National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff. Washington, DC: The National Academies Press. doi: 10.17226/25669.
×
Page R8

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NCHRP Web-Only Document 265: Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff Keith Pilgrim Chris Bonick Kevin Menken Raul Velasquez Matt Metzger Omid Mohseni Barr Engineering Co. Minneapolis, MN Hugh Zeng HZ United Minneapolis, MN Contractor’s Final Report for NCHRP Project 25-54 Submitted May 2019 ACKNOWEDGMENT This work was sponsored by the American Association of State Highway and Transportation Officials (AASHTO), in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program (NCHRP), which is administered by the Transportation Research Board (TRB) of the National Academies of Sciences, Engineering, and Medicine. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FRA, FTA, Office of the Assistant Secretary for Research and Technology, PHMSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to increase the benefits that transportation contributes to society by providing leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied committees, task forces, and panels annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I  V E  R E S E A R  C H  P R O G R A M S  CRP STAFF FOR NCHRP Web-Only Document 265 Christopher J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs Ann M. Hartell, Senior Program Officer Jarrel McAfee, Senior Program Assistant Eileen P. Delaney, Director of Publications Natalie Barnes, Associate Director of Publications Kathleen Mion, Senior Editorial Assistant NCHRP PROJECT 25-54 PANEL Henry L. Barbaro, Massachusetts DOT, Boston, MA (Chair) Robert A. Armstrong, Wisconsin Department of Natural Resources, Madison, WI Frederick Simon Bergdolt, Olympia, WA Mike Borst, U.S. EPA, Edison, NJ John C. Taylor, Mississippi DOT, Jackson, MS Martin P. "Marty" Wanielista, University of Central Florida, Winter Park, FL Susan Jones, FHWA Liaison Christine Gerencher, TRB Liaison .

iv Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff Contents Summary.………………………………………………………………………………………………………………………………………………………1 Chapter 1  Introduction ................................................................................................................................................................... 2  1.1  Statement of Project Needs and Objectives ....................................................................................................... 2  1.1.1  Project Objectives ............................................................................................................................................... 2  1.1.2  Scope of the Report ........................................................................................................................................... 3  1.1.3  Intended Users and Uses ................................................................................................................................. 3  1.1.4  Relationship with Other NCHRP Publications .......................................................................................... 3  Chapter 2  Field Testing of Ferric Oxide Media Filters: Project Design ........................................................................ 5  2.1  Field Testing Sites and Tributary Watersheds .................................................................................................... 5  2.1.1  Ferric Oxide Filter Design ................................................................................................................................. 6  2.1.1.1  Swale-Type Filter at Maplewood Mall ........................................................................................ 6  2.1.1.2  Vault-Type Filter at Highway 36/61 ............................................................................................ 7  2.1.1.3  Differences of the Ferric Oxide Filter Systems Studied ....................................................... 8  2.1.1.4  Ferric Oxide Media ............................................................................................................................. 8  2.2  Monitoring Design ......................................................................................................................................................10  2.2.1  Objectives and Sampling Design ................................................................................................................10  2.2.1.1  Monitoring Locations ......................................................................................................................11  2.2.1.2  Monitoring Parameters ..................................................................................................................11  2.2.2  Equipment and Materials ...............................................................................................................................12  2.2.2.1  Highway 36/61 ..................................................................................................................................12  2.2.2.2  Woodlynn Avenue ............................................................................................................................13  2.2.3  Quality Assurance and Quality Control ....................................................................................................13  Chapter 3  Field Testing of Ferric Oxide Media Filters: Monitoring Results .............................................................15  3.1  Woodlynn Avenue Ferric Oxide Filter ..................................................................................................................15  3.1.1  Monitoring Events ............................................................................................................................................15  3.1.2  Hydrology ............................................................................................................................................................15 

