National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Airport Surface Weather Observation Options for General Aviation Airports. Washington, DC: The National Academies Press. doi: 10.17226/25670.
×
Page R8

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Airport Surface Weather Observation Options for General Aviation Airports A Synthesis of Airport Practice Adam Switzer William Kelly Kate DeJarnette Delta airport Consultants, inC. Midlothian, VA 2019 Research sponsored by the Federal Aviation Administration Subscriber Categories Aviation • Administration and Management • Vehicles and Equipment A I R P O R T C O O P E R A T I V E R E S E A R C H P R O G R A M ACRP SYNTHESIS 105

ACRP SYNTHESIS 105 Project 11-03, Topic S04-22 ISSN 1935-9187 ISBN 978-0-309-48092-5 Library of Congress Control Number 2019953539 © 2019 National Academy of Sciences. All rights reserved. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FRA, FTA, Office of the Assistant Secretary for Research and Technology, PHMSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. Cover photo: Brookneal/Campbell County Airport; source: Delta Airport Consultants, Inc. NOTICE The report was reviewed by the technical panel and accepted for publication according to procedures established and overseen by the Transportation Research Board and approved by the National Academies of Sciences, Engineering, and Medicine. The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research and are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; and the sponsors of the Airport Cooperative Research Program do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of the report. Published reports of the AIRPORT COOPERATIVE RESEARCH PROGRAM are available from Transportation Research Board Business Office 500 Fifth Street, NW Washington, DC 20001 and can be ordered through the Internet by going to http://www.national-academies.org and then searching for TRB Printed in the United States of America AIRPORT COOPERATIVE RESEARCH PROGRAM Airports are vital national resources. They serve a key role in trans- portation of people and goods and in regional, national, and interna- tional commerce. They are where the nation’s aviation system connects with other modes of transportation and where federal responsibility for managing and regulating air traffic operations intersects with the role of state and local governments that own and operate most airports. Research is necessary to solve common operating problems, to adapt appropriate new technologies from other industries, and to introduce innovations into the airport industry. The Airport Cooperative Research Program (ACRP) serves as one of the principal means by which the airport industry can develop innovative near-term solutions to meet demands placed on it. The need for ACRP was identified in TRB Special Report 272: Airport Research Needs: Cooperative Solutions in 2003, based on a study spon- sored by the Federal Aviation Administration (FAA). ACRP carries out applied research on problems that are shared by airport operating agen- cies and not being adequately addressed by existing federal research programs. ACRP is modeled after the successful National Cooperative Highway Research Program (NCHRP) and Transit Cooperative Research Program (TCRP). ACRP undertakes research and other technical activi- ties in various airport subject areas, including design, construction, legal, maintenance, operations, safety, policy, planning, human resources, and administration. ACRP provides a forum where airport operators can cooperatively address common operational problems. ACRP was authorized in December 2003 as part of the Vision 100— Century of Aviation Reauthorization Act. The primary participants in the ACRP are (1) an independent governing board, the ACRP Oversight Committee (AOC), appointed by the Secretary of the U.S. Department of Transportation with representation from airport operating agencies, other stakeholders, and relevant industry organizations such as the Airports Council International-North America (ACI-NA), the American Associa- tion of Airport Executives (AAAE), the National Association of State Aviation Officials (NASAO), Airlines for America (A4A), and the Airport Consultants Council (ACC) as vital links to the airport community; (2) TRB as program manager and secretariat for the governing board; and (3) the FAA as program sponsor. In October 2005, the FAA executed a contract with the National Academy of Sciences formally initiating the program. ACRP benefits from the cooperation and participation of airport professionals, air carriers, shippers, state and local government officials, equipment and service suppliers, other airport users, and research organi- zations. Each of these participants has different interests and responsibili- ties, and each is an integral part of this cooperative research effort. Research problem statements for ACRP are solicited periodically but may be submitted to TRB by anyone at any time. It is the responsibility of the AOC to formulate the research program by identifying the highest priority projects and defining funding levels and expected products. Once selected, each ACRP project is assigned to an expert panel appointed by TRB. Panels include experienced practitioners and research specialists; heavy emphasis is placed on including airport professionals, the intended users of the research products. The panels prepare project statements (requests for proposals), select contractors, and provide technical guidance and counsel throughout the life of the project. The process for developing research problem statements and selecting research agencies has been used by TRB in managing coop- erative research programs since 1962. As in other TRB activities, ACRP project panels serve voluntarily without compensation. Primary emphasis is placed on disseminating ACRP results to the intended users of the research: airport operating agencies, service pro- viders, and academic institutions. ACRP produces a series of research reports for use by airport operators, local agencies, the FAA, and other interested parties; industry associations may arrange for workshops, training aids, field visits, webinars, and other activities to ensure that results are implemented by airport industry practitioners.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to provide leadership in transportation improvements and innovation through trusted, timely, impartial, and evidence-based information exchange, research, and advice regarding all modes of transportation. The Board’s varied activities annually engage about 8,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR ACRP SYNTHESIS 105 Christopher J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs Marci A. Greenberger, Manager, Airport Cooperative Research Program Thomas J. Helms, Jr., Senior Program Officer Stephanie L. Campbell, Senior Program Assistant Eileen P. Delaney, Director of Publications Natalie Barnes, Associate Director of Publications ACRP PROJECT 11-03 PANEL Joshua D. Abramson, Easterwood Airport Management, College Station, TX (Chair) Debbie K. Alke, Montana DOT, Helena, MT (retired) Gloria G. Bender, TransSolutions, LLC, Fort Worth, TX David A. Byers, Quadrex Aviation, LLC, Melbourne, FL Traci Clark, Allegheny County Airport Authority, West Mifflin, PA David N. Edwards, Jr., Greenville–Spartanburg Airport District, Greer, SC Brenda L. Enos, Burns & McDonnell, Kansas City, MO Patrick W. Magnotta, FAA Liaison Matthew J. Griffin, Airports Consultants Council Liaison Liying Gu, Airports Council International–North America Liaison Adam Williams, Aircraft Owners & Pilots Association Liaison Christine Gerencher, TRB Liaison TOPIC S04-22 PANEL Senanu Ashiabor, Intermodal Logistics Consulting Inc, Winston-Salem, NC David A. Byers, Quadrex Aviation, LLC, Melbourne, FL Rune Duke, Aircraft Owners and Pilots Association, Frederick, MD Bettie Loudenslager, Federal Aviation Administration, Oklahoma City, OK Michael Marr, Office of Aviation, Iowa Department of Transportation, Ames, IA Susan J. H. Zellers, Hanson Professional Services Inc., Indianapolis, IN Michel Hovan, FAA Liaison, Pomona, NJ

