National Academies Press: OpenBook
« Previous: Part 1: Cloud-Based Technologies for Neuroscience Research: Challenges and Potential Solutions
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 17
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 18
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 19
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 20
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 21
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 22
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 23
Suggested Citation:"3 Protecting Privacy in the Cloud." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
×
Page 24

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

3 Protecting Privacy in the Cloud Highlightsa • A complicated web of laws, including the General Data Protec- tion Regulation in Europe and the Health Insurance Portability and Accountability Act and the Common Rule in the United States, regulate privacy and security in research and complicate efforts to share data across geographical boundaries (Rosati). • Regulations regarding whether data can be shared are in con- stant flux and upcoming changes to the Common Rule are likely to cause confusion about sharing genomic information (Rosati). • Different frameworks and models are required to protect patient privacy depending on the design of a study, its gover- nance model, and its infrastructure (Hanson, Mackay). • Federated data sharing platforms protect data by bringing analytical tools to the data, rather than permitting download- ing the data for analysis, to allow analyses of multiple datasets without violating restrictions on transfer of personal informa- tion mandated by privacy laws (Rosati). • New approaches to informed consent are needed to enable greater data sharing and collaboration (Barch, Haas, Rosati). a These points were made by the individual workshop participants identified above. They are not intended to reflect a consensus among workshop participants. 17 PREPUBLICATION COPY—Uncorrected Proofs

18 NEUROSCIENCE DATA IN THE CLOUD Data privacy is a hot issue right now, according to Kristen Rosati, a partner at Coppersmith Brockelman, PLC. In the research community, there is broad support for open data and increased data accessibility, she said, with the acknowledgment that individual privacy must be protected. Concerns about the extent to which data sharing poses privacy risks were fueled recently by a study from scientists at the Imperial College London and the Université Catholique de Louvain in Belgium, and covered widely in the popular press, including The New York Times, demonstrating that nearly all Americans could be correctly re-identified in any “anonymized” dataset using only 15 demographic variables, such as zip code, date of birth, gender, etc. (Rocher et al., 2019). Rosati described a complicated web of laws that exist in Europe, the United States, and individual states regulating privacy and security in research. The complexity arises, she said, because of different laws from different sources that impact different institutions and different types of information. In the European Union (EU), the General Data Protection Regulation (GDPR) applies to organizations within the European Economic Area (EEA)—including EU member states plus Iceland, Liechtenstein, and Norway as well as organizations outside EEA that offer goods or services to data subjects within EEA or monitor the behavior of data subjects within EEA. The regulations govern any data that directly or indirectly identifies a living individual, and adds special protections to what it deems sensitive data such as genetic, biometric, health, and demographic data. Importantly, said Rosati, because GDPR applies restrictions to the transfer of personal data, it impacts even researchers with organizations not directly required to comply with GDPR, for example, organizations that want to collaborate with organizations in Europe. In the United States, multiple regulations add complexity to the web of laws, according to Rosati. The Health Insurance Portability and Account- ability Act (HIPAA) regulates covered entities such as health care pro- viders “and their business associates” and applies to “protected health information”; the Common Rule regulates federally funded research; the federal substance use disorder treatment regulations govern substance abuse information in a much more protective way than HIPAA does; the Food and Drug Administration (FDA) oversees clinical trials, which regulate a subset of data collected in support of drug approvals; and NIH policies and regulations provide for certificates of confidentiality. Layered on top of those regulations are state laws such as the California Consumer Protection Act and state health information confidentiality laws and state licensure requirements, said Rosati. Each of these regulations define which data are protected somewhat differently as well as what constitutes de-identified information (under HIPAA) or non-identifiable information (under the Common Rule). More- PREPUBLICATION COPY—Uncorrected Proofs

