan and Fell, 2002) ............................................................................................................................................. 43  Table 4. Summary of all types of erosion tests in terms of their application ............................... 54  Table 5. Some of erosion tests with information about their application ..................................... 54  Table 6. Results of linear regression study on correlations between critical shear stress and void ratio (Lyle and Smerdon, 1965). ................................................................................................... 57  Table 7. Proposed regression equations linking the critical shear stress with soil properties with having void ratio included in all (Lyle and Smerdon, 1965) ........................................................ 57  Table 8. Predicted regression models for relationships between erosion rate, shear stress, bulk density, and vane shear strength (Ghebreiyessus et al., 1994) ...................................................... 62  Table 9. Regression equations for soil critical shear stress in southwest VA (Wynn et al., 2004) ....................................................................................................................................................... 64  Table 10. Influencing soil and water properties in erosion resistance of soils ............................. 68  Table 11. Critical velocity of water flow (Vcr) depending on the diameter of the particles (after Maslov, 1968 and Justin 1923) ..................................................................................................... 71  Table 12. Type of cohesion forces in fine grain soils (clayey soils) (Osipov et al., 1989) ........... 72  Table 13. Critical velocity of water flow for carbonated lean clay (Gordaniaya, 1957) .............. 74  Table 14. Solubility of different salts in water ............................................................................. 74  Table 15. Critical fluid velocity above which rock erodes depending on opening of cracks (Bogdanov et al., 1972) ................................................................................................................. 75  Table 16. Experimental test plan proposed for this project .......................................................... 85  Table 17. Testing matrix for this project ...................................................................................... 86  Table 18. Description of the soils used to ensure repeatability of erosion tests ........................... 87  Table 19. Results of the Pocket Erodometer Test (PET) on each sample .................................... 93  Table 20. JET results for the samples CJ-1 and CJ-2 ................................................................. 104  Table 21. JET results for the samples MJ-1 and MJ-2 ............................................................... 105  Table 22. JET results for the samples SJ-1 and SJ-2 .................................................................. 106  Table 23. Flow, velocity, and time for the BET at clay site ....................................................... 110  Table 24. Flow, velocity, and time for the BET at sand site ....................................................... 115  Table 25. Summary list of the tested sample .............................................................................. 118  Table 26. A selected list of contact people and organizations around the world ........................ 124  Table 27. A summary of the erosion test data in TAMU-Erosion .............................................. 125  Table 28. List of entries in TAMU-Erosion ................................................................................ 129  Table 29. List of colors used to designate each erosion test in TAMU-Erosion ........................ 130  Table 30. Detailed information on the created mesh for each erosion test ................................. 160  Table 31. Summary of the numerical simulation results ............................................................ 173  Table 32. List of the USCS categories associated with the 330 samples ................................... 175  Table 33. First order statistics results for the TAMU Spreadsheet – TAMU/Global Dataset .... 194  Table 34. First order statistics results for the TAMU Spreadsheet – TAMU/Fine Dataset ........ 195 

