National Academies Press: OpenBook

Heritable Human Genome Editing (2020)

Chapter: References

« Previous: 5 National and International Governance of Heritable Human Genome Editing
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

References

Aach, J., J. Lunshof, E. Iyer, and G. M. Church. 2017. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6:e20674. doi:10.7554/eLife.20674.

Abou-El-Enein, M., T. Cathomen, Z. Ivics, C. H. June, M. Renner, C. K. Schneider, and G. Bauer. 2017. Human genome editing in the clinic: New challenges in regulatory benefit-risk assessment. Cell Stem Cell 21(4):427–430. doi:10.1016/j.stem.2017.09.007.

Acuna-Hidalgo, R., J. A. Veltman, and A. Hoischen. 2016. New insights into the generation and role of de novo mutations in health and disease. Genome Biology 17(1):241. doi:10.1186/s13059-016-1110-1.

Adashi, E. Y., and I. G. Cohen. 2019. Heritable genome editing: Is a moratorium needed? JAMA 322(2):104–105. doi:10.1001/jama.2019.8977.

Adashi, E. Y., I. G. Cohen, J. H. Hanna, A. M. Surani, and K. Hayashi. 2019. Stem cell–derived human gametes: The public engagement imperative. Trends in Molecular Medicine 25(3):165–167. doi:10.1016/j.molmed.2019.01.005.

Adikusuma, F., S. Piltz, M. A. Corbett, M. Turvey, S. R. McColl, K. J. Helbig, M. R. Beard, J. Hughes, R. T. Pomerantz, and P. Q. Thomas. 2018. Large deletions induced by Cas9 cleavage. Nature 560:E8–E9. doi:10.1038/s41586-018-0380-z.

Alanis-Lobato, G., J. Zohren, A. McCarthy, N. M. E. Fogarty, N. Kubikova, E. Hardman, M. Greco, D. Wells, J. M. A. Turner, and K. K Niakan. 2020. Frequent loss-ofheterozygosity in CRISPR-Cas9-edited early human embryos. bioRxiv 2020.06.05.135913. doi:10.1101/2020.06.05.135913.

Altarescu, G., B. Brooks, T. Eldar-Geva, E. J. Margalioth, A. Singer, E. Levy-Lahad, and P. Renbaum. 2008. Polar body-based preimplantation genetic diagnosis for Nacetylglutamate synthase deficiency. Fetal Diagnosis and Therapy 24(3):170–176. doi:10.1159/000151333.

ANM (Académie Nationale de Médecine). 2016. Genome editing of human germline cells and embryos. Paris, France. http://www.academie-medecine.fr/wp-content/uploads/2016/05/report-genome-editing-ANM-2.pdf.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Anzalone, A. V., P. B. Randolph, J. R. Davis, A. A. Sousa, L. W. Koblan, J. M. Levy, P. J. Chen, C. Wilson, G. A. Newby, A. Raguram, and D. R. Liu. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. doi:10.1038/s41586-019-1711-4.

Archer, N. M., N. Peterson, M. A. Clark, C. O. Buckee, L. M. Childs, and M. T. Duraising. 2018. Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition. PNAS 115(28):7350–7355. https://doi.org/10.1073/pnas.1804388115.

ASGCT (American Society of Gene and Cell Therapy). 2019. Letter to HHS Secretary Azar. https://www.asgct.org/global/documents/clinical-germline-gene-editing-letter.aspx.

Bailey, S. R., and M. V. Maus. 2019. Gene editing for immune cell therapies. Nature Biotechnology 37:1425–1434. doi:10.1038/s41587-019-0137-8.

Bay, B., H. J. Ingerslev, J. G. Lemmen, B. Degn, I. A. Rasmussen, and U. S. Kesmodel. 2016. Preimplantation genetic diagnosis: A national multicenter obstetric and neonatal followup study. Fertility and Sterility 106(6):1363–1369. doi:10.1016/j.fertnstert.2016.07.1092.

Bayefsky, M. 2018. Who should regulate preimplantation genetic diagnosis in the United States? AMA Journal of Ethics 20(12):E1160–1167. doi: 10.1001/amajethics.2018.1160.

Bayefsky, M. J. 2016. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism. Reproductive Biomedicine and Society Online 3:41–47. doi:10.1016/j.rbms.2017.01.001.

Ben Khelifa, M., R. Zouari, R. Harbuz, L. Halouani, C. Arnoult, J. Lunardi, and P. F. Ray. 2011. A new AURKC mutation causing macrozoospermia: Implications for human spermatogenesis and clinical diagnosis. Molecular Human Reproduction 17(12):762–768. doi:10.1093/molehr/gar050.

Bender, W., M. Akam, F. Karch, P. A. Beachy, M. Peifer, P. Spierer, E. B. Lewis, and D. S. Hogness. 1983. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221(4605):23–29. doi:10.1126/science.221.4605.23.

Berntsen, S., V. Soderstrom-Antilla, U. B. Wennerholm, H. Laivuori, A. Loft, N. B. Oldereid, L. B. Romundstad, C. Bergh, and A. Pinborg. 2019. The health of children conceived by ART: “The chicken or the egg?” Human Reproduction Update 25(2):137–158. doi:10.1093/humupd/dmz001.

Bibikova, M., K. Beumer, J. K. Trautman, and D. Carroll. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764. doi:10.1126/science.1079512.

Bioethics Advisory Committee, Singapore. 2018. Ethical, Legal and Social Issues Arising From Mitochondrial Genome Replacement Therapy: A Consultation Paper. https://www.bioethics-singapore.gov.sg/files/publications/consultation-papers/mitochondrial-genome-replacement-tech.pdf.

Blair, D. R., C. S. Lyttle, J. M. Mortensen, C. F. Bearden, A. B. Jensen, H. Khiabanian, R. Melamed, R. Rabadan, E. V. Bernstam, S. Brunak, L. J. Jensen, D. Nicolae, N. H. Shah, R. L. Grossman, N. J. Cox, K. P. White, and A. Rzhetsky. 2013. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155(1):70–80. doi:10.1016/j.cell.2013.08.030.

Bosley, K. S., M. Botchan, A. L. Bredenoord, D. Carroll, R. A. Charo, E. Charpentier, R. Cohen, J. Corn, J. Doudna, G. Feng, H. T. Greely, R. Isasi, W. Ji, J. S. Kim, B. Knoppers, E. Lanphier, J. Li, R. Lovell-Badge, G. S. Martin, J. Moreno, L. Naldini, M. Pera, A. C. F. Perry, J. C. Venter, F. Zhang, and Q. Zhou. 2015. CRISPR germline engineering: The community speaks. Nature Biotechnology 33(5):478–486. doi:10.1038/nbt.3227.

Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32(3):314–331.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Braude, P. 2019. Assisted reproduction techniques for avoiding inherited diseases: Practical aspects of PGD and results. Presentation to the International Commission on Clinical Use of Human Germline Genome Editing, November 19.

Bredenoord, A. L., and I. Hyun. 2017. Ethics of stem cell–derived gametes made in a dish: Fertility for everyone? EMBO Molecular Medicine 9:396–398. doi:10.15252/emmm.201607291.

Brokowski, C. 2018. Do CRISPR germline ethics statements cut it? The CRISPR Journal 1(2):115–125. doi:10.1089/crispr.2017.0024.

Brown, S. D. M., and H. V. Lad. 2019. The dark genome and pleiotropy: Challenges for precision medicine. Mammalian Genome 30(7–8):212–16. doi:10.1007/s00335-019-09813-4.

Brzeziańska, E., D. Domańska, and A. Jegier. 2014. Gene doping in sport—perspectives and risks. Biology of Sport 31(4):251–259. doi:10.5604/20831862.112093.

Burnham-Marusich, A. R., C. O. Ezeanolue, M. C. Obiefune, W. Yang, A. Osuji, A. G. Ogidi, A. T. Hunt, D. Patel, and E. E. Ezeanolue. 2016. Prevalence of sickle cell trait and reliability of self-reported status among expectant parents in Nigeria: Implications for targeted newborn screening. Public Health Genomics 19(5):298–306. doi: 10.1159/000448914.

Cacheiro, P., V. Muñoz-Fuentes, S. A. Murray, M. E. Dickinson, M. Bucan, L. M. J. Nutter, K. A. Peterson, H. Haselimashhadi, A. M. Flenniken, H. Morgan, H. Westerberg, T. Konopka, C. Hsu, A. Christiansen, D. G. Lanza, A. L. Beaudet, J. D. Heaney, H. Fuchs, V. Gailus-Durner, T. Sorg, J. Prochazka, V. Novosadova, C. J. Lelliott, H. Wardle-Jones, S. Wells, L. Teboul, H. Cater, M. Stewart, T. Hough, W. Wurst, R. Sedlacek, D. J. Adams, J. R. Seavitt, G. Tocchini-Valentini, F. Mammano, R. E. Braun, C. McKerlie, Y. Herault, M. Hrabĕ de Angelis, A. Mallon, K. C. K. Lloyd, S. D. M. Brown, H. Parkinson, T. F. Meehan, D. Smedley, The Genomics England Research Consortium, and The International Mouse Phenotyping Consortium. 2020. Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications 11:655. doi: 10.1038/s41467-020-14284-2.