ABOUT THE ACRP SYNTHESIS PROGRAM Airport administrators, engineers, and researchers often face problems for which information already exists, either in documented form or as undocumented experience and practice. This infor- mation may be fragmented, scattered, and unevaluated. As a consequence, full knowledge of what has been learned about a problem may not be brought to bear on its solution. Costly research findings may go unused, valuable experience may be overlooked, and due consideration may not be given to recommended practices for solving or alleviating the problem. There is information on nearly every subject of concern to the airport industry. Much of it derives from research or from the work of practitioners faced with problems in their day-to-day work. To provide a systematic means for assembling and evaluating such useful information and to make it available to the entire airport community, the Airport Cooperative Research Program authorized the Transportation Research Board to undertake a continuing project. This project, ACRP Project 11-03, “Synthesis of Information Related to Airport Practices,” searches out and synthesizes useful knowl- edge from all available sources and prepares concise, documented reports on specific topics. Reports from this endeavor constitute an ACRP report series, Synthesis of Airport Practice. This synthesis series reports on current knowledge and practice, in a compact format, without the detailed directions usually found in handbooks or design manuals. Each report in the series provides a compendium of the best knowledge available on those measures found to be the most successful in resolving specific problems. FOREWORD By Thomas J. Helms, Jr. Staff Officer Transportation Research Board The focus of this report is on identifying currently available options for providing airport surface weather observations at general aviation airports. Surface weather observations are an important component of many operational decisions at general aviation airports, particularly those related to go/no go, runway and approach selection, and crosswind landings. In some cases, specific airport surface weather observation information is required to meet regulatory requirements for specific types of aviation operations, including takeoffs and landings under instrument flight rules. The need for surface weather observations at general aviation airports varies depending on the type of opera- tions that an airport can, or wishes to, support. This study is based on information acquired through a literature review and survey results from 27 airports participating in the study located in several geographic regions across the United States. Results of the literature review and survey are presented in this short report. Case examples describing the different types of surface weather observing capa- bilities currently employed at general aviation airports are presented in Chapter 5. Adam Switzer, P.E., William Kelly, C.M., and Kate DeJarnette, ACE, synthesized the informa- tion and wrote the report. The members of the topic panel are acknowledged on page iv. This synthesis is an immediately useful document that records the practices that were acceptable within the limitations of the knowledge available at the time of its preparation. As progress in research and practice continues, new knowledge will be added to that now at hand.