xxi Table 35. First order statistics results for the TAMU Spreadsheet – TAMU/Coarse Dataset .... 195  Table 36. First order statistics results for the TAMU Spreadsheet – EFA/Global Dataset ........ 195  Table 37. First order statistics results for the TAMU Spreadsheet – EFA/Fine Dataset ............ 196  Table 38. First order statistics results for the TAMU Spreadsheet – EFA/Coarse Dataset ........ 196  Table 39. First order statistics results for the TAMU Spreadsheet – HET/Global Dataset ........ 196  Table 40. First order statistics results for the TAMU Spreadsheet – HET/Fine Dataset ............ 197  Table 41. First order statistics results for the TAMU Spreadsheet – HET/Coarse Dataset ........ 197  Table 42. First order statistics results for the TAMU Spreadsheet – JET/Global Dataset ......... 197  Table 43. First order statistics results for the TAMU Spreadsheet – JET/Fine Dataset ............. 198  Table 44. First order statistics results for the TAMU Spreadsheet – JET/Coarse Dataset ......... 198  Table 45. Best simplest models to represent the erodibility parameters ..................................... 202  Table 46. Best simplest models to represent the geotechnical properties................................... 202  Table 47. Units and descriptions of the parameters used in regression analyses ....................... 208  Table 48. Selected “Power” models for critical shear stress in the EFA/Fine dataset ................ 212  Table 49. Selected “Linear” models for critical shear stress in the EFA/Coarse dataset ........... 216  Table 50. Selected “Power” models for critical shear stress in the EFA/Coarse dataset ............ 217  Table 51. Selected “Linear” models for critical shear stress in the JET/Global dataset ............. 222  Table 52. Selected “Power” models for critical shear stress in the JET/Global dataset ............. 222  Table 53. Selected “Linear” models for critical shear stress in the HET/Global dataset ........... 227  Table 54. Selected “Power” models for critical shear stress in the HET/Global dataset ............ 227  Table 55. Selected “Linear” models for critical velocity in the EFA/Fine dataset ..................... 231  Table 56. Selected “Power” models for critical velocity in the EFA/Fine dataset ..................... 231  Table 57. Selected “Linear” models for critical velocity in the EFA/Coarse dataset ................. 234  Table 58. Selected “Power” models for critical velocity in the EFA/Coarse dataset ................. 235  Table 59. Selected “Power” models for Eτ in the EFA/Fine dataset .......................................... 238  Table 60. Selected “Linear” models for Eτ in the EFA/Coarse dataset ...................................... 241  Table 61. Selected “Power” models for Eτ in the EFA/Coarse dataset ...................................... 241  Table 62. Selected “Linear” models for Eτ in the JET/Fine dataset ........................................... 245  Table 63. Selected “Power” models for Eτ in the JET/Fine dataset ............................................ 245  Table 64. Selected “Linear” models for Eτ in the JET/Coarse dataset ....................................... 248  Table 65. Selected “Power” models for Eτ in the JET/Coarse dataset ........................................ 248  Table 66. Selected “Power” models for Eτ in the HET/Coarse dataset ...................................... 250  Table 67. Selected “Linear” models for Eτ in the HET/Global dataset ...................................... 254  Table 68. Selected “Power” models for Eτ in the HET/Global dataset ...................................... 255  Table 69. Selected “Power” models for Ev in the EFA/Fine dataset .......................................... 259  Table 70. Selected “Linear” models for Ev in the EFA/Coarse dataset ...................................... 261  Table 71. Selected “Power” models for Ev in the EFA/Coarse dataset ...................................... 261  Table 72. Selected “Linear” models for EC in the EFA/Fine dataset ......................................... 265  Table 73. Selected “Power” models for EC in the EFA/Fine dataset ......................................... 265  Table 74. Selected “Linear” models for EC in the EFA/Coarse dataset ..................................... 268  Table 75. Selected “Power” models for EC in the EFA/Coarse dataset ..................................... 268  Table 76. Selected “Linear” models for EC in the JET/Global dataset ...................................... 271  Table 77. Selected “Power” models for EC in the JET/Global dataset ...................................... 272 

xxii Table 78. Selected “Linear” models for critical shear stress in the HET/Fine dataset ............... 276  Table 79. Selected “Power” models for critical shear stress in the HET/Fine dataset ............... 276  Table 80. Selected “Linear” models for critical shear stress in the HET/Coarse dataset ........... 279  Table 81. Selected “Power” models for critical shear stress in the HET/Coarse dataset ........... 280  Table 82. Selected models for critical shear stress ................................................................ 285  Table 83. Selected models for critical velocity ...................................................................... 285  Table 84. Selected models for erosion category EC ................................................................... 286  Table 85. Selected models for velocity slope ........................................................................ 286  Table 86. Selected models for shear stress slope .................................................................. 286  Table 87. Statistics of probabilistic calibrated model parameters .............................................. 293  Table 88. Model characteristics and optimization result ............................................................ 297  Table 89. Statistics of probabilistic calibrated model parameters .............................................. 298  Table 90. Comparison of the EFA, the JET, and the HET ......................................................... 302  Table 91. Proposed equations for critical shear stress ( ) based on the EFA Test data ............ 305  Table 92. Proposed equations for critical shear stress ( ) based on the JET data ..................... 307  Table 93. Proposed equations for critical shear stress ( ) based on the HET data ................... 308  Table 94. Proposed equations for critical velocity ( ) based on the EFA Test data ................. 309  Table 95. Proposed equations for shear stress slope ( ) based on the EFA Test data .............. 311  Table 96. Proposed equations for shear stress slope ( ) based on the JET data ....................... 313  Table 97. Proposed equations for shear stress slope ( ) based on the HET data ..................... 315  Table 98. Proposed equations for velocity slope ( ) based on the EFA Test data ................... 317  Table 99. Proposed equations for erosion category (EC) based on the EFA Test data .............. 319  Table 100. Proposed equations for erosion category (EC) based on the JET data ..................... 321  Table 101. Proposed equations for erosion category (EC) based on the HET data .................... 322  Table 102. Selected models for critical shear stress τc ............................................................... 329  Table 103. Selected models for critical velocity vc .................................................................... 329  Table 104. Selected models for erosion category EC ................................................................. 330  Table 105. Selected models for velocity slope Ev ....................................................................... 330  Table 106. Selected models for shear stress slope Eτ ................................................................. 330  Table 107. Selected geotechnical properties of the upper soil layer in each site ........................ 334 