Capecchi, M. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics 6:507–512. doi:10.1038/nrg1619.

Cavaliere, G. 2017. A 14-day limit for bioethics: The debate over human embryo research. BMC Medical Ethics 18:38. doi:10.1186/s12910-017-0198-5.

CEST (Commission de l’Éthique en Science et en Technologie). 2019. Genetically modified babies: Ethical issues raised by the genetic modification of germ cells and embryos. Québec City, Québec. https://www.ethique.gouv.qc.ca/media/1038/cest_modif_gene_resume_an_acc.pdf.

Chen, D., N. Sun, L. Hou, R. Kim, J. Faith, M. Aslanyan, Y. Tao, Y. Zheng, J. Fu, W. Liu, M. Kellis, and A. Clark. 2019. Human primordial germ cells are specified from lineage-primed progenitors. Cell Reports 29(13):4568–4582. doi:10.1016/j.celrep.2019.11.083.

Chen, J. S., Y. S. Dagdas, B. P. Kleinstiver, M. M. Welch, A. A. Sousa, L. B. Harrington, S. H. Sternberg, J. K. Joung, A. Yildiz, and J. A Doudna. 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676): 407–410. doi.org/10.1038/nature24268.

Chen, Y., Y. Zheng, Y. Kang, W. Yang, Y. Niu, X. Guo, Z. Tu, C. Si, H. Wang, R. Xing, X. Pu, S. H. Yang, S. Li, W. Ji, and X. J. Li. 2015. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics 24(13):3764–3774. doi:10.1093/hmg/ddv120.

CIOMS (Council for International Organizations of Medical Sciences). 2016. International ethical guidelines for health-related research involving humans. Geneva, Switzerland. https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Cioppi, F., E. Casamonti, and C. Krausz. 2019. Age-dependent de novo mutations during spermatogenesis and their consequences. Advances in Experimental Medicine and Biology 1166:29–46. doi:10.1007/978-3-030-21664-1_2.

Claussnitzer, M., J. H. Cho, R. Collins, N. J. Cox, E. T. Dermitzakis, M. E. Hurles, S. Kathiresan, E. E. Kenny, C. M. Lindgren, D. G. MacArthur, K. N. North, S. E. Plon, H. L. Rehm, N. Risch, C. N. Rotimi, J. Shendure, N. Soranzo, and M. I. McCarthy. 2020. A brief history of human disease genetics. Nature 577:179–189. doi.org/10.1038/s41586-019-1879-7

Cohen, I. G., E. Y. Adashi, S. Gerke, C. Palacios-González, and V. Ravitsky. 2020. The regulation of mitochondrial replacement techniques around the world. Annual Review of Genomics and Human Genetics 21:1. doi:10.1146/annurev-genom-111119-101815.

Cohen, J. 2019a. Did CRISPR help—or harm—the first-ever gene-edited babies? https://www.sciencemag.org/news/2019/08/did-crispr-help-or-harm-first-ever-gene-edited-babies.

Cohen, J. 2019b. Inside the circle of trust. Science 365(6452):430–437. https://science.sciencemag.org/content/365/6452/430. doi:10.1126/science.365.6452.430.

Cuchel, M., E. Bruckert, H. N. Ginsberg, F. J. Raal, R. D. Santos, R. A. Hegele, J. A. Kuivenhoven, B. G. Nordestgaard, O. S. Descamps, E. Steinhagen-Thiessen, A. Tybjærg-Hansen, G. F. Watts, M. Averna, C. Boileau, J. Borén, A. L. Catapano, J. C. Defesche, G. K. Hovingh, S. E. Humphries, P. T. Kovanen, L. Masana, P. Pajukanta, K. G. Parhofer, K. K. Ray, A. F. Stalenhoef, E. Stroes, M. R. Taskinen, A. Wiegman, O. Wiklund, M. J. Chapman, and the European Atherosclerosis Society Consensus Panel on Familial Hypercholesterolaemia. 2014. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management; A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. European Heart Journal 35(32):2146–2157. doi:10.1093/eurheartj/ehu274.

Cyranoski, D. 2019. The CRISPR-baby scandal: What’s next for human gene-editing. Nature 566:440. doi:10.1038/d41586-019-00673-1.

De Geyter, C., C. Calhaz-Jorge, M. S. Kupka, C. Wyns, E. Mocanu, T. Motrenko, G. Scaravelli, J. Smeenk, S. Vidakovic, V. Goossens, and the European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology. 2020. ART in Europe, 2020: Results generated from European registries by ESHRE. Tables SV, SVI, and SVII. Human Reproduction Open 2020(1):hoz038. doi:10.1093/hropen/hoz038.

De Rycke, M., V. Goossens, G. Kokkali, M. Meijer-Hoogeveen, E. Coonen, and C. Moutou. 2017. ESHRE PGD Consortium data collection XIV–XV: Cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013. Human Reproduction 32(10):1974–1994. doi:10.1093/humrep/dex265.

De Sanctis, V., C. Kattamis, D. Canatan, A. T. Soliman, H. Elsedfy, M. Karimi, S. Daar, Y. Wali, M. Yassin, N. Soliman, P. Sobti, S. Al Jaouni, M. El Kholy, B. Fiscina, and M. Angastiniotis. 2017. β-Thalassemia distribution in the Old World: An ancient disease seen from a historical standpoint. Mediterranean Journal of Hematology and Infectious Diseases 9(1):e2017018. doi:10.4084/MJHID.2017.018.

Delahaye, F., C. Do, Y. Kong, R. Ashkar, M. Salas, B. Tycko, R. Wapner, and F. Hughes. 2018. Genetic variants influence on the placenta regulatory landscape. PLOS Genetics 14(11):e1007785. doi.org/10.1371/journal.pgen.1007785.

Deltas, C. 2018. Digenic inheritance and genetic modifiers. Clinical Genetics 93(3):429–438. doi:10.1111/cge.13150.

Doetschman, T., R. G. Gregg, N. Maeda, M. L. Hooper, D. W. Melton, S. Thompson, and O. Smithies. 1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578. doi:10.1038/330576a0.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Doman, J. L., A. Raguram, G. A. Newby, and D. R. Liu. 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology 38:620–628. doi:10.1038/s41587-020-0414-6.

Doudna, J. A., and E. Charpentier. 2014. Genome editing: The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. doi:10.1126/science.1258096.

Doyon, Y., T. D. Vo, M. C. Mendel, S. G. Greenberg, J. Wang, D. F. Xia, J. C. Miller, F. D. Urnov, P. D. Gregory, and M. C. Holmes. 2011. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods 8:74–79. doi:10.1038/nmeth.1539.

Eckersley-Maslin, M. A., C. Alda-Catalinas, and W. Reik. 2018. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nature Reviews Molecular Cell Biology 19:436–450. doi.org/10.1038/s41580-018-0008-z.

EGE (European Group on Ethics in Science and New Technologies). 2016. Statement on gene editing. Brussels, Belgium. https://ec.europa.eu/research/ege/pdf/gene_editing_ege_statement.pdf.

Eggermann, T., G. Perez de Nanclares, E. R. Maher, I. K. Temple, Z. Tümer, D. Monk, D. J. Mackay, K. Grønskov, A. Riccio, A. Linglart, and I. Netchine. 2015. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clinical Epigenetics 7:123. doi:10.1186/s13148-015-0143-8.

Egli, D., M. V. Zuccaro, M. Kosicki, G. M. Church, A. Bradley, and M. Jasin. 2018. Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7. doi:10.1038/s41586-018-0379-5.

European Working Group on Cystic Fibrosis Genetics. 1990. Gradient of distribution in Europe of the major CF mutation and of its associated haplotype. Human Genetics 85:436–445.

Evans, J. H. 2002. Playing God? Human genetic engineering and the rationalization of public bioethical debate. Chicago, IL: University of Chicago Press.

Evans, S. J., I. Douglas, M. D. Rawlins, N. S. Wexler, S. J. Tabrizi, and L. Smeeth. 2013. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. Journal of Neurology, Neurosurgery, and Psychiatry 84(10):1156–1160. doi:10.1136/jnnp-2012-304636.

Farrell, P. M. 2008. The prevalence of cystic fibrosis in the European Union. Journal of Cystic Fibrosis 7:450–453.

FEAM (Federation of European Academies of Medicine). 2017. Human genome editing in the EU. Report of a workshop held on April 28, 2016 at the French Academy of Medicine. Brussels, Belgium. https://www.interacademies.org/publication/feam-human-genome-editing-eu.

Fletcher, J. 1971. Ethical aspects of genetic controls: Designed genetic changes in man. New England Journal of Medicine 285(14):776–783. doi:10.1056/NEJM197109302851405.

Flyamer, I. M., J. Gassler, M. Imakaev, H. B. Brandão, S. V. Ulianov, N. Abdennur, S. V. Razin, L. A. Mirny, and K. Tachibana-Konwalski. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544(7648):110–114. doi:10.1038/nature21711.