1 Summary 4 Chapter 1 Introduction 11 Background 13 Objectives 13 Approach 15 Report Structure 16 Chapter 2 Literature Review and Industry Outreach Summary 23 Chapter 3 Survey and Interview Summary 33 Chapter 4 Existing Technologies 33 FAA-Approved Automated Weather Reporting Systems 35 Automated Surface Observing System (ASOS) 38 Automated Weather Observing System (AWOS) 45 Automated Weather Sensor System (AWSS) 45 Noncertified Systems 47 Automated UNICOM 48 Modular Automated Weather System 48 Weather Cameras 50 Grant Eligibility 52 Chapter 5 Case Examples 52 Case Example 1: Pocono Mountains Municipal Airport (KMPO), Tobyhanna, PA 53 Case Example 2: Seminole Regional Airport (KSRE), Seminole, OK 54 Case Example 3: Saline County Regional Airport (KSUZ), Benton, AR 55 Case Example 4: Carroll County Regional Airport (KDMW), Westminster, MD 56 Case Example 5: Virginia Department of Aviation 59 Case Example 6: New Kent County Airport (KW96), Quinton, VA 61 Case Example 7: Alaska Aviation Camera System 62 Case Example 8: Mississippi Center for Emergency Services: Air Ambulance Operation C O N T E N T S

66 Chapter 6 Conclusions and Future Research 66 Conclusion—Relevance of Weather 66 Conclusion—National Weather Collection 66 Conclusion—Aviation Weather Dissemination 67 Conclusion—Airport Surface Observation Option Types 67 Conclusion—System Certification 67 Conclusion—Certified System Types 68 Conclusion—Approved Manufacturers 68 Conclusion—Noncertified Systems 69 Conclusion—VHF Frequency Congestion 70 Conclusion—Ownership 70 Conclusion—Acquisition Costs 71 Conclusion—Operating Costs and Reliability 72 Conclusion—Siting Requirements 73 Conclusion—Value to the Airport 74 Conclusion—Air Ambulance Services 75 Conclusion—Effects of FAA Reauthorization 75 Conclusion—Additional Items 76 Items for Future Research 77 References and Bibliography 79 Glossary 81 Acronyms and Abbreviations 83 Appendix A Survey 92 Appendix B RASS Approach Penalties 95 Appendix C AWOS Types and Capabilities Note: Photographs, figures, and tables in this report may have been converted from color to grayscale for printing. The electronic version of the report (posted on the web at www.trb.org) retains the color versions.

Next: Summary »
Airport Surface Weather Observation Options for General Aviation Airports Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The needs of airports may vary depending on the types of operations typically conducted at the airport, as well as the type of weather common to the airport.

The TRB Airport Cooperative Research Program's ACRP Syntheis 105: Airport Surface Weather Observation Options for General Aviation Airports aims to provide the operators of general aviation (GA) airports a comprehensive source of information about airport-based weather observation options so they may make informed decisions to support the specific operational needs of their airport.

Weather observations at airports can come from either FAA-approved (certified) or advisory (non-certified) sources. Weather reporting at a GA airport, whether certified or not, typically comes from automated sources, as human observers are increasingly being phased out or are stationed mainly at commercial service airports.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!