v 3.1.3  Monitoring Results and Treatment Performance: Metals .................................................................17  3.1.4  Monitoring Results: General Chemistry ....................................................................................................22  3.1.5  Monitoring Results: Chemistry Measurements for a Storm Hydrograph ...................................24  3.1.6  Dissolved Oxygen .............................................................................................................................................24  3.1.7  Multi-Sample Event ..........................................................................................................................................26  3.2  Highway 36/61 Ferric Oxide Filter .........................................................................................................................28  3.2.1  Monitoring Events ............................................................................................................................................28  3.2.2  Hydrology ............................................................................................................................................................28  3.2.2.1  Hydraulic Conductivity ...................................................................................................................30  3.2.3  Monitoring Results and Treatment Performance: Metals .................................................................32  3.2.4  Monitoring Results: General Chemistry ....................................................................................................37  3.2.5  Dissolved Oxygen and pH .............................................................................................................................38  3.2.6  Multi-Sample Event ..........................................................................................................................................41  3.3  Comparison of Woodlynn and Highway 36/61 ...............................................................................................43  Chapter 4  Bench Scale Testing of Open Graded Friction Course ................................................................................45  4.1  Experimental Design ..................................................................................................................................................45  4.1.1  Testing Apparatus .............................................................................................................................................45  4.1.2  OGFC Specimen Preparation ........................................................................................................................46  4.1.3  Experimental Design ........................................................................................................................................46  4.1.4  Synthetic Highway Stormwater ...................................................................................................................49  4.1.5  Ferric Oxide Media Application ...................................................................................................................51  4.2  Experimental Procedure ............................................................................................................................................52  4.3  Results ..............................................................................................................................................................................53  Chapter 5  Ferric Oxide Filter Sizing Methodology ............................................................................................................57  5.1  Sizing Methodology ...................................................................................................................................................57  5.2  Sizing Example ..............................................................................................................................................................61  Chapter 6  Cost–Benefit Analysis ...............................................................................................................................................65  Chapter 7  Discussion .....................................................................................................................................................................70  Chapter 8  Potential Future Research ......................................................................................................................................72  Chapter 9  References ....................................................................................................................................................................73 

vi List of Tables Table 2-1  Elemental analysis of ferric oxide-sand filter bed samples using dispersive X-ray spectroscopy and scanning electron microscopy .................................................................................. 9  Table 2-2  Elemental composition of iron aggregate as provided by the supplier........................................ 9  Table 2-3  Parameters monitored, method and reporting units ........................................................................ 12  Table 3-1  Summary of hydrologic measurements for the Woodlynn Avenue ferric oxide treatment cell. ......................................................................................................................................................................... 17  Table 3-2  Dissolved metals event mean concentrations at the inlet and outlet of the Woodlynn Avenue ferric oxide-sand filter. .................................................................................................................. 21  Table 3-3  Total metals event mean concentrations at the inlet and outlet of the Woodlynn Avenue ferric oxide-sand filter. ................................................................................................................................... 22  Table 3-4  General parameter event mean concentrations at the inlet and outlet of the Woodlynn Avenue ferric oxide-sand filter. .................................................................................................................. 23  Table 3-5  Inputs used to estimate UBOD decay rates at the Woodlynn Avenue ferric oxide-sand filter. ....................................................................................................................................................................... 25  Table 3-6  Summary of hydrologic measurements for the Highway 36/61 ferric oxide treatment cell. ................................................................................................................................................................................. 29  Table 3-7  Calculation of hydraulic conductivity for the Highway 36/61 ferric oxide-sand filter .......... 31  Table 3-8  Dissolved metals event mean concentrations at the inlet and outlet of the Highway 36/61 ferric oxide-sand filter. ................................................................................................................................... 36  Table 3-9  Total metals event mean concentrations at the inlet and outlet of the Highway 36/61 ferric oxide-sand filter. ................................................................................................................................... 37  Table 3-10  General parameter event mean concentrations at the inlet and outlet of the Highway 36/61 ferric oxide-sand filter treatment system ............................................................... 38  Table 3-11  Comparison of average total and dissolved metals removal at Woodlynn Avenue and Highway 36/61 .................................................................................................................................................. 44  Table 4-1  Selection of Rainfall Intensity from NOAA. ............................................................................................ 47  Table 4-2  Contact Time Estimation Based on FE Simulations. ........................................................................... 49  Table 4-3  Experimental Design for OGFC Samples Containing Ferric Oxide Media. ................................ 49  Table 4-4  Synthetic Highway Runoff Composition. Metals are nominal........................................................ 51  Table 4-5  Average general chemical and physical conditions measured for the OGFC tests with quartzite and granite. ..................................................................................................................................... 56  Table 5-1  Outcome of the ferric oxide-sand treatment cell sizing exercise. ................................................ 64  Table 6-1  Highway 36/61 site and tributary watershed parameter inputs to the NCHRP 792 sand filter evaluation tool. ....................................................................................................................................... 66  Table 6-2  Highway 36/61 tributary runoff average and annual parameter inputs to the NCHRP 792 sand filter evaluation tool. ............................................................................................................................ 66  Table 6-3  Highway 36/61 ferric oxide-sand filter BMP design parameter inputs to the NCHRP 792 sand filter evaluation tool. ............................................................................................................................ 66  Table 6-4  Highway 36/61 life cycle cost analysis assumptions and inputs to the NCHRP 792 sand filter evaluation tool. ....................................................................................................................................... 68  Table 6-5  Highway 36/61 ferric oxide-sand whole life cycle cost estimate analysis. ................................ 69 