Fogarty, N. M. E., A. McCarthy, K. E. Snijders, B. E. Powell, N. Kubikova, P. Blakeley, R. Lea, K. Elder, S. E. Wamaitha, D. Kim, V. Maciulyte, J. Kleinjung, J. S. Kim, D. Wells, L. Vallier, A. Bertero, J. Turner, and K. K. Niakan. 2017. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550(7674):67–73. doi:10.1038/nature24033.

Frankel, M. S., and A. R. Chapman. 2000. Human inheritable genetic modifications: Assessing scientific, ethical, religious and policy issues. Washington, DC: American Association for the Advancement of Science.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Gao, L., K. Wu, Z. Liu, X. Yao, S. Yuan, W. Tao, L. Yi, G. Yu, Z. Hou, D. Fan, Y. Tian, J. Liu, Z. J. Chen, and J. Liu. 2018. Chromatin accessibility landscape in human early embryos and its association with evolution. Cell 173(1):248–259.e15. doi: 10.1016/j. cell.2018.02.028.

Gaudelli, N. M., D. K. Lam, H. A. Rees, N. M. Solá-Esteves, L. A. Barrera, D. A. Born, A. Edwards, J. M. Gehrke, S.-J. Lee, A. J. Liquori, R. Murray, M. S. Packer, C. Rinaldi, I. M. Slaymaker, J. Yen, L. E. Young, and G. Ciaramella. 2020. Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology 38:892–900. doi:10.1038/s41587-020-0491-6.

GEC (German Ethics Council). 2019. Intervening in the human genome. Berlin, Germany.

Genetic Alliance UK. 2016. Genome Editing Technologies: The Patient Perspective. London, U.K.

George, E. 2001. Beta-thalassemia major in Malaysia, an on-going public health problem. Medical Journal of Malaysia 60:397-400.

Golombok, S. 2017. Parenting in new family forms. Special issue edited by M. van IJzendoorn and M. Bakermans-Kranenburg. Current Opinion in Psychology 15:76–80. doi:10.1016/j. copsyc.2017.02.004.

Golombok, S. 2019. Parenting and contemporary reproductive technologies. In Handbook of Parenting: Volume 3; Being and becoming a parent, 3rd edition, edited by M. Bornstein. New York: Routledge.

Gorman, G. S., R. McFarland, J. Stewart, C. Feeney, and D. M. Turnbull. 2018. Mitochondrial donation: From test tube to clinic. The Lancet 392:1191–1192. doi:10.1016/S0140-6736(18)31868-3.

Graham, A., M. Powell, N. Taylor, D. Anderson, and R. Fitzgerald. 2013. Ethical research involving children. Florence, Italy: United Nations Children’s Fund (UNICEF) Office of Research-Innocenti.

Greely, H. T. 2018. The end of sex and the future of human reproduction. Boston, MA: Harvard University Press.

Greenfield, A., P. Braude, F. Flinter, R. Lovell-Badge, C. Ogilvie, and A. C. F. Perry. 2017. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nature Biotechnology 35: 1059–1068

Gregoire, J., J. Georgas, D. H. Saklofske, F. Van de Vijver, C. Wierzbicki, L. G. Weiss, and J. Zhu. 2008. Cultural issues in the clinical use of the WISC-IV. In WISC-IV clinical assessment and intervention, edited by A. Prifitera, D. H. Saklofske, and L. G. Weiss. Amsterdam, Netherlands: Elsevier Academic Press. Pp. 517–544.

Griesinger, G., N. Bündgen, D. Salmen, E. Schwinger, G. Gillessen-Kaesbach, and K. Diedrich. 2009. Polar body biopsy in the diagnosis of monogenic diseases: The birth of three healthy children. Deutsches Arzteblatt International 106(33):533–538. doi:10.3238/arztebl.2009.0533.

Grünewald, J., R. Zhou, S. P. Garcia, S. Iyer, C. A. Lareau, M. J. Aryee and J. K. Joung. 2019. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569:433–437. doi:10.1038/s41586-019-1161-z.

Gu, B., E. Posfai, and J. Rossant. 2018. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nature Biotechnology 36:632–637. doi:10.1038/nbt.4166.

Gu, B., E. Posfai, M. Gertsenstein, and J. Rossant. 2020. Efficient generation of large-fragment knock-in mouse models using 2-cell (2C)-homologous recombination (HR)-CRISPR. Current Protocols 10(1):e67. doi:10.1002/cpmo.67.

GUaRDIAN Consortium, S. Sivasubbu, and V. Scaria. 2019. Genomics of rare genetic diseases: Experiences from India. Human Genomics 14(1):52. doi.org:10.1186/s40246-019-0215-5.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Guilinger, J. P., V. Pattanayak, D. Reyon, S. Q. Tsai, J. D. Sander, J. K. Joung, and D. R. Liu. 2014. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nature Methods 11(4):429–435. doi:10.1038/nmeth.2845.

Guo, H., P. Zhu, L. Yan, R. Li, B. Hu, Y. Lian, J. Yan, X. Ren, S. Lin, J. Li, X. Jin, X. Shi, P. Liu, X. Wang, W. Wang, Y. Wei, X. Li, F. Guo, X. Wu, X. Fan, J. Yong, L. Wen, S. X. Xie, F. Tang, and J. Qiao. 2014. The DNA methylation landscape of human early embryos. Nature 511:606–610. doi:10.1038/nature13544.

Handyside, A. H., E. H. Kontogianni, K. Hardy, and R. M. Winston. 1990. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344(6268):768–770. doi:10.1038/344768a0.

Harbuz, R., R. Zouari, V. Pierre, M. Ben Khelifa, M. Kharouf, C. Coutton, G. Merdassi, F. Abada, J. Escoffier, Y. Nikas, F. Vialard, I. Koscinski, C. Triki, N. Sermondade, T. Schweitzer, A. Zhioua, F. Zhioua, H. Latrous, L. Halouani, M. Ouafi, M. Makni, P. S. Jouk, B. Sèle, S. Hennebicq, V. Satre, S. Viville, C. Arnoult, J. Lunardi, and P. F. Ray. 2011. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. American Journal of Human Genetics 88(3):351–361. doi:10.1016/j.ajhg.2011.02.007.

Hardy, K., A. H. Handyside, and R. M. Winston. 1989. The human blastocyst: Cell number, death, and allocation during late preimplantation development in vitro. Development 107(3):597–604.

Harper, J. C., K. Aittomaki, P. Borry, M. C. Cornel, G. de Wert, W. Dondorp, J. Geraedts, L. Gianaroli, K. Ketterson, I. Liebaers, K. Lundin, H. Mertes, M. Morris, G. Pennings, K. Sermon, C. Spits, S. Soini, A. P. A. van Montfoort, A. Veiga, J. R. Vermeesch, S. Viville, and M. Macek Jr., on behalf of the European Society of Human Reproduction and Embryology, and European Society of Human Genetics. 2018. Recent developments in genetics and medically assisted reproduction: From research to clinical applications. European Journal of Human Genetics 26(1):12–33. doi:10.1038/s41431-017-0016-z.

Hayashi, K., H. Ohta, K. Kurimoto, S. Aramaki, and M. Saitou. 2011. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532. doi:10.1016/j.cell.2011.06.052.

Hayashi, K., S. Ogushi, K. Kurimoto, S. Shimamoto, H. Ohta, and M. Saitou. 2012. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338(6109):971–975. doi:10.1126/science.1226889.

Heijligers, M., A. van Montfoort, M. Meijer-Hoogeveen, F. Broekmans, K. Bouman, I. Homminga, J. Dreesen, A. Paulussen, J. Engelen, E. Coonen, V. van der Schoot, M. van Deursen-Luijten, N. Muntjewerff, A. Peeters, R. van Golde, M. van der Hoeven, Y. Arens, and C. de Die-Smulders. 2018. Perinatal follow-up of children born after preimplantation genetic diagnosis between 1995 and 2014. Journal of Assisted Reproduction and Genetics 35(11):1995–2002. doi:10.1007/s10815-018-1286-2.

Hendriks, S., K. Peeraer, H. Bos, S. Repping, and E. A. F. Dancet. 2017. The importance of genetic parenthood for infertile men and women. Human Reproduction 32(10):2076–2087. doi:10.1093/humrep/dex256.

Henry, M. P., J. R. Hawkins, J. Boyle, and J. M. Bridger. 2019. The genomic health of human pluripotent stem cells: Genomic instability and the consequences on nuclear organization. Frontiers in Genetics 9:623. doi:10.3389/fgene.2018.00623.

Hermann, B. P., K. Cheng, A. Singh, L. Roa-De La Cruz, K. N. Mutoji, I. C. Chen, H. Gildersleeve, J. D. Lehle, M. Mayo, B. Westernströer, N. C. Law, M. J. Oatley, E. K. Velte, B. A. Niedenberger, D. Fritze, S. Silber, C. B. Geyer, J. M. Oatley, and J. R. McCarrey. 2018. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Reports 25(6):1650–1667.e8. doi:10.1016/j.celrep.2018.10.026.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Heyer, W. D., K. T. Ehmsen, and J. Liu. 2010. Regulation of homologous recombination in eukaryotes. Annual Review of Genetics 44:113–139. doi: 10.1146/annurev-genet-0517 10-150955.

