National Academies Press: OpenBook

Powering the U.S. Army of the Future (2021)

Chapter: 2 The Power and Energy Technology Assessment Criteria

« Previous: 1 The Multi-Domain Operations and the 2035 Operational and Technology Environment
Suggested Citation:"2 The Power and Energy Technology Assessment Criteria." National Academies of Sciences, Engineering, and Medicine. 2021. Powering the U.S. Army of the Future. Washington, DC: The National Academies Press. doi: 10.17226/26052.
×
Page 14
Suggested Citation:"2 The Power and Energy Technology Assessment Criteria." National Academies of Sciences, Engineering, and Medicine. 2021. Powering the U.S. Army of the Future. Washington, DC: The National Academies Press. doi: 10.17226/26052.
×
Page 15
Suggested Citation:"2 The Power and Energy Technology Assessment Criteria." National Academies of Sciences, Engineering, and Medicine. 2021. Powering the U.S. Army of the Future. Washington, DC: The National Academies Press. doi: 10.17226/26052.
×
Page 16
Suggested Citation:"2 The Power and Energy Technology Assessment Criteria." National Academies of Sciences, Engineering, and Medicine. 2021. Powering the U.S. Army of the Future. Washington, DC: The National Academies Press. doi: 10.17226/26052.
×
Page 17

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

2 The Power and Energy Technology Assessment Criteria OPERATIONAL IMPORTANCE OF ENERGY ATTRIBUTES Army Field Manual 3-96 (8 Oct 2015) states an Armored Brigade Combat Team’s (ABCT’s) role is to “concentrate overwhelming combat power. Mobility, protection, and firepower enable the ABCT to conduct offensive tasks with great precision and speed.” 1 An ABCT’s combined-arms battalions include a variety of armored vehicles, artillery, intelligence and signals equipment, engineering capabilities, and chemical, biological, radiological, and nuclear (CBRN) reconnaissance. In addition, ABCT’s can be augmented with a variety of additional capabilities to adapt to mission requirements, such as aviation, armor, air defense, military police, civil affairs, military information support elements, and additional information-systems assets. The basic concepts of mobility, protection, and firepower apply to higher echelons and also scale down to dismounted, small units. For example, the 2013 National Research Council report Making the Soldier Decisive on Future Battlefields called out the specific attributes of situational awareness, effects (lethal and non-lethal), maneuverability (agility, mobility), sustainability, and survivability as essential to small-unit success. 2 The wide variety of missions present similar and continuing challenges to acquiring and fielding power and energy (P&E) systems that enable the ABCT to optimally carry out its offensive, defensive, and sustainment tasks. DoD acquisition policy continually evolves in an effort to meet the combined, joint, and coalition demands of the modern battlefield and echoes similar attributes needed for successful acquisition programs. DoD Directive 5000.01 sets the conditions for a responsive acquisition policy and places particular emphasis on the overall affordability; environmental, health, and safety concerns; and sustainability. 3 More than any individual weapons system, it is P&E that enables maneuverability, awareness, and lethality from the other operational capabilities to a degree that ensures mission success. With this in mind, the committee considered various relevant energy attributes of importance including the following: ● Specific energy and power output; ● Energy efficiency; ● Weight; ● Volume; ● Endurance (time to refuel, recharge, or replace); ● Durability (performance in austere or hazardous environments or under shock or damage); 1 U.S. Army. 2015. Army Field Manual 3-96 Brigade Combat Team. https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/fm3_96.pdf. 2 National Research Council. 2013. Making the Soldier Decisive on Future Battlefields. The National Academies Press, Washington, DC. 3 OUSD(A&S). 2020. DOD Directive 5000.01. Office of the Under Secretary of Defense for Acquisition and Sustainment. https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/500001p.pdf?ver=2020-09-09- 160307-310. PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION 2-1