vii List of Figures Figure 2-1  Woodlynn Avenue swale-type ferric oxide filter during and after construction. ...................... 5  Figure 2-2  Highway 36/61 vault-type ferric oxide filter during and after construction. ............................... 6  Figure 2-3  Modified design drawing for the Woodlynn Avenue ferric oxide-sand filter. ............................ 7  Figure 2-4  Modified design drawing of the Highway 36/61 ferric oxide filter. ................................................ 8  Figure 3-1  Water level above the ferric oxide filter bed, storage, and cumulative outflow for an individual storm event on August 15, 2017 at the Woodlynn Avenue ferric oxide filter. ... 16  Figure 3-2  Event mean concentrations of dissolved metals measured at the inlet and outlet of the Woodlynn Avenue ferric oxide-sand filter. ............................................................................................ 19  Figure 3-3  Event mean concentrations of total metals measured at the inlet and outlet of the Woodlynn Avenue ferric oxide-sand filter. ............................................................................................ 20  Figure 3-4  Change in dissolved oxygen in the Woodlynn Avenue ferric oxide-sand filter bed during the (1) 2017 and (b) 2018 monitoring periods.. ................................................................................... 24  Figure 3-5  Dissolved oxygen in ponded water at Woodlynn Avenue during two storm events in 2018. ................................................................................................................................................................................. 25  Figure 3-6  Change in metals and general parameter concentrations during a September 24, 2018 storm event at the Woodlynn Avenue ferric oxide-sand filter. ..................................................... 27  Figure 3-7  Water level (a) within and above the ferric oxide sand-filter bed and (b) for the individual pressure transducers for a single storm event on May 29 and 30. .............................................. 29  Figure 3-8  Comparison of inflow and outflows from the Highway 36/61 ferric oxide treatment cell. 30  Figure 3-9  Peak water level and peak flow measured at Highway 36/61 ........................................................ 32  Figure 3-10  Event mean concentrations of dissolved metals measured at the inlet and outlet of the Highway 36/61 ferric oxide filter. ............................................................................................................... 34  Figure 3-11  Event mean concentrations of total metals measured at the inlet and outlet of the Highway 36/61 ferric oxide filter. ............................................................................................................... 35  Figure 3-12  In-situ dissolved oxygen measurement at the Highway 36/61 ferric oxide-sand filter bed in 2017 and 2018 .............................................................................................................................................. 39  Figure 3-13  Dissolved oxygen dynamics within the Highway 36/61 ferric oxide-sand bed during a single storm event in 2018. .......................................................................................................................... 40  Figure 3-14  Example of pH dynamics within the Highway 36/61 ferric oxide-sand bed during a select number of storm events in 2018. ............................................................................................................... 40  Figure 3-15  Change in total and dissolved metals at the two inlets and one outlet of the Highway 36/61 ferric oxide-sand filter during the course of one storm event ....................... 42  Figure 3-16  Change in general chemical parameters in the inlet and the outlet of the Highway 36/61 ferric oxide-sand filter during the course of one storm event from October 9 to October 10, 2018. ............................................................................................................................................. 43  Figure 4-1  Testing Apparatus to Evaluate Ferric Oxide Media in OGFC .......................................................... 45  Figure 4-2  Granite OGFC Sample ..................................................................................................................................... 46  Figure 4-3  Quartzite OGFC Sample ................................................................................................................................. 46  Figure 4-4  Contact Times for Three Dissolved Metal Particles (A, B, and C) in OGFC pavement .......... 47 