HFEA (Human Fertilisation and Embryology Authority). 2011. Scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception. London, U.K. http://www.hfea.gov.uk/docs/2011-04-18_Mitochondria_review_-_final_report.PDF.

HFEA. 2013. Mitochondria replacement consultation: Advice to government. London, U.K. https://www.hfea.gov.uk/media/2618/mitochondria_replacement_consultation_-_advice_for_government.pdf.

HFEA. 2014. Third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2014 update. London, U.K. https://www.hfea.gov.uk/media/2614/third_mitochondrial_replacement_scientific_review.pdf.

HFEA. 2016. Scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2016 update. London, U.K. https://www.hfea.gov.uk/media/2611/fourth_scientific_review_mitochondria_2016.pdf.

HFEA. 2018. Fertility treatment 2014-2016: Trends and figures. London, U.K. https://www.hfea.gov.uk/media/2563/hfea-fertility-trends-and-figures-2017-v2.pdf.

Hikabe, O., N. Hamazaki, G. Nagamatsu, Y. Obata, Y. Hirao, N. Hamada, S. Shimamoto, T. Imamura, K. Nakashima, M. Saitou, and K. Hayashi. 2016. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:299–303. doi:10.1038/nature20104.

Hinxton Group. 2015. Statement on genome editing technologies and human germline genetic modification. Baltimore, MD: The Hinxton Group. http://www.hinxtongroup.org/hinxton2015_statement.pdf.

Homfray, T., and P. A. Farndon. 2015. Chapter 7. Fetal anomalies: The geneticist’s approach. In Twining’s textbook of fetal abnormalities, 3rd edition, edited by A. M. Coady and S. Bower. Pp. 139–160.

Hou Y., W. Fan, L. Yan, R. Li, Y. Lian, J. Huang, J. Li, L. Xu, F. Tang, X. S. Xie, and J. Qiao. 2013. Genome analyses of single human oocytes. Cell 155(7):1492–506. doi:10.1016/j. cell.2013.11.040.

Hoy, S. 2019. Onasemnogene abeparvovec: First global approval. Drugs 79:1255–1262. doi: 10.1007/s40265-019-01162-5.

Hsu, P. D., E. S. Lander, and F. Zhang. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010.

Huang, T. P., K. T. Zhao, S. M. Miller, N. M. Gaudelli, B. L. Oakes, C. Fellmann, D. F. Savage, and D. R. Liu. 2019. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology 37(6):626–631. doi:10.1038/s41587-019-0134-y.

Hurlbut, J. B., S. Jasanoff, K. Saha, A. Ahmed, A. Appiah, E. Bartholet, F. Baylis, G.Bennett, G. Church, I. G. Cohen, G. Daley, K. Finneran, W. Hurlbut, R. Jaenisch, L. Lwoff, J. P. Kimes, P. Mills, J. Moses, B. S. Park, E. Parens, R. Salzman, A. Saxena, H. Simmet, T. Simoncelli, O.C. Snead, K. Sunder Rajan, R. Truog, P. Williams, and C. Woopen. 2018. Building capacity for a global genome editing observatory: Conceptual challenges. Trends in Biotechnology 36(7):639–641. doi:10.1016/j.tibtech.2018.04.009.

Hustedt, N., and D. Durocher. 2017. The control of DNA repair by the cell cycle. Nature Cell Biology 19:1–9. doi: 10.1038/ncb3452.

Hyslop, L. A., P. Blakeley, L. Craven, J. Richardson, N. M. Fogarty, E. Fragouli, M. Lamb, S. E. Wamaitha, N. Prathalingam, Q. Zhang, H. O’Keefe, Y. Takeda, L. Arizzi, S. Alfarawati, H. A. Tuppen, L. Irving, D. Kalleas, M. Choudhary, D. Wells, A. P. Murdoch, D. M. Turnbull, K. K. Niakan, and M. Herbert. 2016. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534(7607):383–386. doi: 10.1038/nature18303.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

IFFS (International Federation of Fertility Societies). 2019. Global trends in reproductive policy and practice, 8th edition. Global Reproductive Health 4(1):e29 doi:10.1097/GRH.0000000000000029.

IHGSC (International Human Genome Sequencing Consortium). 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921. doi: 10.1038/35057062.

IHGSC. 2004. Finishing the euchromatic sequence of the human genome. Nature 431:931–945 doi:10.1038/nature03001.

Isasi, R., E. Kleiderman, and B. M. Knoppers. 2016. Editing policy to fit the genome? Science 351(6271):337–339. doi:10.1126/science.aad6778.

Ishikura, Y., Y. Yabuta, H. Ohta, K. Hayashi, T. Nakamura, I. Okamoto, T. Yamamoto, K. Kurimoto, K. Shirane, H. Sasaki, and M. Saitou. 2016. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Reports 17(10):2789–2804. doi:10.1016/j.celrep.2016.11.026.

ISSCR (International Society for Stem Cell Research). 2015. The ISSCR statement on human germline genome modification. Skokie, IL. https://www.isscr.org/docs/default-source/policy-documents/isscr-statement-on-human-germline-genome-modification.pdf?sfvrsn=a34fb5bf_0.

ISSCR 2016. Guidelines for stem cell research and clinical translation. Skokie, IL. https://www.isscr.org/docs/default-source/all-isscr-guidelines/guidelines-2016/isscr-guidelines-for-stem-cell-research-and-clinical-translationd67119731dff6ddbb37cff0000940c19.pdf.

Jiang, W., S. Feng, S. Huang, W. Yu, G. Li, G. Yang, Y. Liu, Y. Zhang, L. Zhang, Y. Hou, J. Chen, J. Chen, and X. Huang. 2018. BE-PLUS: A new base editing tool with broadened editing window and enhanced fidelity. Cell Research 28(8):855–861. doi:10.1038/s41422-018-0052-4.

Joung, J. K., and J. D. Sander. 2013. TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology 14(1):49–55. doi:10.1038/nrm3486.

Kaiser, J. 2019. Update: House spending panel restores U.S. ban on gene-edited babies. Science (news), June 4. doi:10.1126/science.aay1607.

Kang, J. G., J. S. Park, J. H. Ko, and Y. S. Kim. 2019. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Scientific Reports 9(1):11960. doi:10.1038/s41598-019-48130-3.

Karavani, E., O. Zuk, D. Zeevi, N. Barzilai, N. Stefanis, A. Hatzimanolis, N. Smyrnis, D. Avramopoulos, L. Kruglyak, G. Atzmon, M. Lam, T. Lencz, and S. Carmi. 2019. Screening human embryos for polygenic traits has limited utility. Cell 179(6):1424–1435. doi:10.1016/j.cell.2019.10.033.

Karvelis, T., G. Gasiunas, and V. Siksnys. 2017. Harnessing the natural diversity and in vitro evolution of Cas9 to expand the genome editing toolbox. Current Opinion in Microbiology 37:88–94. doi:10.1016/j.mib.2017.05.009.

Kasak, L., M. Punab, L. Nagirnaja, M. Grigorova, A. Minajeva, A. M. Lopes, A. M. Punab, K. I. Aston, F. Carvalho, E. Laasik, L. B. Smith, GEMINI Consortium, D. F. Conrad, and M. Laan. 2018. Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. American Journal of Human Genetics 103(2):200–212. doi. org/10.1016/j.ajhg.2018.07.005.

Kim, D., S. Bae, J. Park, E. Kim, S. Kim, H. R. Yu, J. Hwang, J. I. Kim, and J. S. Kim. 2015. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature Methods 12(3):237–243. doi:10.1038/nmeth.3284.

Kim, D., K. Luk, S. A. Wolfe, and J. S. Kim. 2019. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annual Review of Biochemistry 88:191–220. doi:10.1146/annurev-biochem-013118-111730.

Kim, Y. B., A. C. Komor, J. M. Levy, M. S. Packer, K. T. Zhao, and D. R. Liu. 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology 35(4):371–376. doi:10.1038/nbt.3803.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Kleiderman, E., V. Ravitsky, and B. M. Knoppers. 2019. The “serious” factor in germline modification. Journal of Medical Ethics 45(8):508–513.

Kleinstiver, B. P., V. Pattanayak, M. S. Prew, S. Q. Tsai, N. T. Nguyen, Z. Zheng, and J. K. Joung. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. doi:10.1038/nature16526.

KNAW (Royal Netherlands Academy of Arts and Sciences). 2016. Genome editing: Position paper of the Royal Netherlands Academy of Arts and Sciences. Amsterdam, Netherlands. https://www.knaw.nl/en/news/publications/genome-editing.

Kosicki, M., K. Tomberg, and A. Bradley. 2018. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology 36:765–771. doi:10.1038/nbt.4192.

Krausz, C., and A. Riera-Escamilla. 2018. Genetics of male infertility. Nature Reviews Urology 15:369–384. doi:10.1038/s41585-018-0003-3.

Kubota, H., and Brinster, R. L. 2018. Spermatogonial stem cells. Biology of Reproduction 99(1):52–74. doi:10.1093/biolre/ioy077.