● Signature (acoustic, thermal, radio frequency); ● Vulnerability to attack and disruption, portability/mobility, supply and maintenance concerns (e.g., challenges of materiel and fuel sourcing and rarity of materials); ● Financial considerations—investment, unit cost, and schedule; ● Safety issues; ● Personnel training requirements; and ● Policy and regulatory concerns. Although the committee did not create a Kepner–Tregoe decision-making matrix with quantitative assessments for each of the above parameters for each of the technologies evaluated, the above factors were all considered qualitatively as the committee developed its recommendations. Additionally, the committee considered the following subgoals to be of prime importance: • Supplying whatever energy is needed to whomever needs it, wherever and whenever they need it. Just as one would never want a soldier to run out of ammunition, food, or water, having adequate P&E saves warfighter lives and is essential to their success. • Recognizing the need to meet growing power demands. • Supporting enhanced battlefield situational awareness for all warfighters based on improved communications, information processing, and artificial intelligence. • Reducing fuel transport needs to save lives during resupply. • Reducing the weight that the dismounted soldier has to carry. • Reducing the weight of all types of vehicles (i.e., ground and flight assets, both manned and unmanned). • Increasing the Army Brigade’s self-sustainment capability from 3 to 7 days. • Providing rapid mobility across a variety of terrain for dismounted soldiers, vehicles, and forward operating bases. This includes rapid set-up and breakdown times for forward operating bases. • Maintaining or reducing the time required to refuel, recharge, or provide new sources of power. • Possessing a capability to utilize a wider range of globally available resources (i.e. fuel resources utilized by allies and adversaries). • Maintaining a capability to disable or lock-out energy resources that fall into hostile hands, particularly those with proprietary technology. • Employing environmentally friendly technologies wherever practical without compromising military objectives. THREE-TIERED TECHNOLOGY STRUCTURE In order to provide the best assessment of P&E technologies to support Army operations in 2035, the committee adopted a three-tiered view with respect to technology readiness levels (TRLs). ● Tier 1. System demonstration achievable within 5 years from TRL 5–7 to TRL 7–8, and an operational system acquirable by 2035. ● Tier 2. Concept or system demonstration achievable in 15 years with an estimate of the additional time required for an acquired system. ● Tier 3. Beyond the 15-year horizon at the TRL 2–4 level. Tier 1 involves P&E technologies that would achieve a 5-year system demonstration from TRL 5– 7 to TRL 7–8, then 10 years to acquire an operational system by 2035. Tier 2 technologies would deliver a PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION 2-2

concept to feasibility demonstration from TRL 4–6 to TRL 6–8 in 15 years with an operational system acquired sometime after the demonstration. Tier 3 technologies would not deliver a concept-to-feasibility demonstration by 2035 and currently exist at the TRL 2–4 level. However, with investment and resource allocation, concept-to-feasibility or system demonstration could be achieved in the subsequent decade. Physics and engineering principles are used to judge the credibility of the P&E sources for each tier. To be considered, detailed engineering and system descriptions that support the performance characteristics of each P&E source are required. For each of finding, conclusion, and recommendation, the committee identified the relevant corresponding tier. LEAD, WATCH, FOLLOW The private sector is currently investing resources and personnel into several P&E-related technology areas that can be leveraged by the Army in the 2035 timeframe. However, many technology areas have commercial market demand and several technologies require specific alterations and modifications to meet Army operational requirements. With this duality in mind, the committee opted for a “lead, watch, follow” methodology in assessing each technology area. For each finding, conclusion, and recommendation, the committee the relevant corresponding approach. Lead: Technologies lacking primary market value in which the Army will need to lead on investment of funding and resources. Watch: Technologies in which the majority of development will occur within the commercial sector in response to market demands but will require unique capabilities to meet Army specific operational needs. Follow: Technologies that will likely be wholly developed within the commercial and private sector that the Army can acquire and adopt “off the shelf” as needed. DIFFERENT USES DEMAND DIFFERENT SOLUTIONS The significant differences in how power is provided and distributed to the battlefield are summarized below. Note that no single solution works for all users. • Milliwatts for distributed remote sensors • Watts for small unmanned aerial vehicles (UAVs) and soldier equipment • Kilowatts for emerging directed-energy weapons, such as lasers • Megawatts and more for ground combat vehicles, emerging (FVL) helicopters/VTOL aircraft and forward operating bases The key is to find the appropriate power source for each use. In this regard, the committee chose to focus on the dismounted soldier and light UAV/unmanned ground vehicles (UGVs) in Chapter 4, on ground vehicles and large weapon systems in Chapter 5, and on forward operating bases in Chapter 6. These significant differences in use cases (with the span of power requirements ranging several orders of magnitude) led to some interesting challenges in creating the structure for this report. To address this, Chapter 3, “Power Sources, Conversion Devices, and Storage,” contains an overview of various P&E sources and conversion devices. In cases where a given technology makes sense for only one specific use case, more detail is provided in the chapter about that use. For example, the detailed discussion of mobile nuclear power plants is contained in Chapter 7, “Forward Operating Base Power.” Similarly, a detailed PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION 2-3

discussion of radioisotope decay devices is included in the Chapter 5, “Dismounted Soldier Power and Light UAVs/UGVs.” Because battery or capacitor improvements have applicability to all three use cases, the discussion on their potential technological improvements are wholly contained within Chapter 3, “Power Sources, Conversion Devices, and Storage.” PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION 2-4

Next: 3 Energy Sources, Conversion Devices, and Storage »
Powering the U.S. Army of the Future Get This Book
×
Buy Paperback | $50.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

At the request of the Deputy Assistant Secretary of the Army for Research and Technology, Powering the U.S. Army of the Future examines the U.S. Army's future power requirements for sustaining a multi-domain operational conflict and considers to what extent emerging power generation and transmission technologies can achieve the Army's operational power requirements in 2035. The study was based on one operational usage case identified by the Army as part of its ongoing efforts in multi-domain operations. The recommendations contained in this report are meant to help inform the Army's investment priorities in technologies to help ensure that the power requirements of the Army's future capability needs are achieved.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!