xxiii ACKNOWLEDGMENTS The research reported herein was performed under NCHRP Project 24–43 by the Texas A&M University Transportation Institute (TTI). Dr. Jean-Louis Briaud, P.E., Distinguished Professor of Civil Engineering at Texas A&M University, was the Project Director and Principal Investigator. The other authors of this report are Iman Shafii, Research Assistant and Ph.D. Candidate at Texas A&M University, Dr. Zenon Medina-Cetina, Associate Professor of Civil Engineering at Texas A&M University; and Dr. Hamn-Ching Chen, Joint Professor of Civil Engineering and Ocean Engineering at Texas A&M University. The investigators wish to thank many people for their input and cooperation. They include Dr. Stephane Bonelli from the University of Grenoble, France, Dr. Anna Shidlovskaya from the University of Mines, Russia, and Mr. Tony Wahl from the US Bureau of Reclamation. Also, the authors would like to acknowledge Mr. Mostafa Bahmani and Mr. Yichuan Zhu, PhD students at Texas A&M University for their contributions to this project. The investigators would also like to acknowledge the Houston office of Fugro USA Land, as well as the College Station and Conroe offices of Terracon Consultants for providing help in many key moments during this project. Finally, the authors would like to thank the staff and lab coordinators in the geotechnical engineering program at Texas A&M University who helped during this project thereby making this study possible.

xxiv LIST OF SYMBOLS AND ABBREVIATIONS A AASHTO ASSET ASTM BAW BET CDC Cc Cu CFGB CSM D50 EC EFA ER ERT ESTD ESTP Ev Eτ FHWA GEER HEC HET IFSTTAR Soil Activity American Association of State Highway and Transportation Adjustable Shear Stress and Transport American Society for Testing and Materials Federal Waterways Engineering and Research Institute Borehole Erosion Test Centers for Disease Control and Prevention Coefficient of Curvature Coefficient of Uniformity Comite Francais des Grande Barrages Cohesive Strength Meter Mean Particle Size Erosion Category Erosion Function Apparatus Electrical Resistivity Electrical Resistivity Tomography Ex-Situ Scour Testing Device École Spéciale des Travaux Publics Initial Slope of Velocity-Erosion Rate Initial Slope of Shear Stress-Erosion Rate Federal Highway Administration Geotechnical Extreme Events Reconnaissance Hydraulic Engineering Circular Hole Erosion Test The French Institute of Science and Technology for Transport, Development and Network

xxv IRSTEA National Research Institute of Science and Technology for Environment and Agriculture ISEEP In Situ Erosion Evaluation Probe ISTD In Situ Scour Testing Device JET Jet Erosion Test KICT Korea Institute of Construction Technology LL Liquid Limit LVDT Linear Variable Differential Transformer MnDOT Minnesota Department of Transportation NCDOT North Carolina Department of Transportation NCHRP National Cooperative Highway Research Program NCSU North Carolina State University NSF National Science Foundation PC Percent Clay PCC Pearson Correlation Coefficient PET Pocket Erodometer Test PF Percent Finer than Sieve #200 PI Plasticity Index PL Plastic Limit POO Probability of Over-Predicting POU Probability of Under-Predicting PP Pocket Penetrometer Strength RELLIS Respect, Excellence, Leadership, Loyalty, Integrity, and Selfless RETA Rotating Erosion Test Apparatus SEDFlume Sediment Erosion at Depth Flume SERF Sediment Erosion Rate Flume SET Slot Erosion Test Su Undrained Shear Strength TAMU Texas A&M University

xxvi TTPTA TxDOT UNSW USACE USBR USCS USDA USGS VST Vc WC True Triaxial Piping Test Apparatus Texas Department of Transportation University of New South Wales United States Army Corps of Engineers United States Bureau of Reclamation Unified Soil Classification System United States Department of Agriculture United States Geological Survey Vane Shear Strength Critical Velocity Water Cont ent Total Unit Weight Critical Shear Stress

Next: Summary »
Relationship Between Erodibility and Properties of Soils Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s National Cooperative Highway Research Program (NCHRP) has released the pre-publication version of NCHRP Research Report 915: Relationship Between Erodibility and Properties of Soils, which provides reliable and simple equations quantifying the erodibility of soils based on soil properties.

The report a detailed analysis of the issue. In addition, the project that developed the report also produced a searchable spreadsheet that uses statistical techniques to relate geotechnical properties to soil erodibility. The spreadsheet, NCHRP Erosion, includes a searchable database that includes compiled erosion data from the literature review and a plethora of erosion tests. It contains equations which may be used to estimate the erosion resistance of soil and determine whether erosion tests are needed.

The following appendices to NCHRP Report 915 were published online in a single Appendices Report.

Appendix 1 – Erosion Test Results Spreadsheets

Appendix 2 – Geotechnical Properties Spreadsheets

Appendix 3 – First and Second Order Statically Analysis Results

Appendix 4 – Deterministic Frequentists’ Regression Analysis

Appendix 5 – Probabilistic Calibration Results

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!