Kuiper, D., A. Bennema, S. la Bastide-van Gemert, J. Seggers, P. Schendelaar, S. Mastenbroek, A. Hoek, M. J. Heineman, T. J. Roseboom, J. H. Kok, and M. Hadders-Algra. 2018. Developmental outcome of nine-year-old children born after PGS: Follow-up of a randomized trial. Human Reproduction 33(1):147–155. doi:10.1093/humrep/dex337.

Kurt, I. C., R. Zhou, S. Iyer, S. P. Garcia, B. R. Miller, L. M. Langner, J. Grünewald, and J. K. Joung. 2020. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology. doi:10.1038/s41587-020-0609-x.

Lander, E. S., F. Baylis, F. Zhang, E. Charpentier, P. Berg, C. Bourgain, B. Friedrich, J. K. Joung, J. Li, D. Liu, L. Naldini, J. B. Nie, R. Qiu, B. Schoene-Seifert, F. Shao, S. Terry, W. Wei, and E. L. Winnacker. 2019. Adopt a moratorium on heritable genome editing. Nature 567(7747):165–168. doi:10.1038/d41586-019-00726-5.

Lanphier, E., F. Urnov, S. E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519(7544):410–411. doi:10.1038/519410a.

Lea, R., and K. Niakan. 2019. Human germline genome editing. Nature Cell Biology 21(12):1479–1489. doi:10.1038/s41556-019-0424-0.

Leaver, M., and D. Wells. 2020. Non-invasive preimplantation genetic testing (niPGT): The next revolution in reproductive genetics? Human Reproduction Update 26(1):16–42. doi:10.1093/humupd/dmz033.

Lee, H. K., H. E. Smith, C. Liu, M. Willi, and L. Hennighausen. 2020. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos. Communications Biology 3:19. doi:10.1038/s42003-019-0745-3.

Leopoldina (Leopoldina, Acatech, DFG, and Academien Union). 2015. The opportunities and limits of genome editing. https://www.leopoldina.org/en/publications/detailview/publication/chancen-und-grenzen-des-genome-editing-2015/.

Li, F., Z. An, and Z. Zhang. 2019. The dynamic 3D genome in gametogenesis and early embryonic development. Cells 8(8):788. doi:10.3390/cells8080788.

Li, G., Y. Liu, Y. Zeng, J. Li, L. Wang, G. Yang, D. Chen, X. Shang, J. Chen, X. Huang, and J. Liu. 2017. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein & Cell 8(10):776–779. doi:10.1007/s13238-017-0458-7.

Li, H., Y. Yang, W. Hong, M. Huang, M. Wu, and X. Zhao. 2020. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduction and Targeted Therapy 5:1. doi:10.1038/s41392-019-0089-y.

Li, L., F. Guo, Y. Gao, Y. Ren, P. Yuan, L. Yan, R. Li, Y. Lian, J. Li, B. Hu, J. Gao, L. Wen, F. Tang, and J. Qiao. 2018. Single-cell multi-omics sequencing of human early embryos. Nature Cell Biology 20:847–858. doi:10.1038/s41556-018-0123-2.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Liang, D., N. M. Gutierrez, T. Chen, Y. Lee, , S. Park, H. Ma, A. Koski, R. Ahmed, H. Darby, Y. Li, C. Van Dyken, A. Mikhalchenko, T. Gonmanee, T. Hayama, H. Zhao, K. Wu, J. Zhang, Z. Hou, J. Park, C. Kim, J. Gong, Y. Yuan, Y. Gu, Y. Shen, S. B. Olson, H. Yang, D. Battaglia, T. O’Leary, S. A. Krieg, D. M. Lee, D. H. Wu, P. B. Duell, S. Kual, J. Kim, S. B. Heitner, E. Kang, Z. Chen, P. Amato, and S. Mitalipov. 2020 Frequent gene conversion in human embryos induced by double strand breaks. bioRxiv 2020.06.19.162214. doi:10.1101/2020.06.19.162214.

Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, X. Xie, Y. Chen, Y. Li, Y. Sun, Y. Bai, Z. Songyang, W. Ma, C. Zhou, and J. Huang. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein and Cell 6(5):363–372. doi:10.1007/s13238-015-0153-5.

Liu, L., L. Leng, C. Liu, C. Lu, Y. Yuan, L. Wu, F. Gong, S. Zhang, X. Wei, M. Wang, L. Zhao, L. Hu, J. Wang, H. Yang, S. Zhu, F. Chen, G. Lu, Z. Shang, and G. Lin. 2019a. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nature Communications 10:364. doi:10.1038/s41467-018-08244-0.

Liu, M., S. Rehman, X. Tang, K. Gu, Q. Fan, D. Chen, and W. Ma. 2019b. Methodologies for improving HDR efficiency. Frontiers in Genetics 9:691. doi:10.3389/fgene.2018.00691.

Liu, Y., X. Li, S. He, S. Huang, C. Li, Y. Chen, Z. Liu, X. Huang and X. Wang. 2020. Efficient generation of mouse models with the prime editing system. Cell Discovery 6:27. doi:10.1038/s41421-020-0165-z.

Lochmüller, H., J. Torrent i Farnell, Y. Le Cam, A. H. Jonker, L. P. L. Lau, G. Baynam, P. Kaufmann, H. J. S. Dawkins, P. Lasko, C. P. Austin, and K. M. Boycott, on behalf of the IRDiRC Consortium Assembly. 2017. The International Rare Diseases Research Consortium: Policies and guidelines to maximize impact. European Journal of Human Genetics 25:1293–1302. doi.org/10.1038/s41431-017-0008-z.

Ma, F., Y. Yang, X. Li, F. Zhou, C. Gao, M. Li, and L. Gao. 2013. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS One 8(1):e54685. doi:10.1371/journal.pone.0054685.

Ma, H., N. Marti-Gutierrez, S. W. Park, J. Wu, T. Hayama, H. Darby, C. Van Dyken, Y. Li, A. Koski, D. Liang, K. Suzuki, Y. Gu, J. Gong, X. Xu, R. Ahmed, Y. Lee, E. Kang, D. Ji, A. R. Park, D. Kim, S.-T. Kim, S. B. Heitner, D. Battaglia, S. A. Krieg, D. M. Lee, D. H. Wu, D. P. Wolf, P. Amato, S. Kaul, J. C. Izpisua Belmonte, J.-S. Kim, and S. Mitalipov. 2018. Ma et al. reply. Nature 560:E10–E23. doi:10.1038/s41586-018-0381-y.

Ma, H., N. Marti-Gutierrez, S. W. Park, J. Wu, Y. Lee, K. Suzuki, A. Koski, D. Ji, T. Hayama, R. Ahmed, H. Darby, C. Van Dyken, Y. Li, E. Kang, A. R. Park, D. Kim, S. T. Kim, J. Gong, Y. Gu, X. Xu, D. Battaglia, S. A. Krieg, D. M. Lee, D. H. Wu, D. P. Wolf, S. B. Heitner, J. C. I. Belmonte, P. Amato, J. S. Kim, S. Kaul, and S. Mitalipov. 2017. Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419. doi:10.1038/nature23305.

Maor-Sagie, E., Y. Cinnamon, B. Yaacov, A. Shaag, H. Goldsmidt, S. Zenvirt, N. Laufer, C. Richler, and A. Frumkin. 2015. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. Journal of Assisted Reproduction and Genetics 32(6):887–891. doi.org/10.1007/s10815-015-0445-y.

McCann, J. L., D. J. Salamango, E. K. Law, W. L. Brown, , and R. S. Harris. 2020. MagnEditinteracting factors that recruit DNA-editing enzymes to single base targets. Life Science Alliance 3(4):e201900606. doi:10.26508/lsa.201900606.

Mianné, J., G. F. Codner, A. Caulder, R. Fell, M. Hutchison, R. King, M. E. Stewart, S. Wells, and L. Teboul. 2017. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods 15:121–122:68-76. doi:10.1016/j.ymeth.2017.03.016.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Migeon, B.R. 2020. X-linked diseases: Susceptible females. Genetics in Medicine 22:1156–1174. doi:10.1038/s41436-020-0779-4.

Mok, B.Y., M. H. de Moraes, J. Zeng, D. E. Bosch, A. V. Kotrys, A. Raguram, F. Hsu, M. C. Radey, S. Brook Peterson, V. K. Mootha, J. D. Mougous and D. R. Liu. 2020. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583:631–637. doi:10.1038/s41586-020-2477-4.

Moris, N., K. Anlas, S. C. van den Brink, A. Alemany, J. Schröder, S. Ghimire, T. Balayo, A. van Oudenaarden and A. M. Arias. 2020. An in vitro model of early anteroposterior organization during human development. Nature 582:410–415. doi:10.1038/s41586-020-2383-9.

Morohaku, K., R. Tanimoto, K. Sasaki, R. Kawahara-Miki, T. Kono, K. Hayashi, Y. Hirao, and Y. Obata. 2016. Complete in vitro generation of fertile oocytes from mouse primordial germ cells. PNAS 113(32):9021–9026. https://doi.org/10.1073/pnas.1603817113.