viii Figure 4-5  Typical FE Seepage Simulation Results ................................................................................................... 48  Figure 4-6  Typical FE-Based Particle Transport Simulation for Contact Time Estimation ......................... 48  Figure 4-7  Cumulative Distribution for pH from SELDM. ....................................................................................... 50  Figure 4-8  Cumulative Distribution for Hardness from SELDM. .......................................................................... 50  Figure 4-9  Cumulative Distribution for Metals from SELDM. ............................................................................... 51  Figure 4-10  Ferric oxide media. .......................................................................................................................................... 52  Figure 4-11  Uncorrected percent removal of dissolved metals for quartzite OGFC for tests conducted with 0.7, 2, and 4.7 hours contact time. .................................................................................................. 54  Figure 4-12  Uncorrected percent removal of dissolved metals for granite OGFC for tests conducted with 0.7, 2.0, and 4.7 hours contact time. ............................................................................................... 55  Figure 4-13  Corrected percent removal of dissolved metals for quartzite OGFC for tests conducted with 0.7, 2, and 4.7 hours contact time. .................................................................................................. 55  Figure 4-14  Corrected percent removal of dissolved metals for granite OGFC for tests conducted with 0.7, 2.0, and 4.7 hours contact time. ......................................................................................................... 56  Figure 5-1  Ferric oxide-sand filter sizing example showing (a) water level within and above the ferric- oxide sand filter bed, (b) flows through the overflow outlet, and (c) dissolved oxygen in water ponded above the filter bed. .......................................................................................................... 63  List of Appendices Appendix A Report for the Development of Two Porous HMA Mix Designs and Preparation of Samples ............................................................................................................................................................. 76

Next: Summary »
Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff Get This Book
×
 Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

There are several best management practices that are good at removing particulate-bound pollutants by settling, filtering, and, in the case of wetlands, settling, uptake, and incorporation of pollutants into biological matter (e.g., natural organic matter). However, a longstanding goal of stormwater treatment is the removal of the stormwater pollutant fraction that cannot be readily settled or filtered.

While there are several media that may be employed to remove dissolved metals from stormwater, the media chosen for the TRB National Cooperative Highway Research Program's NCHRP Web-Only Document 265: Field Test of BMPs Using Granulated Ferric Oxide Media to Remove Dissolved Metals in Roadway Stormwater Runoff is ferric oxide. Field scale testing of ferric oxide was recommended as an outcome of NCHRP Report 767: Measuring and Removing Dissolved Metals fromStorm Water in Highly Urbanized Areas (2014), a laboratory study that considered several metals and media with testing focused on the capacity of ferric oxide to remove copper and zinc from synthetic and natural highway stormwater runoff.

Highlights of the project are summarized in a PowerPoint presentation.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!