PROTECTING PRIVACY IN THE CLOUD 19 over, these regulations are in constant flux, said Rosati. For example, she said the Office for Human Research Protection and other agencies that enforce the Common Rule are expected to issue guidance soon on whether whole-genome analysis or other types of genetic information should be treated as identifiable information even if it is not paired with data ele- ments that directly identify individuals. This could widen the difference in how the Common Rule and HIPAA interpret the identifiability of data, which will likely cause substantial confusion about the sharing of genomic information, said Rosati. Rosati added that the patient privacy advocacy community is very active and has a voice in Congress about putting restrictions around the use of de-identified data without individual consent. This would be a disaster for research, she said, noting that the research community needs similar advocates to explain to the public and Congress the importance of data sharing and open access to data to advance good science. A better public policy would be to prohibit re-identification of individuals form de-identified data sets. Moreover, while security of patient information is important, Magali Haas, chief executive officer (CEO) and president of Cohen Veterans Bioscience, noted that patients are providing informed consent for a purpose, including for research. Haas and Clare Mackay, professor of imaging neuroscience at the University of Oxford, said that laws, regulations, and data access policies governing research should take participants’ perspectives into account. CURRENT PROMISING PRACTICES TO PROTECT PRIVACY One of the inspirations for this workshop was an experience described by Jonathan Cohen, the Robert Bendheim and Lynn Thoman Professor of Neuroscience at Princeton University. His group was developing methods for putting real-time image analysis of fMRI data on the cloud and wanted to test it in a clinical trial. This type of analysis is helpful, and in some instances necessary to do in the cloud because the computing requirements are so high and may be out of reach of clinical facilities with access to relevant patient populations. Because Princeton does not have a medical school, his team partnered with William Hanson at the Perelman School of Medicine at the University of Pennsylvania (Penn Med). When they were ready to start the project, however, administrators at Penn Med were con- cerned that there were no standards to ensure these data could be shared in a way that protected the privacy of patients. Hanson said there were also issues with Penn Med’s information services department and Institutional Review Board (IRB) that had to be overcome to enable moving forward with the project. He explained that health systems such as Penn Med are extremely risk averse and under constant threat of data breaches by hackers PREPUBLICATION COPY—Uncorrected Proofs

20 NEUROSCIENCE DATA IN THE CLOUD trying to fish for patient data in their systems. As the chief medical infor- mation officer at Penn Med, Hanson and his team worked to put together principles for access, use, and disclosure, starting with the principle that data sharing is in the interest of patient treatment. Patients who choose not to have their data shared must opt out. Hanson said they are now working on a framework to guide all efforts around data access, use, and disclosure of patient information. These prin- ciples fall into six domains: lawful basis, institutional mission and values, trustworthiness and accountability, risk mitigation, strong security controls, and documentation (see Figure 3-1). They plan to apply these principles to specific use cases in order to operationalize the Penn Med position and convene a data governance committee to oversee the process. Hanson said that rather than viewing these protections as obstacles, he believes they facilitate research. Many other models have also been developed to protect the privacy of patients. Mackay described three projects in the United Kingdom that have navigated the question of privacy protection in different ways: • The UK BioBank, possibly the largest cohort study in the world with 500,000 individuals, multiple data types, and multiple institu- tions, but a single Principal Investigator and single IRB.1 • The Wellcome Center for Integrative Neuroimaging (WIN), a study taking place at a single institution with multiple study types, prin- cipal investigators, and IRBs.2 • Dementias Platform UK (DPUK), a substudy of the Field platform (which also includes Health Data Research UK, or HDRUK) that is taking place at multiple institutions with multiple study types, IRBs, consent, and principal investigators.3 The message Mackay delivered to the workshop is that one size does not fit all. Each project has a different governance model and different infrastructure designed to fit the types of data gathered, the study partici- pants, and the users of the data. The UK BioBank, for example, is open by design, said Mackay. Par- ticipants consent upon enrollment to having their data shared, not only imaging data, but also a range of sensitive health and personal information. Data access is governed through a data access committee; researchers apply 1  For more information, see https://www.ukbiobank.ac.uk (accessed November 10, 2019). 2  For more information, see https://www.ndcn.ox.ac.uk/divisions/fmrib (accessed Novem- ber 10, 2019). 3  For more information, see https://www.dementiasplatform.uk (accessed November 10, 2019). PREPUBLICATION COPY—Uncorrected Proofs

PREPUBLICATION COPY—Uncorrected Proofs FIGURE 3-1  Penn Medicine’s principles for access, use, and disclosure of patient information. Penn Med is working to develop a framework for enabling data sharing while protecting the privacy of patients. NOTE: BAA = business associate agreement; HIPAA = Health Insurance Portability and Accountability Act; IS = information ser- vices; PM = Penn Medicine; SSN = Social Security number; TCPA = Telephone Consumer Protection Act. 21 SOURCE: Presented by William Hanson, September 24, 2019.