Nagamatsu, G., and K. Hiyashi. 2017. Stem cells, in vitro gametogenesis, and male fertility. Reproduction 154(6):F79–F91. doi: 10.1530/REP-17-0510.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2015. International summit on human gene editing: A global discussion. Washington, DC: The National Academies Press.

NASEM. 2016. Mitochondrial replacement techniques: Ethical, social, and policy considerations. Washington, DC: The National Academies Press.

NASEM. 2017. Human genome editing: Science, ethics, and governance. Washington, DC: The National Academies Press.

NASEM. 2019a. Framework for addressing ethical dimensions of emerging and innovative biomedical technologies: A synthesis of relevant National Academies reports. Washington, DC: The National Academies Press. doi:10.17226/25491.

NASEM. 2019b. Second international summit on human genome editing: Continuing the global discussion; Proceedings of a workshop–in brief. Washington, DC: The National Academies Press.

Nuffield Council on Bioethics (NCB). 2012. Novel techniques for the prevention of mitochondrial DNA disorders: An ethical review. London, U.K. https://www.nuffieldbioethics.org/assets/pdfs/Novel_techniques_for_the_prevention_of_mitochondrial_DNA_disorders.pdf.

Nuffield Council on Bioethics. 2016. Genome editing: An ethical review. London, U.K.

Nuffield Council on Bioethics. 2018. Genome editing and human reproduction: Social and ethical issues. London, U.K.

Niakan, K. 2019. Mechanisms of lineage specification in human embryos. Presentation to the International Commission on the Clinical Use of Human Germline Genome Editing, November 14. https://www.nationalacademies.org/event/11-14-2019/international-commission-on-the-clinical-use-of-human-germline-genome-editing-commission-meeting-2. Accessed July 7, 2020.

Niakan, K. K., and K. Eggan. 2013. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Developmental Biology 375(1):54–64. doi:10.1016/j.ydbio.2012.12.008.

Niu, Y., B. Shen, Y. Cui, Y. Chen, J. Wang, L. Wang, Y. Kang, X. Zhao, W. Si, W. Li, A. P. Xiang, J. Zhou, X. Guo, Y. Bi, C. Si, B. Hu, G. Dong, H. Wang, Z. Zhou, T. Li, T. Tan, X. Pu, F. Wang, S. Ji, Q. Zhou, X. Huang, W. Ji, and J. Sha. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi:10.1016/j.cell.2014.01.027.

Normile, D. 2019. Chinese scientist who produced genetically altered babies sentenced to three years in jail. Science (news), December 30. doi:10.1126/science.aba7347.

Nsota Mbango, J. F., C. Coutton, C. Arnoult, P. F. Ray, and A. Touré. 2019. Genetic causes of male infertility: Snapshot on morphological abnormalities of the sperm flagellum. Basic and Clinical Andrology 29:2. doi:10.1186/s12610-019-0083-9.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Okutman, O., J. Muller, Y. Baert, M. Serdarogullari, M. Gultomruk, A. Piton, C. Rombaut, M. Benkhalifa, M. Teletin, V. Skory, E. Bakircioglu, E. Goossens, M. Bahceci, and S. Viville. 2015. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Human Molecular Genetics 24(19):5581–5588. doi: 10.1093/hmg/ddv290.

Oprea, T. I., L. Jan, G. L. Johnson, B. L. Roth, A. Ma’ayan, S. Schürer, B. K. Shoichet, L. A. Sklar, and M. T. McManus. 2018. Far away from the lamppost. PLOS Biology 16(12):e3000067. doi:10.1371/journal.pbio.3000067.

Padden, C., and J. Humphries. 2020. Who goes first? Deaf people and CRISPR germline editing. Perspectives in Biology and Medicine 63(1):54–65. https://muse.jhu.edu/article/748050. doi:10.1353/pbm.2020.0004.

Paix, A., A. Folkmann, D. H. Goldman, H. Kulaga, M. J. Grzelak, D. Rasoloson, S. Paidemarry, R. Green, R. R. Reed, and G. Seydoux. 2017. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proceedings of the National Academy of Sciences of the United States of America 114(50):E10745–E10754. doi:10.1073/pnas.1711979114.

Paradiñas, A. F., P. Holmans, A. J. Pocklington, V. Escott-Price, S. Ripke, N. Carrera, S. E. Legge, S. Bishop, D. Cameron, M. L. Hamshere, J. Han, L. Hubbard, A. Lynham, K. Mantripragada, E. Rees, J. H. MacCabe, S. A. McCarroll, B. T. Baune, G. Breen, E. M. Byrne, U. Dannlowski, T. C. Eley, C. Hayward, N. G. Martin, A. M. McIntosh, R. Plomin, D. J. Porteous, N. R. Wray, A. Caballero, D. H. Geschwind, L. M. Huckins, D. M. Ruderfer, E. Santiago, P. Sklar, E. A. Stahl, H. Won, E. Agerbo, T. D. Als, O. A. Andreassen, M. Bækvad-Hansen, P. B. Mortensen, C. B. Pedersen, A. D. Børglum, J. Bybjerg-Grauholm, S. Djurovic, N. Durmishi, M. G. Pedersen, V. Golimbet, J. Grove, D. M. Hougaard, M. Mattheisen, E. Molden, O. Mors, M. Nordentoft, M. Pejovic-Milovancevic, E. Sigurdsson, T. Silagadze, C. S. Hansen, K. Stefansson, H. Stefansson, S. Steinberg, S. Tosato, T. Werge, GERAD1 Consortium, CRESTAR Consortium, D. A. Collier, D. Rujescu, G. Kirov, M. J. Owen, M. C. O’Donovan, and J. T. R. Walters. 2018. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics 50(3):381–389. doi: 10.1038/s41588-018-0059-2.

Pickering, C., and J. Kiely. 2017. ACTN3: More than just a gene for speed. Frontiers in Physiology 8:1080. doi:10.3389/fphys.2017.01080.

Platt, O. S., D. J. Brambilla, W. F. Rosse, P. F. Milner, O. Castro, M. H. Steinberg, and P. P. Klug. 1994. Mortality in sickle cell disease: Life expectancy and risk factors for early death. New England Journal of Medicine 330:1639–1644. doi:10.1056/NEJM199406093302303.

Posey, J. E., A. H. O’Donnell-Luria, J. X. Chong, T. Harel, S. N. Jhangiani, Z. H. Coban Akdemir, S. Buyske, D. Pehlivan, C. Carvalho, S. Baxter, N. Sobreira, P. Liu, N. Wu, J. A. Rosenfeld, S. Kumar, D. Avramopoulos, J. J. White, K. F. Doheny, P. D. Witmer, C. Boehm, V. R. Sutton, D. M. Muzny, E. Boerwinkle, M. Günel, D. A. Nickerson, S. Mane, D. G. MacArthur, R. A. Gibbs, A. Hamosh, R. P. Lifton, T. C. Matise, H. L. Rehm, M. Gerstein, M. J. Bamshad, D. Valle, J. R. Lupski, and Centers for Mendelian Genomics. 2019. Insights into genetics, human biology and disease gleaned from family-based genomic studies. Genetics in Medicine 21(4):798–812. doi:10.1038/s41436-018-0408-7.

President’s Commission. 1982. Splicing life: A report on the social and ethical issues of genetic engineering with human beings. Washington, DC: President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research. https://bioethics.georgetown.edu/documents/pcemr/splicinglife.pdf.

Pulecio, J., N. Verma, E. Mejía-Ramírez, D. Huangfu, and A. Raya. 2017. CRISPR/Cas9Based Engineering of the Epigenome. Cell Stem Cell 21(4):431–447. doi:10.1016/j. stem.2017.09.006.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Quinn, C. T., Z. R. Rogers, T. L. McCavit, and G. R. Buchanan. 2010. Improved survival of children and adolescents with sickle cell disease. Blood 115(17):3447–3452. doi: 10.1182/blood-2009-07-233700.

Rasmussen, K. L., A. Tybjærg-Hansen, B. G. Nordestgaard, and R. Frikke-Schmidt. 2018. Absolute 10-year risk of dementia by age, sex, and APOE genotype: A population-based cohort study. Canadian Medical Association Journal 90(35):E1033–E1041. doi:10.1503/cmaj.180066.

RCOG (Royal College of Obstetricians and Gynaecologists). 2016. Ovarian Hyperstimulation Syndrome. London, U.K. https://www.rcog.org.uk/globalassets/documents/patients/patientinformation-leaflets/gynaecology/pi_ohss.pdf.

Reddy P., A. Ocampo, K. Suzuki, J. Luo, S. R. Bacman, S. L. Williams, A. Sugawara, D. Okamura, Y. Tsunekawa, J. Wu, D. Lam, X. Xiong, N. Montserrat, C. R. Esteban, G. H. Liu, I. Sancho-Martinez, D. Manau, S. Civico, F. Cardellach, M. Del Mar O’Callaghan, J. Campistol, H. Zhao, J. M. Campistol, C. T. Moraes, and J. C. Izpisua Belmonte. 2015. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161(3):459–469. doi:10.1016/j.cell.2015.03.051.

Rees, H. A., and D. R. Liu. 2018. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics 19(12):770–788. doi:10.1038/s41576-018-0059-1.

