National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. ACRP Web-Only Document 41: Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report. Washington, DC: The National Academies Press. doi: 10.17226/25548.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. ACRP Web-Only Document 41: Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report. Washington, DC: The National Academies Press. doi: 10.17226/25548.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. ACRP Web-Only Document 41: Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report. Washington, DC: The National Academies Press. doi: 10.17226/25548.
×
Page R3

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ACRP Web-Only Document 41: Alternative Jet Fuels Emissions Quantification Methods Creation and Validation Report Booz Allen Hamilton McLean, Virginia In association with Environmental Consulting Group Annapolis, Maryland Missouri University of Science and Technology Rolla, Missouri Csonka Aviation Consultancy, LLC Lebanon, Ohio Final Report for ACRP Project 02-80 Submitted August 2019 ACKNOWLEDGMENT This work was sponsored by the Federal Aviation Administration (FAA). It was conducted through the Airport Cooperative Research Program (ACRP), which is administered by the Transportation Research Board (TRB) of the National Academies of Sciences, Engineering, and Medicine. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FRA, FTA, Office of the Assistant Secretary for Research and Technology, PHMSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to increase the benefits that transportation contributes to society by providing leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied committees, task forces, and panels annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR ACRP Web-Only Document 41 Christoper J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs Joe Navarrete, Senior Program Officer Hanna Vagnerova, Program Associate Eileen P. Delaney, Director of Publications Natalie Barnes, Associate Director of Publications Jennifer Correro, Assistant Editor ACRP PROJECT 02-80 PANEL ACRP 2: Environment Arlyn Purcell, Port of Seattle | Seattle-Tacoma International Airport, Seattle, WA (Chair) Randolph Rodney Hadley, City of Atlanta (GA) Department of Aviation, Atlanta, GA Leonard A. Krugler, Los Angeles World Airports, Van Nuys Airport, Van Nuys, CA Eric C. Lu, Ramboll, Irvine, CA Aaron G. Stash, United Airlines, Chicago, IL Saadat A. Syed, , South Windsor, CT Thomas Cuddy, FAA Liaison Warren Gillette, FAA Liaison Christine Gerencher, TRB Liaison

Next: Table of Contents »
ACRP Web-Only Document 41: Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

One of the most challenging environmental issues facing the aviation industry today is the impact of jet fuel emissions on the global climate. The use of sustainable alternative jet fuels (SAJF) to reduce aircraft emissions will become significantly more important in coming years. Capturing the air quality benefits in a way that is useful to airports requires understanding how SAJF reduce pollutant emissions, quantifying the reduction, and demonstrating the impact through an easy-to-use tool that airports can apply to their emissions inventories.

ACRP Web-Only Document 41: Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report represents the second phase of this ACRP work. The first phase provided an understanding of how SAJF impacts aircraft emissions. This phase analyzes the data compiled in the report to quantify SAJF emission impacts.

Results of this analysis were subsequently used to develop a simplified tool that will allow airports to easily estimate emission reductions from use of SAJF at their airport. The Alternative Jet Fuel Assessment Tool and the Sustainable Alternative Jet Fuels and Emissions Reduction Fact Sheet are the two key products from ACRP 02-80.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!