22 NEUROSCIENCE DATA IN THE CLOUD and pay an administrative fee for access, said Mackay. She added that an important aspect of the project is that there is no disclosure of any health information to the participants, which limits the ability to recruit potential participants for future studies or for participants to self-identify for future studies, since the health information that would make them eligible for the study cannot be disclosed. WIN also takes an open science approach and is building a centralized infrastructure to facilitate data sharing, in which responsibility for privacy remains with the study’s Principal Investigator, according to Mackay. A similar model is being used for the Field platform, which has 35 cohorts and more than 3 million participants, she said. The Field platform infrastructure has been developed not only to facilitate data sharing, but data aggregation and cross-cohort analyses as well. It uses a single point of entry for request- ing access to data but, like WIN, assigns responsibility for granting access to the individual data access committees. DPUK uses another model, where individual cohort owners share their data, but users are unable to download the data, said Mackay. In this model, all computation happens on the platform that holds the dataset—a sort of data playground—said Rosati. The global data platform Vivli also uses this approach as just one of its pillars of data security, said Rebecca Li, executive director of Vivli. They also require anonymized data and manage access to the platform, requiring users to have specialized expertise. Rosati also mentioned the FDA Sentinel Initiative.4 In developing their privacy rules, she said they decided to pursue a federated model where all participating institutions, both health systems and health insurance com- panies, put data into a common data model and locally retain them rather than depositing them in a central databank. In addition to protecting data, this system allows investigators to bring analytical tools to multiple ­ atasets, d enabling powerful research across different databases, she said. Mackay noted that every research cohort has a participant panel that plays an important role in determining rules regarding data access. While an individual investigator may argue that participants in his or her study did not consent to data sharing, Mackay pointed out that neither did they consent to the use of those data to further the career of one individual inves- tigator. Moreover, if a cohort sets up the governance in a way that prohibits re-identification, it may remove a participant from the opportunity to take part in a future drug trial of a potentially beneficial treatment. Indeed, said Mackay, while researchers are rightly concerned about security and privacy, the perspective of participants is equally important. As a way of combat- ting the risk aversion that prevents many researchers and institutions from 4  For more information, see https://www.fda.gov/safety/fdas-sentinel-initiative (accessed November 10, 2019). PREPUBLICATION COPY—Uncorrected Proofs

PROTECTING PRIVACY IN THE CLOUD 23 sharing data, she suggested discussing case studies of where open science provided positive benefits that could not have been realized had data access been restricted. KEY PRIVACY-RELATED ISSUES TO BE RESOLVED No federal laws in the United States prohibit re-identification of indi- viduals, said Haas, adding that this needs to be addressed at the policy and legislative levels. Rosati noted that this is a particular concern in countries like the United States, which does not have a national health system and people worry about losing health insurance, disability insurance, etc. Indi- vidual privacy also needs to be addressed with regard to employment laws, said Haas. Informed consent is a critical component in data sharing via cloud- based platforms, but there are multiple issues still to be addressed. Many participants in the privacy breakout session, including Mackay and Deanna Barch, advocated development of best practices to guide the development of consent forms for clinical trials and participation in repositories and bio- banks. Ideal consent forms enable individuals to share their data with large data-sharing platforms and other collaborative efforts. Haas added that templates for consent should use universally accepted definitions regarding what types of data are particularly sensitive in this changing landscape of regulation and what qualifications should researchers have to gain access to data. Rosati said NIH has developed template language for clinical trials and research repositories, for example, to enable sharing of genome-wide association study (GWAS) data. Barch added that consent forms are also needed that distinguish between data already collected versus data to be collected in the future. She advocated optimizing consent forms so that participants understand their rights of privacy, but consent to as many uses with which they are comfortable. To implement the use of informed consent language that would both enable data sharing and protect participants, Michael Milham, vice presi- dent of research and founding director of the Center for the Developing Brain at the Child Mind Institute, suggested including a range of use cases about how someone’s data might be used in the future. Granting agencies could require such language unless reasons are given for why it should not be required. Milham added that beyond developing best practices, mecha- nisms are needed to implement the use of consent forms that enable future use of data. Other unresolved issues discussed in the privacy breakout session over- lap with those discussed in the data management and platform governance sessions, discussed further in Chapters 4 and 6. For example, Haas sug- gested that better definitions need to be developed for what constitutes PREPUBLICATION COPY—Uncorrected Proofs

24 NEUROSCIENCE DATA IN THE CLOUD sensitive data and what qualifications should be required for an investi- gator to access shared data. Barch added that there should be some con- sequence for investigators who violate data use agreements designed to protect individuals’ privacy. Rosati noted that most data use agreements fail to specify whether an individual researcher or the institution is respon- sible if data are misused. Barch and Hanson discussed the utility of having institution-­ riented resources of common practices for data sharing and use o in agreements with commercial entities, including details such as secondary relationship governance in the case of the original company being acquired. PREPUBLICATION COPY—Uncorrected Proofs

Next: 4 Managing Data and Promoting Interoperability in the Cloud »
Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop Get This Book
×
Buy Paperback | $45.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The cloud model of data sharing has led to a vast increase in the quantity and complexity of data and expanded access to these data, which has attracted many more researchers, enabled multi-national neuroscience collaborations, and facilitated the development of many new tools. Yet, the cloud model has also produced new challenges related to data storage, organization, and protection. Merely switching the technical infrastructure from local repositories to cloud repositories is not enough to optimize data use.

To explore the burgeoning use of cloud computing in neuroscience, the National Academies Forum on Neuroscience and Nervous System Disorders hosted a workshop on September 24, 2019. A broad range of stakeholders involved in cloud-based neuroscience initiatives and research explored the use of cloud technology to advance neuroscience research and shared approaches to address current barriers. This publication summarizes the presentation and discussion of the workshop.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!