Richter, M. F., K. T. Zhao, E. Eton, A. Lapinaite, G. A. Newby, B. W. Thuronyi, C. Wilson, L. W. Koblan, J. Zeng, D. E. Bauer, J. A. Doudna and D. R. Liu. 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology 38:883–891. doi:10.1038/s4157-020-0414-6.

Riordan, J. R., J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J. L. Chou, M. L. Drumm, M. C. Iannuzzi, F. S. Collins, and L.-C. Tsui. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245(4922):1066–1073. doi:10.1126/science.2475911.

Rivron, N., M. Pera, J. Rossant, A. Martinez Arias, M. Zernicka-Goetz, J. Fu, S. van den Brink, A. Bredenoord, W. Dondorp, G. de Wert, I. Hyun, M. Munsie, and R. Isasi. 2018. Debate ethics of embryo models from stem cells. Nature 564(7735):183–185. doi:10.1038/d41586-018-07663-9.

Rockoff, J. D. 2019. New gene therapy priced at $1.8 million in Europe. Wall Street Journal, June 14. https://www.wsj.com/articles/new-gene-therapy-priced-at-1-8-million-in-europe-11560529116.

Romdhane, L., N. Mezzi, Y. Hamdi, G. El-Kamah, A. Barakat, and S. Abdelhak. 2019. Consanguinity and inbreeding in health and disease in North African populations. Annual Review of Genomics and Human Genetics 20:155–179.

Rossant, J., and P. P. L. Tam. 2017. New insights into early human development: Lessons for stem cell derivation and differentiation. Cell Stem Cell 20:18-28. doi: 10.1016/j. stem.2016.12.004.

Rouet, P., F. Smih, and M. Jasin. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology 14(12):8096–8106. doi:10.1128/mcb.14.12.8096.

Rulli, T. 2014. Preferring a genetically-related child. Journal of Moral Philosophy 1-30. doi:10.1163/17455243-4681062.

Sakuma, T., S. Nakade, Y. Sakane, K.-I. T. Suzuki and T. Yamamoto. 2016. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nature Protocols 11:118–133. doi:10.1038/nprot.2015.140

Sander, J. D., and J. K. Joung. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology 32(4):347–355. doi:10.1038/nbt.2842.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Sasaki, K., S. Yokobayashi, T. Nakamura, I. Okamoto, Y. Yabuta, K. Kurimoto, H. Ohta, Y. Moritoki, C. Iwatani, H. Tsuchiya, S. Nakamura, K. Sekiguchi, T. Sakuma, T. Yamamoto, T. Mor, K. Woltjen, M. Nakagawa, T. Yamamoto, K. Takahashi, S. Yamanaka, and M. Saitou. 2015. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 7(2):178–194. doi:10.1016/j.stem.2015.06.014.

Sasani, T. A., B. S. Pedersen, Z. Gao, L. Baird, M. Przeworski, L. B. Jorde, and A. R. Quinlan. 2019. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8:e46922. doi: 10.7554/eLife.46922.

Schenk, M., A. Groselj-Strele, K. Eberhard, E. Feldmeier, D. Kastelic, S. Cerk, and G. Weiss. 2018. Impact of polar body biopsy on embryo morphokinetics-back to the roots in preimplantation genetic testing? Journal of Assisted Reproduction and Genetics 35(8):1521–1528. doi:10.1007/s10815-018-1207-4.

Schultz, N., F. K. Hamra, and D. L. Garbers. 2003. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proceedings of the National Academy of Sciences 100(21):12201–12206. doi:10.1073/PNAS.1635054100.

Segers, S., G. Pennings, and H. Mertes. 2019. Getting what you desire: The normative significance of genetic relatedness in parent-child relationships. Medicine, Health Care and Philosophy 22:487–495. doi:10.1007/s11019-019-09889-4.

Simunovic, M., and A. H. Brivanlou. 2017. Embryoids, organoids, and gastruloids: New approaches to understanding embryogenesis. Development 144(6):976–985. doi:10.1242/dev.143529.

Slaymaker, I. M., L. Gao, B. Zetsche, D. A. Scott, W. X. Yan, and F. Zhang. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. doi:10.1126/science.aad5227.

Smith, Z. D., M. M. Chan, K. C. Humm, R. Karnik, S. Mekhoubad, A. Regev, K. Eggan, and A. Meissner. 2014. DNA methylation dynamics of the human preimplantation embryo. Nature 511(7511):611–615. doi:10.1038/nature13581.

SRCD (Society for Research in Child Development). 2007. Ethical standards for research with children. https://www.srcd.org/about-us/ethical-standards-research-children. Accessed November 16, 2020.

Stadtmauer, E. A., J. A. Fraietta, M. M. Davis, A. D. Cohen, K. Weber, E. Lancaster, P. A. Mangan, I. Kulikovskaya, M. Gupta, F. Chen, L. Tian, V. E. Gonzalez, J. Xu, I. Y. Jung, J. J. Melenhorst, G. Plesa, J. Shea, T. Matlawski, A. Cervini, A. L. Gaymon, S. Desjardins, A. Lamontagne, J. Salas-Mckee, A. Fesnak, D. L. Siegel, B. L. Levine, J. K. Jadlowsky, R. M. Young, A. Chew, W. T. Hwang, E. O. Hexner, B. M. Carreno, C. L. Nobles, F. D. Bushman, K. R. Parker, Y. Qi, A. T. Satpathy, H. Y. Chang, Y. Zhao, S. F. Lacey, and C. H. June. 2020. CRISPR-engineered T cells in patients with refractory cancer. Science 367(6481):eaba7365. doi:10.1126/science.aba7365.

Steffann, J., P. Jouannet, J. P. Bonnefont, H. Chneiweiss, and N. Frydman. 2018. Could failure in preimplantation genetic diagnosis justify editing the human embryo genome? Cell Stem Cell 22(4):481–482. doi:10.1016/j.stem.2018.01.004.

Stock, G., and J. Campbell. 2000. Engineering the human germline. Oxford, U.K.: Oxford University Press.

Strom, C. M., B. Crossley, A. Buller-Buerkle, M. Jarvis, F. Quan, M. Peng, K. Muralidharan, V. Pratt, J. B. Redman, and W. Sun. 2011. Cystic fibrosis testing eight years on: Lessons learned from carrier screening and sequencing analysis. Genetics in Medicine 13:166–172. doi:10.1097/GIM.0b013e3181fa24c4.

Sürün, D., A. Schneider, J. Mircetic, K. Neumann, F. Lansing, M. Paszkowski-Rogacz, V. Hänchen, M.A. Lee-Kirsch, and F. Buchholz. 2020. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes 11:511. doi:10.3390/genes11050511.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Tang, L., Y. Zeng, X. Zhou, H. Du, C. Li, J. Liu, and P. Zhang. 2018. Highly efficient ssODNmediated homology-directed repair of DSBs generated by CRISPR/Cas9 in human 3PN zygotes. Molecular Reproduction and Development 85(6):461–463. doi: 10.1002/CD4.22983.

Tebas, P., D. Stein, W. W. Tang, I. Frank, S. Q. Wang, G. Lee, S. K. Spratt, R. T. Surosky, M. A. Giedlin, G. Nichol, M. C. Holmes, P. D. Gregory, D. G. Ando, M. Kalos, R. G. Collman, G. Binder-Scholl, G. Plesa, W. T. Hwang, B. L. Levine, and C. H. June. 2014. Gene editing CD4CCR5 in autolCD4us CD4 T cells of persons infected with HIV. New England Journal of Medicine 370(10):901–910. doi:10.1056/NEJMoa1300662.

Tenenbaum-Rakover, Y., A. Weinberg-Shukron, P. Renbaum, O. Lobel, H. Eideh, S. Gulsuner, D. Dahary, A. Abu-Rayyan, M. Kanaan, E. Levy-Lahad, D. Bercovich, and D. Zangen. 2015. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. Journal of Medical Genetics 52:391–399.

Timpson, N. J., C. M. T. Greenwood, N. Soranzo, D. J. Lawson, and J. B. Richards. 2018. Genetic architecture: The shape of the genetic contribution to human traits and disease. Nature Reviews Genetics 19(2):110–124. doi:10.1038/nrg.2017.101.

Tsai, S. Q., and J. K. Joung. 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nuclease. Nature Reviews Genetics 17(5):300–312. doi:10.1038/nrg.2016.28.

UKDH (United Kingdom Department of Health). 2000. Stem cell research: Medical progress with responsibility. Cloning 2(2):91–96. doi:10.1089/152045500436113.

UNESCO (United Nations Educational, Scientific, and Cultural Organization). 2015. Report of the International Bioethics Committee on updating its reflection on the human genome and human rights. Paris, France. http://www.coe.int/en/web/bioethics/-/gene-editing.

Viotti, M., A. R. Victor, D. K. Griffin, J. S. Groob, A. J. Brake, C. G. Zouves, and F. L. Barnes. 2019. Estimating demand for germline genome editing: An in vitro fertilization clinic perspective. The CRISPR Journal 2(5):304–315. doi: 10.1089/crispr.2019.0044.

Walker, F. O. 2007. Huntington’s disease. The Lancet 369(9557):218–228. doi:10.1016/S0140-6736(07)60111-1.

Wang, L., and J. Li. 2019. “Artificial spermatid”–mediated genome editing dagger. Biology of Reproduction 101:538–548. doi:10.1093/biolre/ioz087.

Wang, Y., Q. Liu, F. Tang, L. Yan, and J. Qiao. 2019. Epigenetic regulation and risk factors during the development of human gametes and early embryos. Annual Review of Genomics and Human Genetics 20:21–40. doi:10.1146/annurev-genom-083118-015143.

Warmflash, A. 2017. Synthetic embryos: Windows into mammalian development. Cell Stem Cell 20(5):581–582. doi:10.1016/j.stem.2017.04.001.

Wensink, P. C., D. J. Finnegan, J. E. Donelson, and D. S. Hogness. 1974. A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3(4):315–325. doi:10.1016/0092-8674(74)90045-2.

Wertz, D. C., and B. M. Knoppers. 2002. Serious genetic disorders: Can or should they be defined? American Journal of Medical Genetics 108(1):29–35. doi:10.1002/ajmg.10212.

WHO (World Health Organization). 2019a. Genes and human diseases. Geneva, Switzerland. https://www.who.int/genomics/public/geneticdiseases/en/index2.html.

WHO. 2019b. WHO launches global registry on human genome editing. News release, August 29. Geneva, Switzerland. https://www.who.int/news-room/detail/29-08-2019-who-launches-global-registry-on-human-genome-editing.

WHO. 2020. Human Genome Editing: A DRAFT Framework for Governance, July 3, 2020. Available at: https://www.who.int/docs/default-source/ethics/governance-framework-forhuman-genome-editing-2ndonlineconsult.pdf?ua=1.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Wienert, B., S. K. Wyman, C. D. Richardson, C. D. Yeh, P. Akcakaya, M. J. Porritt, M. Morlock, J. T. Vu, K. R. Kazane, H. L. Watry, L. M. Judge, B. R. Conklin, M. Maresca, and J. E. Corn. 2019. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364(6437):286–289. doi:10.1126/science.aav9023.

WMA (World Medical Association). 2013. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Journal of the American Medical Association 310(20):2191–2194. doi:10.1001/jama.2013.281053.

Wu, Y., H. Zhou, X. Fan, Y. Zhang, M. Zhang, Y. Wang, Z. Xie, M. Bai, Q. Yin, D. Liang, W. Tang, J. Liao, C. Zhou, W. Liu, P. Zhu, H. Guo, H. Pan, C. Wu, H. Shi, L. Wu, F. Tang, and J. Li. 2015. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research 25:67–79. doi:10.1038/cr.2014.160.

Xu, Q., and W. Xie. 2018. Epigenome in early mammalian development: Inheritance, reprogramming and establishment. Trends in Cell Biology 28(3):237–253. doi:10.1016/j. tcb.2017.10.008.

Yamashiro, C., K. Sasaki, S. Yokobayashi, Y. Kojima, M. Saitou. 2020. Generation of human oogonia from induced pluripotent stem cells in culture. Nature Protocols 15(4):1560–1583. doi:10.1038/s41596-020-0297-5.

Yamashiro, C., K. Sasaki, Y. Yabuta, Y. Kojima, T. Nakamura, I. Okamoto, S. Yokobayashi, Y. Murase, Y. Ishikura, K. Shirane, H. Sasaki, T. Yamamoto, and M. Saitou. 2018. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362(6412):356–360. doi:10.1126/science.aat1674.

Yatsenko, A. N., A. P. Georgiadis, A. Röpke, A. J. Berman, T. Jaffe, M. Olszewska, B. Westernströer, J. Sanfilippo, M. Kurpisz, A. Rajkovic, S. A. Yatsenko, S. Kliesch, S. Schlatt, and F. Tüttelmann. 2015. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. New England Journal of Medicine 372(22):2097–2107. doi:10.1056/NEJMoa1406192.

Yu, Y., T. C. Leete, D. A. Born, L. Young, L. A. Barrera, S.-J. Lee, H. A. Rees, G. Ciaramella and N. M. Gaudelli. 2020. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nature Communications 11:2052. doi:10.1038/s41467-020-15887-5.

Yuan, Y., L. Li, Q. Cheng, F. Diao, Q. Zeng, X. Yang, Y. Wu, H. Zhang, M. Huang, J. Chen, Q. Zhou, Y. Zhu, R. Hua, J. Tian, X. Wang, Z. Zhou, J. Hao, J. Yu, D. Hua, J. Liu, X. Guo, Q. Zhoug, and J. Sha. 2020. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Research. 30(3):244–255. doi:10.1038/s41422-020-0283-z.

Zanetti, B. F., D. P. A. F. Braga, A. S. Setti, R. C. S. Figueira, A. Iaconelli Jr., and E. Borges Jr. 2019. Preimblantation genetic testing for monogenic diseases: A Brazilian IVF centre experience. Journal of the Brazilian Society of Assisted Reproduction 23(2):99-105. doi: 10.5935/1518-0557.20180076.

Zeng, Y., J. Li, G. Li, S. Huang, W. Yu, Y. Zhang, D. Chen, J. Chen, J. Liu, and X. Huang. 2018. Correction of the marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Molecular Therapy: The Journal of the American Society of Gene Therapy 26(11):2631–2637. doi:10.1016/j.ymthe.2018.08.007.

Zhang, M., C. Zhou, Y. Wei, C. Xu, H. Pan, W. Ying, Y. Sun, Y. Sun, Q. Xiao, N. Yao, W. Zhong, Y. Li, K. Wu, G. Yuan, S. Mitalipov, Z. Chen, and H. Yang. 2019. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biology 20:101. doi:10.1186/s13059-019-1703-6.

Zhang, X. M., K. Wu, Y. Zheng, H. Zhao, J. Gao, Z. Hou, M. Zhang, J. Liao, J. Zhang, Y. Gao, Y. Li, L. Li, F. Tang, Z. J. Chen, and J. Li. 2020. In vitro expansion of human sperm through nuclear transfer. Cell Research 30:356–359. doi:10.1038/s41422-019-0265-1.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×

Zhao, D., J. Li, S. Li, X. Xin, M. Hu, M. A. Price, S. J. Rosser, C. Bi, and X. Zhang. 2020. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology. doi:10.1038/s41587-020-0592-2.

Zhou, C., M. Zhang, Y. Wei, Y. Sun, Y. Sun, H. Pan, N. Yao, W. Zhong, Y. Li, W. Li, H. Yang, and Z. Chen. 2017. Highly efficient base editing in human tripronuclear zygotes. Protein and Cell 8:772–775. doi:10.1007/s13238-017-0459-6.

Zhou, F., R. Wang, P. Yuan, Y. Ren, Y. Mao, R. Li, Y. Lian, J. Li, L. Wen, L. Yan, J. Qiao, and F. Tang. 2019. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572:660–664. doi:10.1038/s41586-019-1500-0.

Zhou, Q., M. Wang, Y. Yuan, X. Wang, R. Fu, H. Wan, M. Xie, M. Liu, X. Guo, Y. Zheng, G. Feng, Q. Shi, X. Y. Zhao, J. Sha, and Q. Zhou. 2016. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. doi:10.1016/j. stem.2016.01.017.

Zhu, F., R. R. Nair, E. M. C. Fisher, and T. J. Cunningham. 2019. Humanising the mouse genome piece by piece. Nature Communications 10(1):1845. doi:10.1038/s41467-019-09716-7.

Zhu, P., H. Guo, Y. Ren, Y. Hou, J. Dong, R. Li, Y. Lian, X. Fan, B. Hu, Y. Gao, X. Wang, Y. Wei, P. Liu, J. Yan, X. Ren, P. Yuan, Y. Yuan, Z. Yan, L. Wen, L. Yan, J. Qiao, and F. Tang. 2018. Single-cell DNA methylome sequencing of human preimplantation embryos. Nature Genetics 50:12-19. doi:10.1038/s41588-017-0007-6.

Zlotogora, J. 1997. Dominance and homozygosity. American Journal of Medical Genetics 68:412–416.

Zuccaro, M. V., J. Xu, C. Mitchell, D. Marin, R. Zimmerman, B. Rana, E. Weinstein, R. T. King, M. Smith, S. H. Tsang, R. Goland, M. Jasin, R. Lobo, N. Treff, and D. Egli. 2020. Reading frame restoration at the EYS locus, and allele-specific chromosome removal after Cas9 cleavage in human embryos. bioRxiv 2020.06.17.149237; doi:10.1101/2020.06.17.149237.

Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 169
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 170
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 171
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 172
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 173
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 174
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 175
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 176
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 177
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 178
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 179
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 180
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 181
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 182
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 183
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 184
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 185
Suggested Citation:"References." National Academy of Medicine, National Academy of Sciences, and the Royal Society. 2020. Heritable Human Genome Editing. Washington, DC: The National Academies Press. doi: 10.17226/25665.
×
Page 186
Next: Appendix A: Information Sources and Methods »
Heritable Human Genome Editing Get This Book
×
 Heritable Human Genome Editing
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing.

From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!